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Abstract In this paper, a parallel evolutionary
multi-criteria optimization algorithm: DGA and
DRMOGA are applied to block layout problems.
The results are compared to the results of SGA
and discussed. Because block layout problems are
NP hard and can have several types of objectives,
these problems are suitable to evolutionary multi-
criterion optimization algorithms. DRMOGA is a
DGA model that can derive good Pareto solutions in
continuous optimization problems. However it has
not been applied to discrete problems. In the nu-
merical example, the Pareto solutions of the block
layout problem with 13 blocks were derived by DGA,
DRMOGA and SGA. It was confirmed that it is dif-
ficult to derive the solutions with any model, even if
the problem has only one objective. It is also found
that good parallel efficiency can be derived from both
DGA and DRMOGA. The results of Pareto solu-
tions of DGA and DRMOGA are almost the same.
However, DRMOGA searched a wider area than
that of DGA.

Keywords: Genetic Algorithms, Multi-criterion
problems, Parallel processing, Layout problems

1 Introduction

In real world problems, many problems with
several types of objectives have been found.
These kinds of problems are called multi-

criterion or multi-objective problems. Since
there are often trade-off relationship between
the objective functions, a simple solution can-
not be derived. Therefore, to find the fi-
nal solution, the decision must be made. In
the multi-criterion problems, some preferences
have to be determined to do the decision mak-
ing. It is said that the preferences can be ex-
pressed a priori, a posteriori or in an inter-
active way [1]. In the posteriori way, Pareto
optimum solutions can derive the preferences.
Since Pareto optimum solutions are assembly
of the solutions, evolutionary algorithms (EAs)
are often used to find Pareto solutions. EAs are
the multi-points searching algorithms, and this
point is suitable to find Pareto solutions.

There are several algorithms for finding
Pareto optimum solutions in EAs. These al-
gorithms are well summarized in some reviews
[2,3,4]. These algorithms are called Evolution-
ary Multi-criterion Optimizations (EMOs).
Among the algorithms, VEGAI5], MOGA]I6],
NPGA[7] and NSGA[8] are the typical ap-
proaches. These algorithms can all derive good
Pareto optimum solutions. However, the calcu-
lation cost is high, since many iterations are re-
quired to calculate the values of objective func-
tions and constraints. One of the solutions to
reduce the calculation costs is to perform the
multi criterion EAs in parallel processing.



There are few studies concerned with the
proposition of the models of EAs in parallel.
However there is one model where the evalua-
tion parts are performed in parallel [9]. In this
model, there is only population is called one
population model or simple genetic algorithm
(SGA). There is another model where the total
population is divided into sub-populations and
the multi objective optimization is performed
in each sub-population [10]. This model is
called sub-population model or distributed ge-
netic algorithm model (DGA). We also pro-
posed a new model of EA in parallel; that
is called Divided Range Multi-Objective Ge-
netic Algorithm (DRMOGA) [11]. In the DR~
MOGA, the population is sorted by the values
of one objective. Then the population is di-
vided into sub-populations with respect to the
sorted values. The DRMOGA is applied to
some test functions and it is found that the
DRMOGA is an effective model for continuous
multi-objective problems.

In this paper, the DGA and the DRMOGA
are applied to discrete problems, and their ef-
fectiveness is discussed. Specifically, block lay-
out problems were selected as discrete prob-
lems to examine. Block layout problems can
be found in the setting problem of plant facili-
ties or LSI layout problems. Because block lay-
out problems are NP hard and can have several
types of objectives, these problems are suitable
to evolutionary multi-criterion optimization al-
gorithms. However, most of the test functions
that are used in the studies concerned with
EMO are continuous problems. Specifically,
parallel models of EMOs have not been ap-
plied to block layout problems, while some re-
searchers focused on the single object problem
of layout problems [12]. Therefore, the paral-
lel model of EMOs are applied to block layout
problems and discussed. In this paper, the par-
allel models of EMOs and the configuration of
GAs for block layout problems are explained
briefly.

2 Parallel EMO

In this chapter, the definition of Multi-criterion
optimization problems is defined briefly. There
are several models of Evolutional algorithms
for Multi-criterion Optimization (EMO). The
parallel models of EMO are roughly classified
into two categories; those with a one popula-
tion model and those with a sub-population
model.

2.1 Multi-Criterion
Problems

Optimization

In the optimization problems, when there are
several objective functions, the problems are
called the Multi-objective or Multi-criterion
Optimization Problems: MOPs.

In general multi-objective optimization
problems are formulated as follows:

minlfu(@), o), ful)] (1)
subjecttog;(z) < 0 (L,2,...,m) (2)

where x € F' is the design variables and F is
the domain that satisfies the constraints and is
called the feasible domain.

Usually, there are trade off relations between
the objective functions. Therefore there may
be more than one optimum solution. In this
case, the concept of the Pareto optimum solu-
tion is introduced in the multi objective opti-
mization problems [13].

1. Pareto dominant:

When 2! € F and 22 € F satisfy f;(z!) <
fi(x?) for all of the objective functions and
fi and satisfy f;(z!) € fi(2?) for some of
the objective functions f;, 2! is dominant
to 2.

2. Pareto optimum solutions:

When 2! € F does not exist that domi-
nant to z°, 2V is the Pareto optimum so-
lution.

In real world problems, multi objective opti-
mization problems are often found, such as the



design problems. In these problems, the ob-
jective optimizations have a trade-off relation-
ships. Usually, this relationship is not clear.
Thus, when the relation can be grasped, the
problem becomes easier for the designers. De-
riving the Pareto optimum solutions is one of
the goals in the multi objective optimization
problems.

2.2 SGA

In GAs, there are several genetic operations.
Among them, evaluation operation usually
takes considerable computing time. Therefore,
it can be said that it is efficient to perform
evaluation operation in parallel. This is a sin-
gle population model.

2.3 DGA

Distributed Genetic Algorithm (DGA) is one
of the typical models of parallel genetic algo-
rithms. In the DGA, the population is divided
into sub-populations. In each sub-population,
simple GA is performed for several iterations.
After some iterations, some individuals are
chosen and move to another island. This oper-
ation is called migration. The interval between
iterations is called migration interval and the
number of migrating individuals is determined
by multiplying the number of individuals in
the sub-population by migration rate. The
migration keeps the diversity of the solutions
even when there are few individuals in a sub-
population. Since the network traffic is light,
this model is very suitable to parallel process-
ing. On the other hand, when this model is ap-
plied to multi-criterion problems, some waste-
ful calculation is produced, because some sub-
populations might find the same Pareto solu-
tions.

2.4 DRMOGA

Divided Range Multi-Objective Genetic Algo-
rithm: DRMOGA was developed by Hiroyasu
et al [11] and this is another model of parallel
DGAs. This model is also suitable for parallel

processing and can reduce the wasted calcula-
tion.

The flow of Distributed Range Multi-
Objective Genetic Algorithm is explained as
follows.

e Step 1 The initial population (population
size is N) is produced randomly. All the
design variables that are derived from the
individuals satisfy the constraints.

e Step 2 The individuals are sorted by the
values of focused objective function f; .
This focused objective function f; is cho-
sen in turn, and selected based on the loop
iteration. N/m individuals are chosen in
accordance with the value of this focused
objective function f; . As a result, there
are m sub-populations.

e Step 3 In each sub-population, the multi-
objective GA is performed for some itera-
tions. The multi-objective GA that is used
in this paper is explained in the next sec-
tion. At the end of each generation, the
terminal condition is examined and the
process is terminated when the condition
is satisfied. If the terminal condition is not
met, the algorithm proceeds to the next
step.

e Step 4 After the multi-objective opti-
mization has been performed for k gener-
ations, all of the individuals are gathered
(virtually). Then the algorithm jumps
back to Step 2. This generation k is called
the sort interval.

In this study, the distribution number, m,
and the sort interval k are determined in ad-
vance. In Figure 1, the concept of the DR-
MOGA is shown. In Figure 1, there are two
objective functions. Individuals are divided
into three by the value of the focused objec-
tive function fi.

The sub-population of the DRMOGA is de-
termined by the area with respect to the fo-
cused objective function. Therefore, the op-
eration of dividing individuals can be same as
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Figure 1: DRMOGA

the sharing. The derived Pareto optimum so-
lutions of the DRMOGA might have the high
diversity.

3 Formulation of Layout
Problems and Configuration
of Genetic Algorithm

3.1 Formulation of Block Layout
Problems

In this paper, parallel GA models are applied
to 2D Block layout problems. It is assumed
that all of the blocks are rectangles and there
are two objectives as follows:

fr=2_> cijdi (3)
=1 j=1
i

f2 = Total AreaS (4)

where
n :number of blocks

cij:flow from block ¢ to block j
d;;:distance from block i to block j .
These objectives are often found in block

layout problems. The first objective function
is the weighted distance and second one is the
area. In [12], a trade-off relationship was found
between these 2 objectives. This paper also as-
sumes that three lines of the base on which the
blocks are layout have been determined in ad-
vance. The block are numbered at first and
the blocks are packed in accordance with these
numbers. The concept of this packing method
is shown in Figure 2.

I it 2 |
l:dead space

Figure 2: Packing Method

3.2 Expression of Solutions

In this paper, a block packing method is used.
In this method, the chromosome has two kinds
of information; those are block number and
the direction of a block layout. An example
is shown in Figure 3.

Packing sequencfgl | 2|3 - [0

N

w

No. of block 6 ﬂ\ 8(3[7]- [LO
Direction of blocd 1 \0f1 | 1{0] --- |0

gen chromosome

Figure 3: Coding of block layout problems

When the direction number is equal to 0, the
block is placed in horizontal way and when it
is 1, the block is placed in vertical way.

3.3 Configuration of Genetic Algo-
rithm

In each sub-population of the DRMOGA, the
serial genetic algorithm is performed. In the
GA, there are several genetic operations; those
are selection , crossover and mutation.

3.3.1 Selection

In the selection operation, there are several
strategies. First of all, all of the individuals
that are rank 1 are preserved. When the num-
ber of the individuals has excessed the maxi-
mum population size, the number of individu-
als is shrunk by roulette selection. The fitness
value for roulette selection of each individual
is determined by the sharing operation in this
case. When the number of the individuals has



not excessed the population size, the rest of the
individuals are determined by the roulette se-
lection. The fitness value for roulette selection
of each individual is determined by the ranking
in this case.

3.3.2 Crossover

In this paper, the PMX method is used in
crossover operation [14]. PMX was originally
developed for TSP problems.

3.3.3 Mutation

In this paper, 2 bit substitution method is used
in mutation operation. In the mutation oper-
ation, 2 bits are selected arbitrarily and these
bits are substituted.

4 Numerical Examples

To discuss the effectiveness of parallel models
in block layout problems, SGA, DGA and DR-
MOGA models were applied to layout prob-
lems that have 13 blocks [15]. To find the so-
lutions, a PC cluster with Pentium IT 400MHz
nodes and 128M byte memory was used. DGA
and DRMOGA have 4 sub-populations and
each population is applied to one node.

The PMX method was used for the crossover
operator and 2 bit substitution method was
used in mutation operation. Each sub-
population had 400 individuals. Therefore,
there were totally 1600 individuals. When the
generation exceeded the 300 generation, simu-
lations were terminated. Migration interval or
sort interval were 5, 10, 15 and 20.

In Figure 4, 5 and 6, the derived individuals
of SGA, DGA and DRMOGA were shown in
the respective objective fields. The migration
or sorting interval of these figures is 10. In
this example, the 1600 individuals are used. In
these figures, the best 100 solutions are shown.

Because of the second object function, there
are only weak Pareto solutions. For objective
function f,, the layout which does not have any
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dead space is the optimum. Among three mod-
els, it was found that the DRMOGA searched
in wider area compared to the results of the
other models. This result is the same as those
of [11] whose test functions are the continuous
problems. Therefore, it can be said that DR-
MOGA can search efficiently in discrete prob-
lems.

The examples of layouts of point A and B
in Figure 6 are shown in Figure 7 and Fig-
ure 8. Though, the values of fo are the

Figure 7: Derived Layout (A)
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Figure 8: Derived Layout (B)

same, it is found that there are several lay-
outs are derived. Therefore, it is very useful to
use multi-criterion optimization for block lay-
out problems.

When the migration or sorting interval is
equal to 20, DGA takes 183.7 secs and DR-
MOGA takes 185.6 secs, while SGA takes
726.3 secs. Therefore, the parallel efficiencies
of both DGA and DRMOGA are almost 100%.

Compared to DGA, the network traffic of DR-
MOGA is higher. However, the differences be-
tween the traffic for DGA and DRMOGA was
not very large. In this case, only small num-
ber of Pareto solutions were derived. There-
fore, the same individuals did not existed in
the sub-populations of DGA and the calcula-
tion wastes do not occur. It can be said that
when a large number of Pareto solutions are
derived, DRMOGA is also useful in block lay-
out problems.

5 Conclusions

Block layout problems can be found in set-
ting problem of plant facilities or LSI layout
problems. Because block layout problems are
NP hard and can have several types of objec-
tives, these problems are suitable to evolution-
ary multi-criterion optimization algorithms.

In this paper, two types of parallel mod-
els were compared, and results are examined.
Those two models are sub-population model
(DGA) and divided range multi-objective ge-
netic algorithm model (DRMOGA).

Through the numerical example that has
13 block and whose objectives are layout area
and weighted distance, the following things are
clarified.

e We used PMX method in crossover and
2 bit substitution method in mutation.
These operations can not derive good
Pareto solutions.

e The parallel efficiencies of DGA and DR-
MOGA are both high.

e The solutions of DGA have higher accu-
racy and diversity.

e DRMOGA searched a wider area.
The following future trials should be needed.

e The problems that have other types of ob-
jectives are discussed.



The number of individuals or migration in-
terval is the parameters and these param-
eters might affect the results. The effect
of these parameters should be examined.
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