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Abstract. This paper examines implementation models for distributed memory
architectures of a Parallel Simulated Annealing using Genetic Crossover (PSA/GAc).
The PSA/GAc that was proposed by authors is the algorithm, where there are sev-
eral processes of a simulated annealing working parallel. To exchange information
between the solutions, the operation of genetic crossover is performed. We need new
models to implement PSA/GAc to distributed memory architecture such as a PC
cluster system, since PSA/GAc was designed only for shared memory architecture.
We developed three types of implementation models of PSA/GAc. Each model was
applied to a protein structure prediction problem that is one of the optimization
problems. This paper makes a comparison and examination the effectiveness be-
tween the proposed models from two points of view; those are a computation time
and a searching ability. Then, it is found that one of the proposed models are su-
perior to the other models, since it can get more speed up and has high searching
ability.

Key words: Parallel Distributed Algorithms, Simulated Annealing, Genetic Al-
gorithm, Hybrid Algorithm, Protein Structure Prediction Problem, Optimization
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1 Introduction

A Simulated Annealing (SA) is one of emergent calculation algorithms that solve
optimization problems, and is an effective technique for solving combination opti-
mization problems.! SAs have a guarantee of convergence to an optimum solution.
However, SAs require huge computational costs. Specially, SA takes much time in
finding an optimum solution in continuous problems. There are two solutions for
this problem, performing SA in parallel and performing SA with other optimization
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algorithms.

A Parallel Simulated Annealing using Genetic Crossover (PSA/GAc) is a hybrid
SA using Genetic Algorithm (GA) operations and can find an optimum solution
quickly compared to the conventional SA.

This paper examines implementation models of PSA /GAc for distributed memory
architectures.

2 Parallel Simulated Annealing using Genetic Crossover

A Parallel Simulated Annealing using Genetic Crossover (PSA/GAc), proposed
by authors, is a hybrid. In this algorithm, there are several processes of a simu-
lated annealing (SA) working parallel. The flow of the concept of this algorithm
is shown in Figure 1. In the proposed algorithm, there are plural processes and a
sequential SA is operated in each process. After some steps, the genetic crossover
is used to exchange the information between the solutions. In this paper, we call
the total number of SA’s search points ”population size” and each SA’s search point
"individual”.
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Figure 1: PSA/GAc

In this model, we select two individuals as parents randomly, and generate two
children using genetic crossover when the solutions are exchanging between pro-
cesses. This crossover is the only valid between the variables. Then, two individuals
that have higher values of a fitness function among two parents and two children are
selected. The two individuals become the next searching points. This mechanism
of the operation can transmit the information of one population to the other pop-
ulation. To exchange information between the solutions, the operation of a genetic
crossover is performed. This operation takes effect to get an optimum solution of the
problem that has some minimum solutions in global and a lot of minimum solutions
in local.

In the former study, PSA/GAc was applied to some test functions and we found
out that the algorithm has a high searching ability. To find the effectiveness of
PSA/GAc in real world problems, it was applied to a prediction of protein tertiary
structure. Usually in predictions of protein tertiary structures, SAs are used for
finding optimum solutions. It was also figured out that PSA/GAc could reduce a
computation time and expand a searching ability compared with a conventional SA
in a prediction of protein tertiary structure.?
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3 Implementation Models for Distributed Memory Architecture

Since PSA/GAc that was proposed in the former study was designed only for
shared memory architecture, we have to prepare new implementation models for
distributed memory architectures to use the PSA/GAc on PC cluster systems. In
this study, we developed three types of implementation models of PSA/GAc. We
describe these models in the following sections.

3.1 Model 1: Dual individual model

In the model 1, the whole population is divided into sub populations called is-
lands. In each island, there are two individuals. The islands are also divided into
sub groups and each group is assigned to each processor of parallel computers. Se-
quential SA is operated in each island and each group. After the certain n steps,
the genetic crossover is performed between the two individuals in one island. After
the crossover, one of the individuals is selected randomly and is moved to the other
island. This operation is called "migration”. This migration operation is performed
synchronously for all islands. It needs communication between processors when the
concerned islands are in the different processors. After the migration operation,
the sequential SA is operated in each island and each group. These operations are
repeated till the temperature becomes low and when the convergence condition is
satisfied, the searching is terminated.
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Figure 2: Model 1: Dual individual model

3.2 Model 2: Master slave model

In the model 2, there is a process that manages the operation of the crossover and
processes that perform SA. In this model, the sequential SA is also performed for n
steps in each process. Then, the processes for SA send individuals to the process of
the crossover. In the process for crossover, two individuals are chosen as parents and
the genetic crossover is performed. The generated child is returned to the process for
SA and SA is restarted. These operations are also repeated till temperature becomes
low and the searching is terminated when the convergence condition is satisfied. In
this paper, the operation of the crossover is performed synchronously. However, it
can be also performed asynchronously in this model.
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Figure 3: Model 2: Master slave model
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3.3 Model 3: Island model

In the model 3, the whole population is divided into sub populations called is-
lands. Sequential SA is operated in each island. After the certain n steps, the
genetic crossover is performed between the two individuals in one island. And, af-
ter the certain m steps, the migration that selected two individuals randomly and
moved them to the other island is performed. This migration operation is performed
synchronously for all islands. It needs communication between processors. After the
migration operation, the sequential SA is operated in each island. These operations
are repeated till temperature becomes low and when the convergence condition is
satisfied, the searching is terminated.
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Figure 4: Model 3: Island model

4 Numerical Examples
4.1 Environment of Examples

To discuss the characteristics and the effectiveness of the proposed three models,
the numerical experiments were performed. These experiments were carried out on
IBM RS/6000 SP. We used 10 processors and SP switch for communication medium.
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4.2 Prediction of Protein Tertiary Structure

Protein structure stays in the state where the energy of protein is minimum.
Therefore, the predictions of protein tertiary structures can formulate as optimiza-
tion problems. Usually, SA is used in predictions of protein tertiary structures.
Okamoto et al. illustrated that the SA could find the optimum solution for small
predictions of protein tertiary structures such as Met-enkephalin.® We also applied
PSA/GAc to find an optimum solution of Met-enkepalin and found that this algo-
rithm has higher searching ability compared with conventional SAs.?

In this numerical example, the proposed models of PSA /GAc were applied to Met-
enkephalin to find the searching ability and the computation time. Met-enkephalin
has 19 design variables.

The parameters that are given in Table 1 are used in this numerical example.

Table 1: parameter

Parameter Value
Population size 24
MCsweeps 4000
Initial temperature 2.0
Cooling rate 0.999
Crossover interval 32
Migration interval 32

4.3 Results

In Figure 5, the searching ability of each model is shown. The searching ability
can be measured by a success rate. The success rate means the probability of finding
the optimum structure through the trial times. In this paper, we tried 40 times per
each model. In Figure 6, the computation time of each model is shown with respect
to the number of the used processors. Since the model 1 must have two individuals
in each island and 24 individuals are used for searching, the trial with 8 processors
cannot be executed.
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Figure 5: Success rate



M. OGURA et al. / Implementation Models for Distributed Memory Architecture of PSA/GAc

850

300 4 —O— Modell
g —®— Model2
750 4 —&— Model3
700 4
— 650 -
Q
) ]
2, 600 |
() 4
E 550 1
= ]
500 4
450 -
400 é
350 . . . . .
4 6 8

Number of processors

Figure 6: Computation time

From Figure 5, it is obvious that the searching ability of model 2 is higher than
that of model 1 and model 3. The searching ability of all implementation models
is equal to or higher than one processor model of PSA/GAc. From Figure 6, each
model has a high parallel efficiency and there is few differences among models.

5 Conclusion

This study examines implementation models of PSA /GAc for distributed memory
architecture from the side of a searching ability and a computation time. We pre-
pared three kinds of models, these models were applied for solving the prediction of
protein tertiary structure. We described that the model 2 is the best model because
its searching ability is higher and a computation time is shorter. At the same time,
model 2 can find an optimum solution with near 100% probability. We consider that
model 2 can solve much large-scale predictions of protein tertiary structures.
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