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Abstract- In this paper, Divided Range Multi-

Objective Genetic Algorithm (DRMOGA) is pro-

posed. The DRMOGA is a model of genetic al-

gorithm in multi-objective problems for parallel

processing. In the DRMOGA, the population of

GAs is sorted with respect to the values of the ob-

jective function and divided into sub populations.

In each sub population, simple GA for multi-

objective problems is performed. After some

generations, all individuals are gathered and they

are sorted again. In this model, the Pareto op-

timum solutions which are close to each other

are collected by one sub population. Therefore,

this algorithm increases the calculation eÆciency,

and the neighborhood search can be performed.

Through the numerical examples, the followings

are become cleared. The DRMOGA is very suit-

able GA model for parallel processing. In some

cases, the DRMOGA can derive the better so-

lutions compared to both the single population

model and the distributed model.

1 Introduction

When the real world problems are solved, the multi-

objective optimization techniques are often used. In

multi optimization problems, there are several types of

the objectives, which usually have the trade o� relation.

One of the strongest algorithms that solve the multi-

objective problem is Genetic Algorithms (GAs).

There are several studies that concerned with GA ap-

plied to the multi-objective function (Fonseca and Flem-

ing, 1994; Tamaki, et al., 1995; Coello, 1999). Since GA

is one of the multi searching methods, it is suitable for

�nding the Pareto optimum solutions. There are several

models are proposed for the multi-objective GA. Scha�er

developed the VEGA (Scha�er 1985) . Goldberg et al.

introduced the ranking method (Goldberg et al. 1989),

and Fonseca et al. also developed the MOGA (Fonseca

and Fleming, 1993). In their methods, the Pareto op-

timum solutions are treated explicitly. Tamaki et al.

(Tamaki, et al. 1995) introduced their model where the

VEGA used, and the Pareto optimum individuals are re-

mained. 1 Additionally, there is a method of Murata et

al. (Murata, et al. 1995). In their method, by weight-

ing the values to each objective function, they convert

the objective optimization problems to single objective

optimization problems.

Like this way, there are several models of multi-

objective GAs and they can derive the good Pareto opti-

mum solutions. However, they need a lot of iterations to

calculate the values of objective functions and the con-

strains. This leads to the high calculation costs. One

of the solutions of this problem is to perform the multi-

objective GA in parallel processing.

There are several studies that concerned with the par-

allelization methods of GA for a single object (Nang and

Matsuo 1994; Cantu-Paz 1999, Sawai and Adachi 1999).

For multi-objective optimization problems, there are few

studies of GA, and the models of these studies are al-

most the same as for a single object. For example, there

is a model where the parts of evaluation of �tness are

performed in parallel (Jones and Crossley 1998). There

is another model where the total population is divided

into sub populations, and the multi-objective optimiza-

tion is performed in each sub population (Vicini 1998).

However, the mechanism of searching the optimum is

di�erent between the single objective GA and the multi-

objective GA. In the single objective GA, only one op-

timum should be derived. Therefore, the diversity of

the searching point is important in the �rst stage and

the local search is important in the latter stage. On the

other hand, in the multi-objective GA, both the diver-

sity and the local search are important for all stages,

because it should derive not only one point but also the

meeting of the points. This fact suggests the following;

in the multi-objective optimization in parallel, the dif-

ferent model should be used from the one in the single

objective GA.

1Tamaki et al. called the individuals that are in the Pareto

front as the Pareto optimum individuals.
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Because of the necessity of a new model of GA in

multi-objective problems for parallel processing, we in-

troduced a model of Divided Range Genetic Algorithms

in Multi-Objective Optimization Problems: DRMOGA

(Hiroyasu, et al. 1999). In the DRMOGA, the individ-

uals are divided into sub populations by the values of

their objective function. Therefore, the eÆcient search

can be performed and the adequate local search also car-

ried out. In this study, DRMOGA is explained brie
y

and applied to the numerical test problems that are dif-

�cult to derive the solutions. Through the numerical

examples, the validity of the model and the character-

istics of the solutions are discussed. Especially, the test

functions that Deb developed (Deb 1999) used and the

high searching performance of DRMOGA is got cleared.

2 Divided Range Multi-Objective Genetic

Algorithm

2.1 Overview of DRMOGA

In this study, a new model of a multi-objective genetic

algorithm is explained. That is Divided Range Multi-

Objective Genetic Algorithm: DRMOGA. This model is

suitable for parallel processing.

The 
ow of Distributed Range Multi-Objective Ge-

netic Algorithm is explained as follows.

� Step 1 Initial population (population size is N)

is produced randomly. All the design variables

that are shown with the individuals satisfy the con-

straints.

� Step 2 The individuals are sorted by the values of

focused objective function fi . This focused objec-

tive function fi is chosen in turn, and turned with

the loop. Then, the individuals of number N=m

are chosen in accordance with the value of this fo-

cused objective function fi . As the result, there

exist m sub populations.

� Step 3 In each sub population, the multi-objective

GA has been performed for some iterations. The

multi-objective GA that is used in this paper is ex-

plained in the next section. The end of each gener-

ation, the terminal condition is examined and the

process is terminated when the condition is satis-

�ed. When the terminal condition is not satis�ed

the process progress into the next step.

� Step 4 After the multi-objective optimization has

been performed for k generations, all of the indi-

viduals are gathered (virtually). Then the process

is going back to Step 2. This generation k is called

the sort interval.

In this study, the number of distribution m and the

sort interval k is determined in advance. In Figure 1, the

f1(x)

f 2(x
)

Min Max

division 1
division 2

division 3

Pareto Optimum Solution

Figure 1: DRMOGA

concept of the DRMOGA is shown. In Figure 1, there

are two objective functions. Individuals are divided into

three by the value of the focused objective function f1.

The area with respect to the focused objective func-

tion determines the sub population of the DRMOGA.

This mechanism is supposed to functions as the sharing.

Therefore, the derived Pareto optimum solutions of the

DRMOGA might have the high diversity.

2.2 Con�guration of Genetic Algorithm

2.2.1 Expression of individuals

In genetic algorithms, usually, the individuals are shown

in bit sequences. In this paper, the example problems

are the real value problems. Therefore, we show the

individuals as the vectors of the real values. For example,

the individuals are shown like

a1 = f0:02; 10:03; � � � ; 7:52g: (1)

Each element expresses the value of the design variable.

2.2.2 Crossover

Because the design variables are directly shown in real

values, Center Neighborhood Crossover (CNX) is used

in this paper.

In the CNX, N + 1 parent individuals are selected

randomly. N expresses the number of design variables.

The vector of the gravity of the selected individuals ~rg
is derived with the following equation.

~rg =
1

n+ 1

n+1X
i=1

~ri (2)

In this equation, ~ri is the vector of the parent individual.

The concept of CNX is shown in Figure2 where there are

two design variables.

New individual called child individual ~rchild is gener-

ated with the following equation.

~rchild = ~rg +

n+1X
i=1

ti ~ei (3)
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Figure 2: CNX Crossover

In this equation, ~ei is a vector from the gravity to the

parent individual and ti is a normal distribution random

number whose normal distribution is �i and the average

is 0. It is also supposed that �i is derived with the

following equation.

�i = �j~ri � ~rg j ; (i = 1; :::; n) (4)

In this equation, � is the control parameter of the

normal distribution random number. The probability

density of the normal distributions when � = 3 is shown

in Figure 3. This is the case where there are two design

variables. In these �gures, the edges of the triangles are

the parent individuals.
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Figure 3: Normal Distribution (� = 3)

It is obvious that the parameter � is small, the child

individual who has the characteristics of the parents is

generated. When the parameter � is big, the child indi-

vidual is di�erent from the parents. Therefore, when �

is small, the child individual is close to the parents and

when � is big, child individual is generated randomly.

The optimum parameter of � is di�erent from the type

of the problem. In the following numerical examples,

the two types of � are prepared and these parameters

are examined their a�ection to the solutions.

2.2.3 Selection

In the following numerical examples, we used the three

types of the selection methods. Those are

� Pareto elite reservation + sharing

� Roulette selection

� Roulette selection + sharing .

In the �rst strategy, the selection is an elite selection

and all of the individuals whose ranking is 1 are selected.

When the population size is over the certain number, the

individuals are chosen by the roulette selection with the

�tness values. The �tness values are determined by the

sharing.

In the second strategy, the values of the �tness func-

tion for the roulette is only determined by the values of

the rankings.

In the third strategy, the values of the �tness function

are constructed with the values of the rankings and the

sharing.

2.2.4 Terminal condition

Many researchers used the number of generation as the

terminal conditions. However, this condition is not prac-

tical, because the optimum generation can be deter-

mined after the solutions are derived.

We use the movement of the Pareto frontier as the

terminal condition. When the movement of the pareto

frontier is small, the simulation is terminated.

3 Numerical Examples

In the numerical examples, the proposed DRMOGA was

adapted to four test functions on PC cluster systems.

By adapting the DRMOGA to these test functions, the

validity of the DRMOGA and the characteristics of the

solutions are discussed.

3.1 Cluster System and Used Parameters

3.1.1 PC Cluster system

In the numerical examples, the DRMOGA is applied to

the test functions on the PC cluster system. The spec

of the used PC cluster is summarized in Table 1.

Table 1: Cluster system

CPU Pentium II (500MHz)*5

Memory 128 Mb

OS Linux2.2.10

Network FastEthernet

TCP/IP

Communication library MPICH1.1.2

3.1.2 Used parameters

GAs in multi-objective optimization problems need

many parameters. In this paper, the parameters shown

in Table 2 are used for the numerical examples.

Because of the characteristics of the test functions,

the optimal parameter is di�erent. Among the parame-

ters, the selection method and the parameter � that is
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Table 2: Used parameters

SGA DGA DRMOGA

Crossover rate

Mutation rate

Migration interval
(Sort interval)
Migration rate

1.0

0.0

5

0.1

Number of islands 5

Population size 500

used in the crossover a�ects the solutions. Therefore,

in each example, the following 6 types of the cases are

applied.

Table 3: Cases

Case selection method �

Case 1 Pareto optimal 3

Case 2 Pareto optimal 6

Case 3 Only roulette selection 3

Case 4 Only roulette selection 6

Case 5 Roulette selection with sharing 3

Case 6 Roulette selection with sharing 6

All of the results are the average of 30 trials. The

results of DRMOGA is compared those of the simple is-

land model and one population model. In this paper, the

results of DRMOGA, simple island and simple GA are

shortened to "DR", "Island" and "Simple" respectively.

3.2 Matrix

One of the most diÆcult problems in multi-objective op-

timization problems is to evaluate the Pareto optimum

individuals. Because the Pareto optimum individuals

are the assembly of the points, there is no good quan-

titative way of evaluating. Many researchers only show

the derived Pareto optimum individuals in �gures. This

evaluation is not quantitative way and can only apply

for two and tree objective functions.

Hiyane (Hiyane 1997) introduced his matrix for the

accuracy and the quality of the Pareto optimum indi-

viduals. In this study, the matrix that is simpli�ed the

Hiyane's methods are utilized as follows.

3.2.1 Error

When the real Pareto optimum solutions are given, the

average of Euclid distances between the real Pareto so-

lutions and each Pareto optimum individuals. When

the error is small, the Pareto optimum individuals are

very close to the real Pareto solutions. This matrix only

can apply to the problem where the Pareto solutions are

given. We used the shorthand expression of errors. In

the test functions, the Pareto solutions exist on the con-

straints. Therefore, when g(x) = 0 is the real Pareto

F1

F2

MaxMin

Max

Min

Figure 4: Cover rate

solutions, the following shorthand errors are used.

Error =

vuut NX
i=1

g(xi)2=N (5)

In this expression, N expresses the number of the Pareto

optimum individuals.

3.2.2 Cover rate

Cover rate is the index for the diversity of the Pareto

optimum individuals. The cover rate is derived in the

following steps. At �rst, one of the object functions is

focused. Secondly, the distance between the individuals

that have the maximum and the minimum values is di-

vided into the certain number of the division. Thirdly,

the division area that have the Pareto optimum individ-

uals is counted. Fourthly, the counted number is divided

by the number of division. When every divided area has

at least one Pareto optimum individual, this number be-

comes 1. When there are no area that has the Pareto

optimum individuals, this number becomes 0. Fifthly,

these steps are treated for every objective function. Fi-

nally, the cover rate is determined to average the number

of each objective function. When the cover rate is close

to 1, it means that the Pareto optimum individuals are

not concentrated on one point but they spreads. In Fig-

ure 4, the concept of the cover rate are shown, when

there are two objective functions.

3.3 Example 1

Example 1 is a convex problem that Tamaki et al. used

(Tamaki et al. 1995). Among the four examples, this

is the easiest problem to �nd the Pareto solutions. The

equations of this problem is shown as follows,

f1(x) = 2
p
x1 (6a)

f2(x) = x1(1� x2) + 5 (6b)

g1(x) = x1 � 1 � 0 (6c)

g2(x) = 4� x1 � 0 (6d)
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g3(x) = x2 � 1 � 0 (6e)

g4(x) = 2� x2 � 0: (6f)

The results of this example are summarized in Table 4.

Table 4: Results of Problem 1

Case number of
solutions error cover

rate generations

Simple Case1 436 0.00 1.00 799
Case2 382 0.03 1.00 1000
Case3 471 0.00 1.00 35
Case4 444 0.00 1.00 367
Case5 461 0.00 1.00 39
Case6 330 0.00 1.00 1000

Island Case1 436 0.01 1.00 43
Case2 438 0.01 1.00 59
Case3 423 0.01 1.00 273
Case4 435 0.01 1.00 44
Case5 431 0.01 1.00 66
Case6 404 0.01 1.00 927

DR Case1 500 0.00 1.00 40
Case2 500 0.00 1.00 48
Case3 494 0.00 1.00 105
Case4 494 0.00 1.00 548
Case5 495 0.00 1.00 199
Case6 494 0.00 1.00 814

The DRMOGA can derive the Pareto solutions that

have high accuracy in all the cases. In the DRMOGA,

the Pareto optimal selection is useful (case 1 and 2).

This is come from the fact that the problem is easy and

the Pareto individuals also can be �rmed easily.

When the selection type is Pareto optimum (case 1

and 2), the number of generation of DRMOGA is smaller

than that of island GA or simple GA. This shows the

fact that DRMOGA can search the Pareto solutions eÆ-

ciently. In the other examples, when DRMOGA is useful

to �nd the solutions, DRMOGA also can �nd the Pareto

solutions eÆciently.

3.4 Example 2

In example 2, there are three objects and it is diÆcult

to get the Pareto solution all over the objective domain

(Veldhuizen and Lamont 1999). The equations of this

problem are shown as follows,

f1(x) = 0:5(x21 + x22) + sin(x21 + x22) (7a)

f2(x) =
(3x1 � 2x2 + 4)2

8

+
(x1 � x2 + 1)2

27
+ 15 (7b)

f3(x) =
1

x21 + x22 + 1

� 1:1 exp(�x21 � x22) (7c)

g1(x) = x1 � �3 (7d)

g2(x) = x2 � 3: (7e)

The results are summarized in Table 5.

Table 5: Results of Problem 2

Case number of
solutions

cover
rate generations

Simple Case1 500 0.75 15
Case2 500 0.74 18
Case3 491 0.51 19
Case4 485 0.50 30
Case5 316 0.48 19
Case6 207 0.47 198

Island Case1 428 0.79 19
Case2 426 0.79 36
Case3 434 0.76 22
Case4 403 0.77 55
Case5 6 0.04 1000
Case6 125 0.43 943

DR Case1 386 0.95 44
Case2 330 0.96 256
Case3 429 0.92 82
Case4 255 0.85 277
Case5 337 0.88 66
Case6 90 0.53 117

The derived solutions are shown in Figure 5 to 7.

These are the typical results of case 1.

It is obvious that DRMOGA can derive the good

Pareto solutions compared to the island model and the

simple GA model. Usually, the results of one population

model (simple GA) are better than those of the island

model. The DRMOGA is one of the island model. How-

ever, the results of DRMOGA are better than those of

the simple GA. In this problem, the solutions are scat-

tered f2(x) = [15; 17:5]. On the other hand, they are

easily concentrated on the plane f2(x) = 15. This fact

makes the problem is diÆcult. DRMOGA is sorted by

the values of the objective functions. This operation

�nds the solutions all over the f2(x) = [15; 17:5].

f1f2

f3

Figure 5: Pareto solutions of Example 2 (Simple)

3.5 Example 3

Example 3 is a problem of two design variables that Deb

developed (Deb 1999). The equations are shown as fol-

lows,

f1 = 1� exp(�4x1) sin6(5�x1) (8a)

f2 = gh (8b)

g(x2; : : : ; xN ) = 1 + 10

 PN

i=2 xi

N � 1

!0:25

(8c)
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f1f2

f3

Figure 6: Pareto solutions of Example 2 (Island)

f1f2

f3

Figure 7: Pareto solutions of Example 2 (DRMOGA)

h(f1; g) =

(
1�

�
f1
g

�2
; if f1 � g

0; otherwise:
(8d)

This is a very diÆcult problems to �nd the solu-

tions, because the solutions are xi = 0(i 6= 1) and

x1 = [0:0; 0:2]. Therefore, it often happens that the so-

lutions are concentrated on the local minimum.

The results of this problem is summarized in Table 6.

Table 6: Results of Problem 3

Case number of
solutions error cover

rate generations

Simple Case1 500 7.21 0.41 394
Case2 456 5.92 0.32 612
Case3 469 3.75 0.14 1000
Case4 374 2.37 0.47 1000
Case5 482 3.84 0.48 1000
Case6 423 2.60 0.43 1000

Island Case1 345 6.41 0.46 570
Case2 322 5.88 0.48 919
Case3 301 3.70 0.22 1000
Case4 220 2.60 0.35 1000
Case5 283 3.39 0.43 1000
Case6 240 2.41 0.31 1000

DR Case1 412 6.87 0.38 533
Case2 363 5.38 0.28 774
Case3 425 4.53 0.40 780
Case4 293 0.01 0.99 1000
Case5 393 3.92 0.41 692
Case6 254 0.14 0.94 971

The derived Pareto solutions are shown in Figure 8

to 10. These are the results of case 4.

Only the case 4 and 6 of DRMOGA can derive the

solutions. Especially, Simple GA nor island GA can not

�nd the any real Pareto solutions. Therefore, it can be

said that the DRMOGA has high searching ability in

diÆcult problems.

However, even in DRMOGA, the Pareto solutions

cannot be derived with other parameters. The parame-

ter � of crossover is big in the cases 4 and 6. This leads

the fact that this problem needs the factor of high ran-

domness. When the randomness of the algorithm is low,

the Pareto solutions can not be derived.

f1

f2

Figure 8: Pareto solutions of Example 3 (Simple)

f1

f2

Figure 9: Pareto solutions of Example 3 (Island)

f1

f2

Figure 10: Pareto solutions of Example 3 (DRMOGA)

3.6 Example 4

Example 4 is also a problem of the two design variables

that Deb developed (Deb 1999).
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f1 = x1 (9a)

f2 = gh (9b)

g(x2; : : : ; xN ) = 1 + 10

PN

i=2 xi

N � 1
(9c)

h(f1; g) = 1�
�
f1

g

�0:25
� f1

g
sin(10�f1) (9d)

This is also a diÆcult problem and the Pareto so-

lutions are not continuos but discrete. The results are

summarized in Table 7.

Table 7: Results of Problem 4

Case number of
solutions error cover

rate generations

Simple Case1 500 1.70 0.31 209
Case2 500 1.71 0.38 358
Case3 470 0.32 0.22 1000
Case4 477 0.03 0.40 1000
Case5 492 0.34 0.58 855
Case6 493 0.08 0.60 899

Island Case1 385 1.89 0.40 333
Case2 409 1.75 0.53 403
Case3 304 0.31 0.33 1000
Case4 361 0.24 0.46 1000
Case5 376 0.27 0.60 1000
Case6 365 0.25 0.60 1000

DR Case1 494 1.93 0.37 212
Case2 457 3.10 0.34 54
Case3 460 0.39 0.30 262
Case4 451 0.03 0.52 387
Case5 442 0.39 0.47 291
Case6 402 0.07 0.61 654

Because the pareto solutions are discrete, the highest

value of the cover rate is around 0.6. Most of the cases,

the values of errors are not so bad. On the other hand,

in the most cases, the values of cover rate are not good.

This means that the the Pareto solutions are concen-

trated on some points. In any model, the parameter set

of case 6 derives the good solutions. Therefore, it can

be concluded that this problem needs very high random-

ness. In Figure 11, the derived Pareto solution in case 6

of DRMOGA is shown.

In case 5, island GA and simple GA derive the so-

lutions whose values of the cover rates are good. On

the other hand, the crossover of DRMOGA is not good

in case 5. The Derived Pareto soliton in case 5 of DR-

MOGA is shown in Figure 12.

From Figure 12, it is found that the Pareto solutions

are not revealed all over the f1 region. It may come from

the crossover method. In this paper, the CNX is used for

the crossover. In this method, the child individuals are

close to the parent individuals. Therefore, it can be said

that the randomness of this crossover method is low.

4 Conclusion

In this paper, we proposed the new parallel model of

genetic algorithm for multi-objective optimization prob-

lems: that is called a Divided Range Multi-Objective

f1

f2

Figure 11: Pareto solutions of Example 4 (DRMOGA,

Case 6)

f1

f2

Figure 12: Pareto solutions of Example 4 (DRMOGA,

Case 5)

Genetic Algorithm (DRMOGA). In the DRMOGA, the

population is divided into some sub populations and nor-

mal multi-objective genetic algorithm is performed in

each sub population. After some generations, all of the

individuals are gathered virtually and they are sorted

and divided into sub populations again. The proposed

DRMOGA is applied to some numerical test functions.

Through the numerical examples, DRMOGA has high

searching ability of Pareto solutions. Especially, the

operation of the sorting the individuals works well in

searching the Pareto solutions in the diÆcult problems.
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