Computational Intelligence and Applications(2002) p.p.149-154

Temperature Parallel Simulated Annealing with Adaptive
Neighborhood for Continuous Optimization Problem

Mitsunori MIKIt, Tomoyuki HIROYASU', Masayuki KASAI't, Keiko ONO'T Takeshi JITTA'

t Department of Knowledge Engineering, Doshisha University,
1 Graduate Student, Doshisha University,
Doshisha University
Kyo-tanabe, Kyoto, 610-0321, JAPAN
Email: mmiki@mail.doshisha.ac.jp

1 Introduction

There is a strong incentive to parallelize the computation for optimization problems since it requires many iter-
ations of analysis. Especially, new approaches to optimization problems such as genetic algorithms and simulated
annealing, which are very effective for solving complicated optimization problems with many optima, require tremen-
dous computational power. Consequently, parallelization of these new optimization methods, which sometimes are
called heuristic search methods[1], is very important.

It was Kirkpatrick et al. who first proposed simulated annealing, SA, as a method for solving combinatorial
optimization problems[2]. It is reported that SA is very useful for several types of combinatorial optimization prob-
lems[3]. The advantages and the disadvantages of SA are well summarized in [4]. The most remarkable disadvantages
are that it needs a lot of time to find the optimum solution and it is very difficult to determine the proper cooling
schedule. To determine the proper cooling schedule, many preparatory trials are needed. When the cooling schedule
is not proper, the guarantee of finding optimum solution is lost.

There are two approaches to shorten the calculation time in SA. One is determining the cooling schedule properly.
SA with the proper cooling schedule can provide an optimum solution quickly. This approach is well reported by
Ingber[4]. The other approach is to perform SA on parallel computers. Because of the rapid progress of parallel
computers, there are several studies with this approach[5]. Among these studies, the temperature parallel simulated
annealing (TPSA)[6], which was called the time-homogenous parallel annealing[7] before, is one of the algorithms
that can overcome the cooling schedule problem. TPSA is an algorithm that can be carried out on parallel computers
easily and does not require any cooling schedule. These are remarkable advantages. So far, TPSA has been applied to
LSI allocation problems|6], traveling salesman problems|8], graph partition problems|[7] and so on. However, there are
very few studies that focus on continuous optimization problems. Therefore, the effectiveness of TPSA in continuous
problems has not been clear.

In this study, a new TPSA approach that can be applied to continuous optimization problems is proposed. In
the proposed approach, the SA that Corana developed and TPSA are combined and the neighborhood range is
determined adaptively. The approach is called temperature parallel simulated annealing with adaptive neighborhood
(TPSA/AN).

2 Temperature Parallel Simulated Annealing

Comparing to sequential SA, there are more sophisticated algorithms that have proven that parallel probabilistic
exchange of information gathered from processors annealing at constant but different temperatures can increase
the overall rate of convergence. Kimura and Taki called this algorithm temperature parallel simulated annealing
(TPSA)[6]. In TPSA, each processor performs a sequential SA with a constant temperature for the whole annealing
time, while the different temperatures are assigned to different processors. Two solutions in two processors with
adjacent temperatures are exchanged with a certain probability at an interval of annealing time. The basic concept
of the TPSA is shown schematically in Fig. 1.

The important features of TPSA are as follows. (a) The cooling schedule is determined automatically because
solutions decide their temperatures by themselves. (b) After getting solutions, when these solutions are not satisfied,
TPSA can be restarted to get better solutions.

Temperature Temperature
A

Initial ., Parallelize in Temperature T1 by » TonProcl
Solution T ritia T2 _l....“'-_l_!.....l.....z__l_I_I.p T on Proc2
T3 |:: > X T3 » TonProc3
T4 Solution T4 i T 1 T 1 T 1 ¥ I= T on Proc4
T5 T5 i T T i= Ton Proc5
0 > T6 =3.T on Proc6

Time Time

Figure 1: Sequential SA and temperature parallel SA

When the energy of a solution at higher temperature is lower than that at lower temperature, the solutions are
always exchanged. Otherwise, when the energy of a solution at higher temperature is higher than that at lower
temperature, the solutions are exchanged in accordance with the probability that is derived from the differences in
temperature and energy. This probability function is defined in equation (1). By this method, the solutions that
have low energy tend to concentrate to the lower temperature.

1 if AT - AE < 0

AT-AE .
exp (— Al) otherwise

Pex(T,E,T',E') = { (1)

where T is temperature, E is energy, and the prime means the state of the adjacent temperature. AT and AF are
the differences in the temperature and the energy between two adjacent temperatures.

As mentioned before, in each processor of a parallel computer, one or several sequential SA with constant tem-
peratures are performed. The acceptance probability is defined by the Metropolis criterion that is shown in equation
(2), where x is a design variable.

N 1 AE <0
Pac(T,EE') = { exp (—2£) otherwise
AE = E(xnew) - E(xOId) (2)

3 SA for continuous optimization problems

Simulated Annealing (SA)[2] has been proposed in the area of combinatorial optimization[3]. However, SA has
been also used in the area of continuous optimization problems which had a lot of local minimal[4][9][10][11][12][13].

The definitions of the neighborhoods of solutions in the design space in SA are different between discrete and
continuous optimization problems. For combinatorial optimization problems, the neighborhood of a solution is
defined by a small change in the combination (e.g. 2-change neighborhood for the traveling salesman problems[14]).
On the other hand, the neighborhood of a solution in continuous optimization problems is defined by a distance in
the design space, which can be handled more easily than in combinatorial one.

Thus, for continuous optimization problems, it is important to determine the neighborhood range for generating
a next point in a problem space[4]. If the neighborhood range is fixed to a constant range, the range should be
determined individually for a particular problem. When the range is too large, it becomes difficult to get an accurate
solution, while it takes much time to get better solution when the range is too small.

Therefore, for continuous optimization problems, there are several methods with adjustable neighborhood range.
Many practitioners use novel techniques to narrow the range as the search progresses. For example, Boltzmann
annealing method uses Gaussian distribution whose standard deviation is a squared root of the temperature[4].
Fast annealing method uses the Cauchy distribution[11]. In these methods, the neighborhood range is large if the
temperature is high, while the neighborhood range is small if the temperature is low. However these methods are
not effective for searching in problem spaces, because they do not use the information about objective functions.

There are several methods using the information about objective functions. Corana’s SA[10] uses the information,
measured by a rate between accepted and rejected moves. VFSR[9] uses the pseudo sensitivities of the objective
function. Dekker & Aarts’s SA[13] uses local search procedure (e.g. steepest descent, quasi-Newton).

4 Temperature Parallel Simulated Annealing with Adaptive Neighborhood
(TPSA/AN)

In this paper, we propose Temperature Parallel Simulated Annealing with Adaptive Neighborhood(TPSA/AN)
which is the extension of TPSA by using the Corana’s SA[9] for continuous optimization problems. The difference

between the conventional sequential SA for combinatorial optimization problems and TPSA/AN is that TPSA/AN
has a procedure for exchanging solutions between different constant temperatures and a procedure for adjusting
the neighborhood range. The exchange of solutions and the adjustment of the neighborhood range are executed
at certain transitions. In this algorithm, the distribution for generating a next point x’ from current point x is as
follows:

' =z +rm (3)

where r is a random number generated in the range [-1, 1]; m is the neighborhood range. The algorithm in this paper
has the same parameter m for each design values, while Corana’s SA has a different parameter for each design value.
If the next point x’ lies outside the definition domain of an objective function, our algorithm will generate a new
point again. The neighborhood range m is varied for adaptive search using equations (4), (5), (6) and (7):

Mpew = Mold * 9(p) (4)
gp) =1+ 62‘6 L ifp > 0.6 (5)
glp) = (14—00'?)_]0)_1, ifp<04 (6)
glp) =1 , otherwise (7)

where c¢ is a multiplying factor for adjusting the neighborhood range ; p is a rate between accepted and rejected
moves, and it is calculated from the following equation:

p=n/N (8)
where N is a given number of transitions; n is the number of accepted moves in interval N. In this paper, parameter
¢ is set to 2, following the Corana’s paper.

In this algorithm, if the number of the accepted moves increases, the neighborhood range will be enlarged
adaptively by equations (4) and (5). If the number of the rejected moves increases, the neighborhood range will be
reduced adaptively by equations (4) and (6). With this adaptation, the rate between the accepted and the rejected
moves is adjusted to be in the range from 0.4 to 0.6, and this makes the computational effort on each parallel
processor of a parallel computer effective.

5 Parallel Implementation

In TPSA/AN, inter-processor communications occur at the exchange of solutions in different processors at a
certain annealing interval. Therefore, the communications are not frequent, and then TPSA /AN is very suitable for
parallel processing.

We use a PC-cluster with 8 processors, which are connected by the Fast Ethernet. PVM is used for a communi-
cation interface. The CPUs are Pentium II, 233MHz.

One temperature is assigned to one process in PVM. Therefore, one process is running in one processor as the
number of temperature stages is less than 8, but multiple processes are running in one processor as the number of
temperature stages is greater than 9. In this study, 4 processes are running in one processor when the number of
temperature stages is 32.

6 Minimization of Standard Test Function

To examine the performance of TPSA/AN, we minimize the standard test functions, such as the Rastrigin
function[15], the Griewangk function[15], and the Shekel functions[16]. In this study, the functions has two design
variables, and they are expressed by equations (9), (10) and (11).

fr(@ = (Nx10)+

N
(27 —10 cos(27m:i))1 (9)

(2

2

i = 103)i o)

i=1

5
fs(@) = —Z((f—@'j)T(f—ﬁj)Jer))_

J=1

(11)

where a;; and ¢; are shown in Table 1.

Table 1: Values for a;; and c;

¢

0.1
0.2
0.2
0.4
0.4

T W N |

W OO =
<

~ O 00 =

In this study, to evaluate the effectiveness of TPSA /AN, a sequential SA and TPSA are also implemented. The
sequential SA and TPSA whose neighborhood ranges are fixed are called SA/FN and TPSA/FN, respectively. The
sequential SA whose neighborhood range is changed adaptively is called SA/AN. The parameters are summarized
in Table 2 for the three functions. The parameters are a maximum temperature (for the sequential SA, this means
its starting temperature), a minimum temperature (for the sequential SA, this means its ending temperature),
the number of annealing cycles, the Markov length, the cooling rate and the exchange intervals. The parameters
are determined from the experience. The number of iterations in TPSA means the number of iterations in each
temperature. Therefore, from the point of view for a single processor, the sequential SA performs annealing 32 times
longer than in TPSA.

Table 2: Parameters for SA and TPSA

Functions Rastrigin Griewangk Shekel
Algorithms SA | TPSA SA | TPSA SA | TPSA
Number of Processes 1 | 32 1 | 32 1 | 16
Max.(Initial) temperature 10 20 0.8
Min.(Final) temperature 0.01 0.01 0.01
Number of iterations 10240x32 | 10240 || 3072032 | 30720 80x16 80
Markov length 10240 - 30720 - 80 -
Cooling rate 0.80025 - 0.726 - 0.640414 -
Exchange interval - 32 - 32 - 4
Neighborhood adjust interval 8 8 8

7 Results of Numerical Experiments

TPSA/AN is carried out for the minimization of the three standard test functions to discuss the effectiveness of
the method.

Figures 2 through 4 show the energies of the optimum solutions obtained by SA and TPSA with respect to the
neighborhood range for the three test functions. The neighborhood ranges are set to 0.01, 0.05, 0.1, 0.5, 1.0, 5.0
and the adaptive one. The interval used for adjusting the neighborhood range is 8 annealing steps. The results are
shown as the medians of 10 trials since the energy have much different values. Since the relationship between the
values of the energy and the objective function is linear, the point that has the minimum value of the energy has the
minimum value of the objective function. The total number of annealing steps in SA and TPSA are fixed in order
to compare the results.

These results are summarized as follows.

Comparing SA/AN(Adaptive Neighborhood) with SA/FN(Fixed Neighborhood), the performance of SA/AN is
worse than the SA/FN with the optimum fixed neighborhood range, but it shows moderate performance in the whole.
Therefore, SA/AN has an advantage in handling a neighborhood range since the optimum neighborhood range is
not determined unless we conduct many preliminary experiments.

10E+03 1.0E+02
-,g 1.0E+01 & 10E+00
s —=—SA/FN g —==SA/FN
¥ 10E-01 -0~ TPSA/FN & 1.0E-02 —O-TPSA/FN
= — -SA/AN g — -SA/AN
S, 10E-03 —TPSA/AN S 10E-04 —— TPSA/AN
3 >
o &)
© LOB05 oo B LOE-06 [
w]

1.0E-07 10E-08

001 005 01 05 1 5 0105 1 5 10 50 100 500
Neighborhood range Neighborhood range

Figure 2: The performance of the various Figure 3: The performance of the various

method for the Rastrigin function. method for the Griewangk function.

0.0
S 20 |-
B
S 40 [—=—SA/FN
™ -O-TPSA/FN
s 0 — -SA/AN
— —
ST TPSA/AN
(=)
o
G500 o

-12.0

0.005 001 005 01 05 10 50 100

Neighborhood range

Figure 4: The performance of the various method for the Shekel function.

Comparing TPSA/AN with the other methods, it provides a remarkable performance. The performance is mach
better than SA/AN, and is better than the performance of SA/FN with the optimum fixed neighborhood range.
Therefore, the proposed method is found to be very effective for various optimization problems. Using this method
one does not need to determine the neighborhood range and the searching performance is very high as well.

It is interesting that the performance of TPSA/FN is worse than SA/FN. This result suggests that the paral-
lelization of SA is very difficult. But, using the adaptive neighborhood range, the parallelization of SA yields very
good performance.

From these results, it is clear that the determination of the appropriate neighborhood range is very important
to obtain good solutions. Also, it is recognized that the best values of the neighborhood ranges for SA/FN and
TPSA/FN are different.

The effectiveness of TPSA /AN can be examined by comparing the histories of the energies of the solutions which
arrived at the minimum temperature, as shown in Fig. 5, where the Rastrigin function is minimized for various fixed
ranges of neighborhood and the adaptive neighborhood.

The solution with a small neighborhood range (0.1) was not improved at the early stage of search, and it reached
the local minimum. The solution with a large neighborhood range (5.0) was improved at the early stage, but it was
not improved later. The solution with a proper neighborhood range (0.5) converged to a good solution.

On the other hand, the solution with the adaptive neighborhood reached the best solution among these. The
adaptive neighborhood has both good global and local search abilities, which are inherently contrary each other.
However, this advantage appears only for TPSA, but not for sequential SA. The performance of SA/AN is moderate
among various fixed neighborhood ranges.

8 Conclusions

In this study, the temperature parallel simulated annealing with adaptive neighborhood (TPSA/AN) that is able
to solve optimization problems whose design variables are continuous is proposed. The effectiveness of TPSA /AN is
investigated through the Rastrigin function. The following results are derived in this study.

1) The neighborhood range affects the search abilities of SA and TPSA in continuous optimization problems.
Therefore, the determination of the best neighborhood is very important.

1.0E+02
1.0E+01
1.0E+00

1.0E-01

1.0E-02

Energy

1.0E-03

LTOE-04 |- 20

LOE-05 | adapti’w/’]
1.0E-06

0 2000 4000 6000 8000 10000 12000
Annealing steps

Figure 5: The histories of the energies of solutions for various fixed neighborhood and adaptaive neighborhood.

2) The optimum obtained by TPSA /F with the best neighborhood range is worse than the one obtained by SA/F
with the best neighborhood range.

3) The optimum solution obtained by TPSA /AN is better than the one obtained by SA/F, SA/AN and TPSA/F.

4) TPSA/AN has high ability of global searching and quick convergence to the global optimum. Therefore,
TPSA/AN is a powerful algorithm for continuous optimization problems.

References

[1] Beasley, J., Dowsland, K., Glober, F., Laguna, M., Peterson, C., Reeves, C. R. and Soderberg, B., Modern
Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publications, 1993

[2] Kirkpatrick, S., Gelett Jr. C. D., and Vecchi, M. P., Optimization by Simulated Annealing, Science, 220(4598),
1983, 671-680

[3] Aarts, E. and Korst, J., Simulated Annealing and Boltzmann Machines, John Wiley & Sons, 1989

[4] Ingber, L., Simulated Annealing: Practice versus Theory, J. of Mathl. Comput. and Modelling, 18(11), 1993,
29-57

[5] Holmgvist, K., Migdalas, A., and Pardalos, P. M., Parallelized Heuristics for Combinatorial Search, in Parallel
Computing in Optimization, Migdalas, A. et al. eds., Kluwar Academic Publishers, 1997, 269

[6] Konishi, K., Taki, K. and Kimura, K., Temperature Parallel Simulated Annealing Algorithm and Its Evaluation,
Trans. on Information Processing Society of Japan, 36(4), 1995, 797-807 (in Japanese)

[7] Kimura, K. and Taki, K., Time-homogeneous Parallel Annealing Algorithm, The 13th IMACS World Congress
of Computation and Applied Mathematics, 1991

[8] Konishi, K., Yashki, M. and Taki, K., An Application of Temperature Parallel Simulated Annealing to the Trav-
eling Salesman Problem and its Efficient Implementation on the Distributed Memory Parallel Machine, 1996 Joint
Symposium of Parallel Processing, 1996, 153-160 (in Japanese)

[9] Ingber, L., Genetic Algorithms and Very Fast Simulated Reannealing: A Comparison, Mathematical and Com-
puter Modeling, 16(11), 1992, 87-100

[10] Corana, A., Marhesi, M., Martini, C. and Ridella, S., Minimizing Multimodal Functions of Continuous Variables
with the ”Simulated Annealing” Algorithm, ACM Trans. on Mathematical Software, 13(3), 1987, 262-280

[11] Szu, H. and Hartley, R., Fast Simulated Annealing, Physics Letters A, 122(3,4), 1987, 157-162

[12] Rosen, B., Functional Optimization based on Advanced Simulated Annealing, IEEE Workshop on Physics and
Computation, PhysComp92 (Dallas, Texas), 1992, 289-293

[13] Dekkers, A. and Aarts, E., Global optimization and simulated annealing, Mathematical Programming, 50, 1991,
367-393

[14] p.7 of the reference [4]

[15] Whitley, D., Mathias, K., Rana, S. and Dzubera, J., Evaluating Evolutionary Algorithms, Artificial Intelligence,
85, 1996, 245-2761

[16] Madsen, K., Testing branch-and-bound methods for global optimization, Technical Reports 2000 , 2000

