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Abstract

This paper proposes a new crossover method for paral-
lel distributed genetic algorithms (PDGAs). PDGAs
with multiple subpopulations provide better solu-
tions than conventional GAs with a single popula-
tion. The proposed method, including the hybridiza-
tion crossover and the best combinatorial crossover, is
designed to increase the performance of PDGAs. The
proposed method, which provides high local search
ability in each subpopulation and high global search
ability by the migration, is evaluated with four stan-
dard test functions. The experimental results show
that the proposed method is very effective.
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1 Introduction

Genetic Algorithms (GAs) are stochastic search algo-
rithms based on the mechanics of natural selection and
natural genetics[1]. When GAs are applied to real do-
main applications, they require many generations and
a large number of individuals in the population. Since
massive computational resources are usually required
in order to obtain good solutions, a number of research
efforts to implement GAs on parallel computers are
underway [2].

The island model is a typical implementation of GAs
into parallel computers. It divides a large population
into smaller subpopulations and executes traditional
GAs on each subpopulation separately. It periodically
selects individuals from each subpopulation and moves
them to different subpopulations in an exchange called
migration. In this paper, we call GAs with the island
model distributed GAs (DGAs).

DGAs can show better performance than single
population GAs (SPGAs). Tanese demonstrated the
ability to find fitter individuals than the traditional
method[3]. Belding extended Tenese’s work on DGAs
to the different fitness functions (the royal road prob-
lem) in order to determine whether the original results
were specific to the Tanese functions[4]. He showed
that DGAs outperformed SPGAs.

The DGA is suitable to implement on parallel com-
puters because the communication between processors
occurs only in the migration. Therefore, if each sub-
population is assigned to each processor of a paral-
lel computer, a near-linear reduction in speed is ex-
pected. In this case, the GAs are called parallel
DGAs(PDGAs).

The crossover operation plays an important role in
the search of each GA, but the search mechanism of
PDGAs is different from that of SPGAs. Therefore,
it is important to adjust the crossover scheme to the
search mechanism of PDGAs.

Although quite a number of detailed studies have
appeared on the effect of the crossover operator and
the optimal adjustment of the crossover rate for
SPGAs[5, 6, 7, 8], very little has been written for
PDGAs. In this paper we investigate the effect of the
crossover operator and the crossover rate and propose
new crossover schemes suitable for PDGAs.

2 Parallel Distributed GAs

2.1 Genetic Algorithms

Genetic algorithms are stochastic search algo-
rithms based on principles of natural selection and
recombination[9]. GAs attempt to find the optimal
solution to the problem at hand by manipulating a
population of candidate solutions. The population is
evaluated and the best solutions are selected to repro-
duce and mate to form the next generation. Over a
number of generations, good traits dominate the pop-
ulation, resulting in an increase in the quality of the
solutions. There are three genetic operators in canon-
ical GAs: selection, crossover, and mutation.

2.2 Parallel Distributed GAs

In the PDGA, a large population is divided into
smaller subpopulations, and a traditional GA is ex-
ecuted on each subpopulation separately. Some in-
dividuals are selected from each subpopulation and
migrated to different subpopulations periodically, as
shown in Figure 1. Two parameters are introduced in
the migration process: migration interval which is the
number of generations between each migration, and



migration rate which is the percentage of individuals
selected for migration from each subpopulation at the
time of migration.

Each subpopulation can be assigned to each proces-
sor of a parallel computer, and inter-processor commu-
nication occurs only at the migration. The migration
topology adopted here is a ring with random desti-
nations where each subpopulation has one destination
and the destinations are determined randomly at every
migration period as shown in Figure 1. The emigrants
are selected randomly in their subpopulation.

Migration selects individuals from one subpopula-
tion and sends them to another subpopulation, which
may contain individuals with very different kinds of
building blocks. After migration, the genetic algo-
rithm will mix the immigrants with the rest of the
individuals in the destination subpopulation.

In PDGAs, the variety of the individuals in the
whole population is increased by migration, mentioned
above. This large variety improves the effectiveness of
the search in PDGAs compared with SPGAs.

Figure 1: PDGAs

2.3 The growth of solutions in PDGAs

In SPGAs, some individuals who carry relatively good
schemata prevent the growth of other individuals.
This will cause premature convergence. Therefore, it
is important not only to preserve good schemata, but
also to maintain the variation of the individuals.

In PDGAs, dividing populations into multiple sub-
populations increases the variety of individuals. Cer-
tainly, small subpopulations tend to convergence
rapidly. However, migration exchange individual
whose bit composition is very different from the indi-
viduals in the destination subpopulation. Hence, the
variety of whole population of PDGAs is higher than
that of SPGAs.

Furthermore, different good schemata are growing
in each subpopulation, and these schemata are mixed
by crossover after migration in PDGA. Hence, PDGAs
find good solutions quickly. The search mechanism of
DGAs is different from that of SPGAs. Therefore, it is
important to adjust the crossover rates and to develop
a new crossover operator for PDGAs.

Two terms about migration are introduced here: a
native, which is an individual in the destination sub-

population of the migration, and a hybrid, which is an
individual generated from a native and a migrant.

3 Effect of Crossover in PDGAs

Crossover is a genetic operator that produces new
individuals by recombining a parent’s chromosomes.
Crossover is employed to perform direct information
exchange between individuals in a population. There-
fore, the performance of GAs depends on the crossover
operator implemented and a good choice of crossover
rate.

From the viewpoint mentioned before, the role of
crossover in PDGAs can be considered as follows: (1)
to raise good schemata in each subpopulation, (2) to
recombine the schemata between the immigrants and
the natives. Thus, the role of crossover is different be-
fore and after migration. In this section, we investigate
the crossover operators and rates that enhance these
two roles.

3.1 Test functions

In this paper, the performance of the crossover oper-
ator is examined with four standard test functions, as
shown in Table 1. The optimization problems used
here are the minimization of the Rastrigin function
(F1), the Schwefel function (F2), the Griewank func-
tion (F3), and the Ridge (F4) function with 10 design
variables.

The Rastrigin function has many local minima, but
it has no epistasis among its variables. The Schwe-
fel function also has many local minima, and it has
a global minimum at one of the four corners in a 2-
dimensional case. The Griewank function has very
small but numerous minima around the global min-
imum, although it has a unimodal shape in a large
scale. This function has an intermediate epistasis
among its variables. The Ridge function is a unimodal
function, but it has a strong epistasis among its vari-
ables.

For these functions, one design variable is repre-
sented by 10 bits, 10 design variables make the length
of the chromosome 100 bits. The variables in the chro-
mosome are encoded by the Gray code. The roulette
selection and elite preservation strategy are used.

3.2 Effect of crossover operator

3.2.1 Crossover operator

The behavior and effect of crossover depends on the
crossover operator implemented. The condition of
the crossover suitable for PDGAs is that it can pre-
serve and recombine the schemata of parent individ-
uals. In this section, three crossover operators – one-
point crossover (1X) [1], two-point crossover (2X), and
uniform crossover (UX)[10] – are compared. 1X and
2X tend to prevent the schemata of parents, and UX
tends to disrupt that. The detailed features of these
crossovers are shown in [5].



Table 1: Test functions
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3.2.2 The effect of crossover operators

The first experiment compares the effect of these
crossover operators on F1 through F3 shown in Table
1. The population sizes are 400 and 800, respectively.
The crossover rate is 0.6, and the mutation rate is 1/L
, where L is the length of the chromosome. The num-
ber of subpopulations is set to 8, migration rate is 0.3,
and migration interval is 5 generations. Each GA runs
20 times for 2000 generations.

Table 2 shows the number of generations where the
optimum solutions are discovered. When the optimum
is not discovered, the fitness values at 2000 generations
are shown. These results are the averages of 20 trials.

From this table, there are the same tendencies on
the performances of the different crossover operators
for all functions. PDGAs perform better than SPGAs.
In PDGAs, 1X and 2X perform better than UX. 1X
and 2X tend to preserve the schemata of the parent
individuals. However, UX tends to disrupt schemata
and cannot exploit the information of the previous gen-
eration. PDGA, UX disrupts the schemata of the mi-
grants, and the effect of migration is decreased.

3.3 The effect of crossover rate

3.3.1 Crossover rate

Empirical studies have shown that the best setting for
the crossover rate for SPGAs depends on the choices
made regarding other aspects of the overall algorithm.
Examples of other parameters are population size, mu-
tation rate, and the selection operator used. Some
commonly used crossover rates vary between 0.45 and
0.95[7]. Tuson & Ross[6] carried out an exhaustive
search of the operator probabilities. Their results
show that the most suitable crossover rates also de-
pend on the problem to be solved. However, the effect
of crossover rate in DGAs has not yet been clarified,

and the optimal value for crossover rate has not been
determined.

3.3.2 The effect of crossover rate

The purpose of the experiment in this section is to ex-
amine the optimal crossover rate in PDGAs and SP-
GAs. The crossover rates used in this experiment are
0.3, 0.6 and 1.0, and population sizes are 160, 400 and
800, respectively. The one-point crossover is used. In
DGA, the number of subpopulations is set to 8, migra-
tion rate is 0.3, and migration interval is 5 generations.

Table 3 shows the fitness values at the 1000 gener-
ations and the number of generations where the op-
timum solution is discovered. These results are the
averages of 20 trials.

Optimal crossover rate for the SPGA depends on the
objective function and the population size. However,
the crossover rate of 1.0 is the best for each objective
function and each population size.

Figure 2 shows the histories of the fitness values for
the population size of 400. In the SPGA, the higher
crossover rate performs well in the beginning of the
search, but not in the later stage. Optimal crossover
rate in the SPGA is depends on the stage of the search.
In the PDGA, the high crossover rate shows good per-
formance at all stages. These results indicate that
the search ability in the PDGA is increased by the
crossover after migration. Thus, it is reasonable to set
the crossover rate to be 1.0.

Figure 2: History of the fitness value(PDGA / SPGA)

4 Designing Crossover Operators Suit-
able for PDGAs

In the section above, it is considered that the search
mechanism of PDGAs is different from that of SPGAs.
In this section, we propose two new crossover opera-
tors that enhance the search mechanism of PDGAs:
best combinatorial crossover (BCX), and hybridization
crossover (HX).

4.1 Best Combinatorial Crossover

4.1.1 The design concept of BCX

In order to increase the performance of PDGA, it is
important to grow good schemata in each subpopu-
lation. In this case, premature convergence does not



Table 2: The effect of the crossover operators： The number of generations(#) where the optimum is discovered or
the fitness value at the 1000 generation

PDGA SPGA
1X 2X UX 1X 2X UX

Rastrign #386 #420 #804 -0.206904 -0.150967 -2.6451
Schwefel #370 #373 #708 #1228 #1235 -0.00591232
Griewank -0.100508 -0.137165 -0.179465 -0.286196 -0.327726 -0.329169

Ridge -0.000935 -0.000575 -0.00435 -0.102055 -0.098925 -0.229515

Table 3: The effect of the crossover rates: The number of generations(#) where the optimum is discovered or the
fitness value at the 1000 generation

PDGA SPGA
Pc = 0.3 0.6 1.0 Pc = 0.3 0.6 1.0

Rastrign #220 #197 #166 -0.302925 -0.79939 -0.956702
Schwefel #214 #174 #168 -0.0059123 -0.0118246 -0.648429
Griewank -0.126492 -0.103997 -0.0576392 -0.372117 -0.306758 -0.843136

Ridge -0.0085938 -0.0046875 -0.0039063 -0.202539 -0.420031 -0.911453

have to be considered, since the divergence of individ-
uals is maintained by using multiple subpopulations.

In section 3.2.2, the PDGAs with 1X and 2X per-
form better than with UX, since 1X and 2X tend to
preserve and recombine the schemata of parent indi-
viduals. To increase such good performance, we pro-
pose a new crossover operator, which is called the best
combinatorial crossover (BCX). The purpose of BCX
is to maximize the exploitation of the schemata of par-
ent individuals.

In BCX, all possible children are generated from par-
ents using 1X. After evaluating these children, two of
the best children are selected and survive as the mem-
bers of the next generation.

Figure 3 illustrates the behavior of BCX. In this fig-
ure, the chromosomes of the parents are assumed to be
(11111) and (00000) for simplicity.

The generation of all possible children is performed
using 1X and shifting the crossover point one bit. From
those candidate children, two children with the highest
fitness values are selected, as shown in Figure 3.

We consider two types of BCX: B-BCX and V-BCX.
In B-BCX, the crossover point is a point between any
adjacent bits, while it is a point between any adjacent
variables in V-BCX.

Figure 3: Best Combinatorial Crossover

4.1.2 Reduction of evaluate calculations in
BCX

In BCX, a huge number of evaluations are required
to find the best children. Therefore, the reduction of
the number of the evaluations is very important in the
application of BCX. If parents have similar genes in
their chromosomes, many children with the same chro-
mosomes are produced by BCX. Such a redundancy
should be eliminated to decrease the computational
load. The effective way to achieve this is to make the
crossover operations only between different genes with
respect to the parent chromosomes.

This can be done using a flag string, where the
unique chromosomes from the two parents are repre-
sented and no redundant candidate children are gen-
erated.

Figure 4: Generating the flag string and choosing of
the crossover point

4.1.3 Experiment

To demonstrate the effectiveness of BCX, we compare
BCX and 1X with four functions, shown in Table 1.
The parameters used in this experiment are as follows:
the population size is 400, the crossover rate is 1.0, and



Table 4: The performance of the BCX: The number of the evaluations where the optimum is discovered or The
fitness values at the 2000 generations

1X B-BCX V-BCX
Rastrigin #366 (147,040) #37 (247,286) #65 (178,618)
Schwefel -0.126761 (800,000) #28 (236,272) #39 (178,640)
Griewank -0.127025 (800,000) #137 (794,261) -0.165822 (800,000)

Ridge -0.467969 (800,000) #138 (764,499) -0.03125 (793,160)

the mutation rate is 1/L. The number of subpopula-
tions is 8, the migration interval is 5 generations, and
the migration rate is 0.5.

Figure 5 shows the histories of the fitness values on
the Rastrigin function and the Ridge function, respec-
tively. From these results, we observe that PDGA
with BCX provides optimal solutions rapidly. How-
ever, this method requires a huge number of evalua-
tions in the crossover operation, which should be taken
into account when evaluating BCX. Table 4 shows the
number of generations where the optimum solutions
are discovered. When the optimum is not discovered,
the fitness values at 2000 generations are shown. The
figures in parentheses represent the number of evalua-
tions. These results are the averages of 20 trials.

B-BCX shows the best performance on the whole,
and V-BCX shows the second best performance. 1X
performs well for only the Rastrigin function, but does
not provide the optimum solutions for other functions.

V-BCX provides the optima faster than B-BCX for
the Rastrigin and the Schwefel functions, but cannot
provide any optimum for the Griewank and the Ridge
functions; B-BCX provides the optima for those func-
tions. The performance of V-BCX is very good for
the functions with no epistasis, but not good for the
functions with epistasis. However, the performance of
B-BCX is excellent for all the functions.

Figure 5: The history of the fitness value (Rastrigin /
Ridge)

4.2 Hybridization Crossover

4.2.1 The design concept of HX

In section 3.3.2, the crossover rate of 1.0 shows a good
performance in PDGAs. That is, it is important not
only to grow schemata in each subpopulation, but

also to recombine them by crossover after migration in
PDGA. The effective recombination is provided by the
hybridization between natives and immigrants. There-
fore, it is considered that the performance of PDGAs
can be increased by increasing the number of hybrids.

We define a new parameter called a hybridization
rate, which shows the parentage of the hybrid individ-
uals in each subpopulation.

Let µ be the migration rate, and Pc be the crossover
rate. In the conventional crossover method, we can
obtain the hybridization rate (H) as follows:

H = 2Pcµ(1 − µ)

The maximum value of the hybridization rate is 0.5
when Pc=1.0 and µ = 0.5, where the maximum value
of µ is 0.5. That is, the hybrid individuals that play
an important role in the search are generated for only
50% of the subpopulation size. Other individuals are
children of immigrants or natives, which are not effec-
tive for the search.

Figure 6: Hybridazation Crossover

To increase the hybridization rate beyond 0.5, we
propose a new crossover scheme, which is called the
hybridization crossover (HX). The purpose of HX is
to mate the immigrants only with the natives in each
subpopulation, as shown in Figure 6. In this scheme,
the hybridization rate can be obtained as follows:

H = 2Pcµ

The maximum value of the hybridization rate be-
comes 1.0 with HX, and the hybridization rate can be
varied from 0% to 100%.

4.2.2 Experiment

To investigate the effect of the hybridization rate in
PDGAs, the experiment for the four functions as
shown in Table 1 is performed with the parameters



shown in Table 5. The hybridization crossover scheme
and 1-point crossover are used in the experiment. The
crossover rate is 1.0, and the mutation rate is 1/L.

Table 6 shows the result of the experiment for 8 sub-
populations, and the population sizes of 160, 400, and
800. This table shows that higher hybridization rates
yield better performance, especially for small popula-
tion sizes. When the population size increases, the
number of hybrid individuals is large regardless of the
value of the hybridization rate.

Table 5: Parameters

Hybridization rate 0.2 0.5 1.0
(Migration rate) 0.1 0.25 0.5
Population size 160 400 800

The number of subpopulations 4 8 16

Table 6: The performance of HX:

Pop. H = 0.2 0.5 1.0
Rastrigin
160 #337 #296 #281
400 #197 #188 #175
800 #154 #147 #138
Schwefel
160 #263 #336 #228
400 #186 #176 #171
800 #161 #157 #146
Griewank
160 -0.0768976 -0.0734775 -0.0817898
400 -0.0552862 -0.0451388 -0.0479925
800 -0.0192981 -0.0129534 -0.0277259
Ridge
160 -0.090625 -0.0789062 -0.0453125
400 -0.0101563 -0.0132812 -0.00625
800 #870 #808 #681

Figure 7: The historiy of the fitness value (8islands)

Figure 7 shows the histories of the fitness values of
the Ridge function. It shows that the effect of the
hybridization rate is remarkable in the former stage of
the search, but it is not remarkable in the latter stage.
In the former stage, the difference in the solutions in

each subpopulation is large, and the hybrid individuals
play an important role for the global search. In the
latter stage, however, the difference is very small, and
the hybrid individuals are very similar to the natives
or immigrants. Thus the effect of HX is decreased in
this stage.

5 Conclusions

In this paper, we investigated the effects of crossover
operators and the crossover rate in order to improve
the performance of parallel distributed genetic algo-
rithms (PDGAs). From the results of these experi-
ments, it is concluded that the appropriate crossover
operator in PDGAs should be the one that preserves
and recombines the schemata of the parent individu-
als, and the best crossover rate is 1.0.

Considering that the search mechanism of PDGAs is
different from that of SPGAs, new crossover schemes
are proposed to increase the performance of PDGAs:
(1) the best combinatorial crossover that grows the
good schemata in a deterministic manner, and (2) the
hybridization crossover that enhances the search mech-
anism by generating many hybrid individuals after mi-
gration. The PDGA with proposed crossover schemes
showed good performance for four test functions.
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