
Parallel Simulated Annealing using Genetic Crossover

Tomoyuki HIROYASU†, Mitsunori MIKI†, and Maki OGURA††

† Department of Knowledge Engineering,
†† Graduate School of Engineering,

Doshisha University
Kyo-tanabe, Kyoto, 610-0321, JAPAN

Email: tomo@is.doshisha.ac.jp

Abstract

This paper proposes a new algorithm of a simulated
annealing (SA): Parallel Simulated Annealing using
Genetic Crossover (PSA/GAc). The proposed algo-
rithm consists of several processes, and in each pro-
cess SA is operated. The genetic crossover is used to
exchange information between solutions at fixed in-
tervals. While SA requires high computational costs,
particularly in continuous problems, this operation re-
duces the computational cost. The proposed algorithm
is applied to continuous test problems. It is found that
the proposed algorithm can search the global optimum
solution effectively, compared to distributed genetic al-
gorithms and sequential simulated annealing.

keywords: Optimization Problems, Parallel Dis-
tributed Algorithms, Simulated Annealing, Ge-
netic Crossover, Hybrid Algorithm

1 Introduction

Simulated Annealing (SA) is one of the emergent cal-
culation algorithms that solves optimization problems,
and is an effective technique for solving combination
optimization problems[1]. SA is an algorithm that sim-
ulates the physical evolution of a solid from a high
temperature state to a thermal equilibrium state[2].
SA searches randomly around the neighborhood of a
present searching point. The next searching point can
be accepted even when the fitness value of the next
point is worse than that of the present. SA algorithms
repeat these steps, and the optimization state is finally
expected from given initial state[1][3]. Therefore, it
can derive the global solution. However, SAs require
huge computational cost. Specifically, SA takes much
time finding the optimum solution in continuous prob-
lems. There are two solutions to this problem: per-
forming SA in parallel and performing SA with other
optimization algorithms.
Current research has proposed several types of par-

allel SA (PSA). One of the PSA models is Tempera-
ture Parallel Simulated Annealing (TPSA)[4]. In this
algorithm, there are some processors and each proces-
sor has a process. Each process has a different fixed
temperature. In each process, simple SA is performed

and the information of the solutions is transferred after
some steps.
An algorithm in which SA is utilized with other opti-

mization algorithms is called a hybrid algorithm. Par-
allel Recombinative Simulated Annealing (PRSA)[5]
and Thermodynamical Genetic Algorithm (TDGA)[6]
are hybrid GAs. These algorithms use the concept of
SA (Metropolis standard or the concept of tempera-
ture) at GA’s ”selection” process. However, there are
few SA algorithms that use GA operations. Generally,
it can be said that GA is good at searching globally
and SA is good at searching locally. Therefore, the
hybrid method of SA with GA operator is good at
searching not only locally but also globally.
In this paper, we propose Parallel Simulated An-

nealing using Genetic Crossover (PSA/GAc). This al-
gorithm is a hybrid SA using the GA operations. The
proposed algorithm can reduce the computational cost
even in continuous problems. The proposed algorithm
was applied to some test functions and the effective-
ness of the proposed algorithm will be discussed in this
paper.

2 Parallel Simulated Annealing

2.1 Simulated Annealing

Simulated Annealing (SA) algorithm has basically
three important processes: 　generation, acceptance
criterion and cooling. SA searches a solution with
one point. The process of generation creates the next
searching point from the present point. The accep-
tance criterion then judges the transfer of the searching
point from the present point to the generated point.
This acceptance criterion consists of the temperature
and the function value. Usually, the Metropolis stan-
dard is used as the acceptance criterion. The Metropo-
lis standard is defined as follows;

A(x, x′, T ) =
{
1 if ∆E ≤ 0
exp(−∆E

T ) otherwise

Because of this criterion, even when the value of the
next point is worse than that of the present point, the
next point can be accepted.



The operation of cooling decides the temperature in
the next step[1]. Generally, the exponential annealing
shown in Eq.1 is used.

Tk+1 = γTk (0.8 ≤ γ < 1) (1)

To derive the solution, the three operations- gener-
ation, acceptance criterion, and cooling- are iterated.

3 Parallel Simulated Annealing using
Genetic Crossover

3.1 PSA/GAc

In this paper, we propose Parallel Simulated Anneal-
ing using Genetic Crossover (PSA/GAc). PSA/GAc is
a hybrid method, and it uses parallel SA with the op-
erations that are used in genetic algorithms. The flow
of the concept is shown in Figure 1. In the proposed
algorithm, there are plural processes and the sequen-
tial SA is operated in each process. After some steps,
the crossover that is usually used in GAs is used to ex-
change the information between the solutions. We call
this operation genetic crossover. We call a searching
point an ”individual”, the total number of SA search-
ing points the ”population size” and annealing steps
”number of generations”. In optimization problems,
the value of the objective function is made smaller or
bigger. This value is the same as the value of the fit-
ness in GAs and the value of the energy in SAs.

n : crossover interval 

SA

SA

SA

SA

...

n n

high

temperature

low

temperature

n

e
n
d

ra
n
d
o
m

s
e
le
c
ti
o
n

c
ro
s
s
o
v
e
r

ra
n
d
o
m

s
e
le
c
ti
o
n

c
ro
s
s
o
v
e
r

Figure 1: Simulated annealing using genetic crossover

In the genetic crossover, we randomly select two
individuals as parents and generate two children by
genetic crossover. The genetic crossover is shown in
Figure 2. An individual consists of design variables
and the design variables are real numbers. Therefore,
the crossover is only performed between the variables.
In the operation of genetic crossover, selection is also
performed. After the crossover, there are two par-
ents and two children. Then the two individuals that
have higher evaluation values are selected. These two
individuals become the next searching points. While
SA requires high computational costs, particularly in
continuous problems, this operation reduces the com-
putational cost.
SAs in continuous problems need definitions of the

neighborhood and terminal condition. The neighbor-
hood and acceptance criteria are explained in sections

crossover

parent2

child2

next search point
x2x1 x3 x4

parent1 x2x1 x3 x4

child1 x2x1 x3 x4

x2x1 x3 x4

child2 x2x1 x3 x4

parent2 x2x1 x3 x4

evaluation

-2.3

-1.1

-0.8

-2.0

rank

4

2

1

3

Figure 2: Crossover

3.2 and 3.3, respectively. In this paper, Metropolis
criterion is used as the acceptance criterion and the
exponential annealing Tk+1 = 0.93 · Tk, where k is the
generation, is used as the cooling schedule.

3.2 Neighbourhood

In SAs, the neighborhood of the present searching
point should be defined in order to find the next
searching point. However, it is difficult to determine
the neighborhood to search efficiently, especially in
continuous problems. In this paper, Corana’s algo-
rithm is used to define the neighborhood. Corana pro-
poses the SAs algorithm have an adjusting neighbor-
hood range[7]. This algorithm adjusts the neighbor-
hood range to keep the acceptance ratio to 50 % for an
effective search.

3.3 Termination Condition

In SA, there are several methods for terminal condi-
tions. SA algorithm accepts not only improvement
solutions but also worse solutions. Therefore, when
the annealing time is used as the terminal condition,
the final solution cannot be the best solution in a sim-
ulation. Furthermore, it is very difficult to know the
optimum annealing times. In this paper, we do not
use an annealing time as a terminal condition, but the
movement of solution as a terminal condition. It is
possible to control quality of solutions. With this ter-
minal condition, annealing does not stop in the middle
of a search.

4 Numerical Examples

4.1 Comparison between PSA/GAc and SA
using other GA operations

In the proposed algorithm, crossover is used for ex-
changing the information between individuals. Is this
operation best for exchanging the information? To an-
swer this question, other operations that can be used
in SA and are compared to PSA/GAc. These opera-
tions are explained as follows;

• PSA using Elite Selection (elitePSA): The best
individual that had the highest fitness value is
copied to the other processes and these copies are
used as the next searching points.



• PSA using Roulette Selection (roulettePSA): The
next searching points are determined randomly by
Roulette Selection. In Roulette Selection, the in-
dividual that has the higher value can be selected
with high probability.

• PSA using Roulette Selection including Elite(e-
roulettePSA): The next searching points are de-
termined by Roulette Selection but the individual
that has the highest fitness value will be one of the
next points.

4.1.1 Test Functions

Rastrigin function (fRa) which has many local minima
in global area and Griewank function (fGr) which has
many local minima in a local area are used as contin-
uous optimization test problems. These functions are
shown as follows;

fRa = 10n +
n∑

i=1

(x2
i − 10 cos(2πxi)) (2)

fmin = 0, [xi = 0], n = 2

fGr = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

(cos(
xi√

i
)) (3)

fmin = 0, [xi = 0], n = 2

Generally, GAs can find the optimum solution of the
Rastrigin function easily. On the other hand, while
SAs can find the optimum solution of the Griewank
function easily, it is difficult to find the optimum solu-
tion with GAs.
In the following numerical examples, the simulation

is terminated when the value of the solution does not
change more than 1.0e-4 for 100 generations. There-
fore, if the solution has a value smaller than 1.0e-4 , it
can be said that a good solution is derived.

4.1.2 Parameter

The parameters used in the numerical examples are
summarized in Table 1(value1). All results are the av-
erage of 10 trials. The initial temperature was chosen
through preparative experiments.

Table 1: Parameter of parallel SAs
parameter value 1 value 2
Population size 20, 200 400, 600
Initial temperature 5, 10, 20, 30 5, 10, 20, 30
Cooling rate 0.93 0.93
Communication interval 32 32
Neighborhood adjustment interval 8 8

4.1.3 Analysis of Results

Figure 3 is the result of the Rastrigin function with 20
population on each parallel SA (PSA). In Figure 3, the
energy is equal to the value of the solution. PSA/GAc
(crossoverPSA) always got a good solution and was
not affected by the initial temperature. On the other
hand, other three PSAs did not get good solutions.

E
n

er
g

y

crossoverPSA

elitePSA

roulettePSA

e-roulettePSA

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

5 10 20 30

Initial temperature

Figure 3: Results of Rastrigin function (population
size 20)

In the case of 200 population, there are no differ-
ences between PSAs. All PSAs got good solutions.
Figure 4 and Figure 5 are the results of the

Griewank function with 20 and 200 population, re-
spectively. In Figure 4, it can be said that the re-
sults of PSA/GAc were slightly better than those of
other PSAs. However, there were no significant dif-
ferences between PSAs. In the case of 200 population
that is shown in Figure 5, there are differences be-
tween PSAs. PSA using Roulette Selection and PSA
using Roulette Selection including Elite never found
a good solution and PSA using Elite Selection only
found good solutions at the initial temperatures of 20
and 30. PSA/GAc (crossoverPSA) found good solu-
tions with any initial temperature.

crossoverPSA

elitePSA

roulettePSA

e-roulettePSA

E
n

er
g

y

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

5 10 20 30

Initial temperature

Figure 4: Results of Griewank function (population
size 20)

E
n

er
g

y

crossoverPSA

elitePSA

roulettePSA

e-roulettePSA

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

5 10 20 30

Initial temperature

Figure 5: Results of Griewank function (population
size 200)

The Griewank function has only one peak in the
function landscape from a global view. However, it has
many local minimums from a local view. Therefore,



in the case of the small number of population, the
searching point is trapped at the local minimum and
the global optimum solution cannot be found. Because
of this reason, the larger number of population needs
to derive a better solution in the Griewank function.
These results show that among PSAs using GA op-

erations, PSA using Genetic Crossover is the most ef-
fective. PSA using Elite Selection also has effective
searching ability, but the possibility of reaching a good
solution is lower than that of PSA/GAc. Therefore, it
can be said that the searching ability of PSA using
Elite Selection is lower than that of PSA/GAc.

4.2 Searching ability of PSA/GAc

In the numerical examples in Section4.1, we found that
Parallel Simulated Annealing using Genetic Crossover
is more effective, compared to PSAs with other oper-
ations. In this section, PSA/GAc is compared to the
Distributed Genetic Algorithm (DGA) and Sequential
Simulated Annealing (SSA) through numerical exam-
ples.

4.2.1 Test Functions

Rastrigin function, Griewank function and Rosenbrock
function are used as continuous optimization test prob-
lems. These functions are explained as follows;

fRa = 10n +
n∑

i=1

(x2
i − 10 cos(2πxi)) (4)

fmin = 0, [xi = 0], n = 10, 30

fGr = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

(cos(
xi√

i
)) (5)

fmin = 0, [xi = 0], n = 10, 30

fRo =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] (6)

fmin = 0, [xi = 1], n = 10, 30

The dimensions are equal to 10 and 30. We retain
the definition of a good solution from Section 4.1.1.

4.2.2 Parameter

The parameters are summarized in Table 1(value2).
The results that are shown in the following sections
were the average of 10 trials. The initial temperatures
were derived from preliminary experiments.

4.2.3 Searching ability of PSA/GAc

In Figure 6, the results of a 10 dimension Rastrigin
function with PSA/GAc are shown. In the figure, (a)
is the case of 400 population, and (b) is the case of 600
population. ’Average’ means the average of 10 trials,
’best’ means the best solution of 10 trials, and ’av-
erage(good solutions)’ means the average of the good
results. The values of bar graph express the number
of good solutions in 10 trials.
Figure 6 shows that PSA/GAc can reach the good

solution with high probability, even if the problem has

10 dimensions. In the case of a 400 population, figure
(a) shows that the good solutions were derived with
any initial temperature and an adequate search was
performed.
The results of the 30 dimension Rastrigin function

problem are shown in Figure 7. Figure 7 shows that
good solutions were not derived in the case of a 30
dimension Rastrigin function. SAs are not good at
finding solutions in a problem, such as the Rastrigin
function, whose function landscape has many local op-
tima in a global view. By comparing figures (a) and
(b), it becomes apparent that the probability of finding
a good solution to a problem with a large population
size is higher than the probability of finding a solution
to a problem with a small population size.

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

5 10 20 30

0

2

4

6

8

10

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

5 10 20 30

0

2

4

6

8

10

E
n

er
g

y

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

Initial temperature

(a) population size 400

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

E
n

er
g

y

Initial temperature

(b) population size 600

average best average(good solutions)correct answers

Figure 6: Results of 10 dimension Rastrigin function

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

5 10 20 30

0

2

4

6

8

10

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

5 10 20 30

0

2

4

6

8

10

E
n

er
g

y

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

Initial temperature

(a) population size 400

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

E
n

er
g

y

Initial temperature

(b) population size 600

average best average(good solutions)correct answers

Figure 7: Results of 30 dimension Rastrigin function

Figure 8 shows the results of a 10 dimension
Griewank function. In this case, good solutions were
derived at any initial temperature.

E
n
er

g
y

N
u
m

b
er

 o
f 

co
rr

ec
t 

an
sw

er
s

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

5 10 20 30

0

2

4

6

8

10

Initial temperature

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

5 10 20 30

0

2

4

6

8

10

N
u
m

b
er

 o
f 

co
rr

ec
t 

an
sw

er
s

E
n
er

g
y

Initial temperature

(a) population size 400 (b) population size 600

average best average(good solutions)correct answers

Figure 8: Results of 10 dimension Griewank function

Figure 9 shows the results of a 30 dimension
Griewank function. This figure indicates that all re-
sults were better than the results of the 10 dimension



of Griewank. The Griewank function is expressed by
Eq.5, and the third term of this function is the product
of each dimension. Therefore, when there are many di-
mensions, the first term’s affect upon the value of the
object function is stronger than the other terms. For
this reason, a Griewank function is easy to solve if it
has many dimensions.

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

5 10 20 30

0

2

4

6

8

10

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

5 10 20 30

0

2

4

6

8

10

E
n

er
g

y

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

Initial temperature

(a) population size 400

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

E
n

er
g

y

Initial temperature

(b) population size 600

average best average(good solutions)correct answers

Figure 9: Results of 30 dimension Griewank function

Figure 10 is the result of a 10 dimension Rosenbrock
function, and Figure 11 is the result of a 30 dimension
Rosenbrock function. GAs are not good at finding the
optimum solution to Rosenbrock functions. However,
in this numerical example, PSA/GAc always derived
good solutions.

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

5 10 20 30

0

2

4

6

8

10

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

5 10 20 30

0

2

4

6

8

10

E
n

er
g

y

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

Initial temperature

(a) population size 400

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

E
n

er
g

y

Initial temperature

(b) population size 600

average best average(good solutions)correct answers

Figure 10: Results of 10 dimension Rosenbrock func-
tion

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

5 10 20 30

0

2

4

6

8

10

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

5 10 20 30

0

2

4

6

8

10

E
n

er
g

y

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

Initial temperature

(a) population size 400

N
u

m
b

er
 o

f 
co

rr
ec

t 
an

sw
er

s

E
n

er
g

y

Initial temperature

(b) population size 600

average best average(good solutions)correct answers

Figure 11: Results of 30 dimension Rosenbrock func-
tion

4.2.4 Comparison between PSA/GAc and Se-
quential SA

In order to verify the searching ability of PSA/GAc,
we compared PSA/GAc and Sequential Simulated An-
nealing (SSA). In PSA/GAc, the solution was derived
with 8000 generations with 400 population. Then, we
define the SSA-long compute SSA for 3200000 (8000

generations * 400 population). We define SSA-short
to compute SSA for 8000 generations for 400 times.
The results were compared to those of PSA/GAc. The
initial temperatures were 10 in each algorithm. All re-
sults are the average of 10 trials. Table 2 is the results
of Rastrigin function. In the case of 10 dimensions,
PSA/GAc reached a good solution in all 10 trials. On
the other hand, the two types of SSAs did not reach
good solutions at all. In the case of 30 dimensions,
both PGA/GAc and SSA did not reach good solu-
tions. However, the solution values of PGA/GAc were
better than those of the SSA.

Table 2: Comparison between PSA/GAc and sequen-
tial SA (Rastrigin function)

PSA SSA-long SSA-short

10 dimensions
Solution 7.64e-6 30.0 25.2
Success rate 1.0 0.0 0.0
30 dimensions
Solution 6.67 226 216
Success rate 0.0 0.0 0.0

Table 3 shows the results of the Griewank function.
The Sequential SA did not reach a good solution in
both the 10 dimension and the 30 dimension Rastri-
gin functions. However, PSA/GAc reached the good
solution with high probability.

Table 3: Comparison between PSA/GAc and sequen-
tial SA (Griewank function)

PSA SSA-long SSA-short

10 dimensions
Solution 7.49e-4 3.78 0.273
Success rate 0.9 0.0 0.0
30 dimensions
Solution 4.13e-5 0.459 0.592
Success rate 1.0 0.0 0.0

Table 4 is the result of the Rosenbrock function. It
is obvious that the results of PSA/GAc are superior
to those of simple SA. This result is also derived from
the results of the Griewank function test. From Table
3 and Table 4, we can find that SSA cannot find good
solutions, even when the annealing time is large. It is
clear that PSA/GAc is more effective than SSA.

Table 4: Comparison between PSA/GAc and sequen-
tial SA (Rosenbrock function)

PSA SSA-long SSA-short

10 dimensions
Solution 2.60e-8 1.92e-3 2.09e-3
Success rate 1.0 0.0 0.1
30 dimensions
Solution 4.03e-8 1.48e-3 2.59e-3
Success rate 1.0 0.0 0.0

4.2.5 Comparison between PSA/GAc and
Distributed GA

In this Section, PSA/GAc is compared to the dis-
tributed genetic algorithm (DGA) and dual individ-
ual GA (DuGA). The population size, the number of



bits and the terminal condition were set up as follows:
Population size of PSA/GAc was 400, and the popula-
tion of DGA and DuGA was 400 (20 individuals * 20
islands) and 400(2 individuals *200 islands), respec-
tively. The simulation of PSA/GAc was terminated
within 8000 generations and the DGA and DuGA were
also terminated within 8000 generations. In each algo-
rithm, if the optimum solution was found, the simula-
tion was terminated before 8000 generations. The bit
string of GA was 30 per dimension. Table 5, Table 6,
and Table 7 are the results of the Rastrigin function,
Griewank function, and Rosenbrock function, respec-
tively. The initial temperature of PSA was 10. All
results are the average of 10 trials.

Table 5: Comparison between PSA/GAc and GA
(Rastrigin function)

PSA GA(20*20) duGa

Optimum 1.0e-5order 0 0

10 dimensions
Success rate 1.0 1.0 1.0
Evaluations 3034881 773940 457000
30 dimensions
Success rate 0.0 0.1 0.2
Evaluations 3117641 3181940 3121600

From Table 6 and Table 7, it is clear that PSA/GAc
can reach a good solution in the high probability even
when the applied test functions pose difficult problems
for GAs. Therefore, PSA/SAc is suitable for problems
that can be solved by SA, but pose difficulties for GA.
However, Table 5 shows that DGA is superior to the
proposal algorithm in the problems where the GA is
good at finding the solution.

Table 6: Comparison between PSA/GAc and GA
(Griewank function)

PSA GA(20*20) duGa

Optimum 1.0e-5order 0 0

10 dimensions
Success rate 0.9 0.0 0.2
Evaluations 3008201 3200400 2676960
30 dimensions
Success rate 1.0 0.7 0.9
Evaluations 3118041 2922120 1819760

Table 7: Comparison between PSA/GAc and GA
(Rosenbrock function)

PSA GA(20*20) duGa

Optimum 1.0e-8order 0 0

10 dimensions
Success rate 1.0 0.0 0.0
Evaluations 2750721 3200400 3200400
30 dimensions
Success rate 1.0 0.0 0.0
Evaluations 2723441 3200400 3200400

5 Conclusions

In this paper, we proposed a new algorithm of SA:
Parallel Simulated Annealing using Genetic Crossover

(PSA/GAc). In the proposed algorithm, there are
several simple SA processes and each process is op-
erated parallel. After some steps, the information
of the searching point is transferred among the pro-
cesses. This information transformation is performed
by crossover that is usually used in genetic algorithms.
Apart from the genetic crossover, there are other op-

erations that are used in genetic algorithms for trans-
forming the information. Those are elite selection,
roulette selection, and so on. The candidate opera-
tions were applied to the test functions and the results
were compared with those of the proposed algorithm.
The result showed that the genetic crossover is bet-
ter than the other candidate operations. Therefore, it
can be concluded that the genetic crossover is effec-
tive operation for transforming information in parallel
SAs. Through the numerical examples, the proposed
algorithm was also compared to other emergent algo-
rithms, sequential SAs and distributed GAs. It was
found that the results of the proposed algorithm are
superior to those of sequential SAs. It was also found
that the proposed algorithm is good at finding solu-
tions in problems that are not suited to GAs. Gen-
erally, SAs are algorithms used for finding the solu-
tions of discrete problems. However PSA using Ge-
netic Crossover is effective for a variety of continuous
problems.

References

[1] Bruce E. Rosen and Ryohei Nakano. Simulated anneal-
ing -basics and recent topics on simulated annealing-
(in japanese). Proceeding of Japanese Society for Arti-
ficial Intelligence, Vol. 9, No. 3, 1994.

[2] E. H. L. Aarts and J. H. M. Korst. Simulated Annealing
and Boltzmann Machines. John Wiley ＆ Sons, 1989.

[3] Hajime Kita. Simulated annealing (in japanese). Pro-
ceeding of Japan Society for Fuzzy Theory and Systems,
Vol. 9, No. 6, 1997.

[4] Kenso Konishi, Kazuo Taki, and Kouichi Kimura. Tem-
perature parallel simulated annealing algorithm and its
evaluation. Transaction of Information Processing So-
ciety of Japan, Vol. 36, No. 4, pp. 797–807, 4 1995.

[5] S. W. Mahfoud and D. E. Goldberg. A genetic algo-
rithm for parallel simulated annealing. Parallel Prob-
lem Solving from Nature 2, pp. 301–310, 1992.

[6] Naoki Mori, Junji Yoshida, and Hajime Kita. Sugges-
tion of thermodynamical selection rule in genetic al-
gorithm (in japanese). Transaction of Institute of Sys-
tems, Control and Information Engineers, Vol. 9, No. 2,
pp. 82–90, 1996.

[7] A. Corana, M. Marhesi, C. Martini, and S. Ridella.
Minimizing multimodal functions of continuous vari-
ables with the ’simulated annealing’ algorithm. ACM
Trans. on Mathematical Sortware, Vol. 13, No. 3, pp.
262–280, 1978.



Proceedings of the IASTED International Confer-
ence PARALLEL AND DISTRIBUTED COMPUT-
ING AND SYSMTEMS November 6-9, 2000, Las Ve-
gas, Nevada USA pp. 139-144


