
The System for Evolutionary Computing on the Computational Grid
Yusuke Tanimura

Graduate School of Engineering
Doshisha University

Tatara Miyakodani 1-3, Kyotanabe, Kyoto, Japan
email: tanisuke@mikilab.doshisha.ac.jp

Tomoyuki Hiroyasu
Department of Engineering

Doshisha University
Tatara Miyakodani 1-3, Kyotanabe, Kyoto, Japan

email: tomo@is.doshisha.ac.jp

Mitsunori Miki
Department of Engineering

Doshisha University
email: mmiki@is.doshisha.ac.jp

Keiko Aoi
Graduate School of Engineering

Doshisha University
email: aoi@mikilab.doshisha.ac.jp

ABSTRACT
The computational Grid can offer users tremendous com-

puter resources. Many researchers are developing the
Grid middleware and the typical results are Grid RPCs.
However, application models are restricted to use when
Grid RPCs are applied. In this paper, we proposed the
”EVOLVE/G” system for developer to construct evolution-
ary computation (EC) system on the computational grid.
The EVOLVE/G has a tree topology of data communica-
tion. In the EVOLVE/G, there are Agent and some Work-
ers. Since the data can be transferred between Agent and
Worker, any logical model of EC can be implemented
by the EVOLVE/G. Furthermore, it has mechanism of
clustering nodes. Therefore, the effective model can be
constructed on the Grid environment. In this paper, the
Grid calculation model of Parallel Simulated Annealing us-
ing the Genetic Crossover (PSA/GAc) is built using the
EVOLVE/G and presented the experimental results in the
real Grid environment. Consequently, it is shown that the
examination of the calculation model using the EVOLVE/G
is effective.

KEY WORDS
Grid Computing, Evolutionary Computing, Optimization

1 Introduction

The Grid technology enables to integrate the computational
resources and information resources that exist in a wide
area. Using these integrated resources, we can perform dis-
tributed / parallel computing in a wide area. Therefore, it
is expected as technology which solves the demand of the
large-scale computation[1]. Especially, the recent research
of the Grid contributes the constructing the Grid middle-
ware and many testbeds are constructed and running. They
are served as a stage of examining application. The Grid
RPC based system is a typical middleware to use the Grid
environment[2][3].

Our goal is to prepare tools for users, who want to de-
velop optimization methods by evolutionary computation

(EC) on the computational Grid. Since it needs a high cal-
culation cost to solve optimization problems such as struc-
tural optimization problems, job shop scheduling problems,
protein tertiary structure problems and so on, huge compu-
tational resources are needed. One of the characteristics
of EC is multi point search. Because of this characteristic,
there are several ways to perform EC in parallel. For exam-
ple, in the genetic algorithm (GA), master-slave model[4],
distributed population model[5], and cellular model[6] are
parallel models.

When a parallel model is used, it is expected that EC
can be applied to parallel computers and it is also expected
that the searching ability becomes increased. Therefore,
developers want to apply their parallel models of EC even
in the computational Grid. However, when they use the
Grid RPCs as the developing tools, only a master-slave
model (Figure1(a)) can be applied. Developers sometimes
use distributed population model (Figure1(b)). To con-
struct this system, developers need to use raw socket com-
munications or Globus Toolkit. However, this development
cost is very high.

ServerClient Data

(a) (b)

Figure 1. Master-slave model and distributed population
model of EC

In this paper, we propose a new tool for developing
systems of EC in the computational Grid. That is called
the EVOLVE/G. Using the EVOLVE/G, developers can
apply their models of EC freely. At the same time, the
EVOLVE/G has the mechanism to classify into sub groups

according to CPU power, I/O, network ability and so on.
In this clustering, developers simply define the clustering
condition, but they do not define the node nor the machine.

To discuss the effectiveness of the EVOLVE/G, the
system of the PSA/GAc[7] which is one of the evolutionary
computation methods is developed. This developed sys-
tem is applied to solve protein tertiary structural problem.
Through this experiment, we discuss the usefulness of the
EVOLVE/G and the Grid model of the PSA/GAc.

2 Grid Oriented Computing Application

There are some common features in the application that
can use the Grid environment effectively. In this paper,
the application that is satisfied with those features is called
GOCA (Grid Oriented Computing Application) and de-
fined it as follows.

• The task can be divided into several sub tasks.

• The sub task has few dependencies for other sub tasks
or it can be executed independently.

• The sub tasks can be executed in parallel.

• The communication between sub tasks is not need at
all or is not need frequently.

• Low cost for continuing the job when some nodes are
removed.

• The job will utilize new nodes added to the system.

The evolutionary computation application is satisfied
with the conditions of GOCA. However, in the existing
Grid RPC based system, it is difficult to bring out the fea-
tures of GOCA to the maximum. Then, in this research,
the EVOLVE/G is developed as the Grid middleware which
can harness the feature of GOCA.

3 The EVOLVE/G System

The EVOLVE/G is a grid middleware to enable easy imple-
mentation of the various evolutionary computing in GOCA.
Figure2 shows the basic architecture of the EVOLVE/G.

The EVOLVE/G uses Globus 1.1.4 and it is described
in C and Java languages. The EVOLVE/G prepares API for
the application developer as an interface to implement each
component of Worker, Agent and Super Agent. These API
are similar to Send() and Recv() function of MPI. Using
these APIs, application developer can describe data flow
and management freely. The EVOLVE/G consists of Agent
and Worker. Agent checks Worker every fixed time and
gives a command to Worker, acquires the progress, the state
of the node or results. Worker performs under management
of Agent and each Worker is not concerned where other
worker performs. Therefore, developers implement the be-
havior of Agent and Worker. It specifies what data from
one Worker is transmitted to other workers at what timing.

Client

Request to Agent

Agent

Worker management,
communication control,
some work and etc.

Worker

Some Work

Worker

Some Work

Grid Environment

Monitor

Get information
 - Results
 - Data
 - System status

Request,
Instruction

Figure 2. Basic architecture of the EVOLVE/G

Super Agent

�����
ker

�����
ker

�����
ker

Agent

�����
ker

�����
ker

�����
ker

�����
ker

�����
ker

cluster

cluster

cluster

cluster

cluster

Figure 3. Basic architecture in hierarchical topology of the
EVOLVE/G

The topology of data communication in the EVOLVE/G is
a tree topology. However, since data is communicated be-
tween Agent and Workers, any logical model of EC can be
implemented.

The EVOLVE/G can also have a hierarchical topol-
ogy of data communication. This topology is constructed
by clustering the nodes which can be used within the Grid
environment based on the machine information or network
information connected with them. In this case, there is
Agent in a cluster and this Agent is also Worker for the up-
per level. This worker is communicated with Super Agent.
Again, this tree structure is a topology for data communi-
cation and the logical model of EC can be different from
this. When there are two levels, developers have to imple-
ment the behavior of Agent and Worker in the upper level
and lower level. At the same time, developers have to de-
fine the rule of clustering. This classification is based on
the performance of the node, the throughput of the network
or the site that belongs. The concept is summarized in Fig-
ure3.

It is planned that the start of Agent and Worker is per-
formed automatically by another system. At this point, the
clustering of nodes is executed. In the following simula-
tion, this operation is performed by hand.

4 Parallel Simulated Annealing Using Ge-
netic Crossover

The Parallel Simulated Annealing using the Genetic
Crossover (PSA/GAc)[7] is a hybrid algorithm. In the
PSA/GAc, the SA processes are executing in parallel,
while the information about search points is sometimes ex-
changed by the genetic crossover.

Generally, the SA and GA are said to have the follow-
ing characteristics. SA is a generic approximation method
which tries to solve optimization problems through simu-
lated annealing process. An annealing process is a physi-
cal process of gradually cooling a molded material at the
high temperature to generate a low energy state such as
crystals of a few defects. SA searches repeating three pro-
cesses. Generate process creates the following state from
the present state. Accept criterion process judges whether
it changes to the following state. Cooling process gener-
ates the following temperature from the present tempera-
ture. Clearly, SA has only the present state and searches
the optimal solution with emphasis on the near.

On the other hand, the GA is an engineering algo-
rithm imitating evolution and selection of a living thing.
In the GA, the individuals only which adapted for environ-
ment can survive the next generation. The GA has two or
more individuals as a solution candidate and can perform
the large region-search. However, in many cases, crossover
operator that generates the solution candidate of the follow-
ing state from combination of two searching points, cannot
search well for near the search point.

The PSA/GAc is an algorithm devised to utilize these
merits. It performs the partial search by the PSA and large
region-search by the crossover operator of the GA.

The search procedure of the PSA/GAc is shown in
Figure4.

step 1 An initial searching point is generated and several
search process of SA runs in parallel.

step 2 When the annealing reaches the fixed cycle d, the
pair is generated randomly from parallel SA.

step 3 It performs the one point crossover between design
variables on each pair and two children are generated.

step 4 In each pair, two individuals having high evaluation
value are selected from 4 individuals, which are two
parents and two children.

step 5 It performs annealing process in the fixed cycle d
with selected individuals.

step6 Processing from step2 to step5 is repeated until it
satisfies the terminal criterion.

�����

���

���

���

�����

�����

	�
�

���������
��������� � ��� � ��

������� �
 !��� � � ����� ��

"�#$#���%&�'�(� � � ��� � ��

) ��
��� �� �

�� ��
*&� ��� ��

������� �
�

+ ��-,�
�� �.� ����/���� ���0�� ��� *

) ��
���� #1��� ��*$*��2����

) ��
��&�.� #1��� ��*�*$�2����
��� � � ����� ��

���

Figure 4. Flow of PSA/GAc calculation

5 Two Logical Models and Implementation
of the PSA/GAc Using the EVOLVE/G

This paper examines the Grid computing model of the
PSA/GAc using the EVOLVE/G. Here, we develop two
models; the basic model and hybrid model. The basic
model is implemented by one Agent and the hybrid model
is implemented by two types of Agent and two stages.

5.1 Basic model

In the general model, a simple the PSA/GAc is performed.
There are several processes of SAs and they are running in-
dependently. After some steps, two processes are chosen
randomly and new search points are generated by the op-
eration of the genetic crossover with two search points of
these processes. After the genetic crossover, operations of
SAs are restarted. This logical model in shown in Figure5.

SA

SA

SA

SA

Steps(time)
:Genetic Crossover

Figure 5. Basic model

This logical model is implemented by one Agent in
the Grid and all remainder serves as Worker managed by

the Agent. Each Worker performs SA for some steps.
When it ends, Worker writes out the best search point (in-
dividuals attending the crossover) to the file and goes into a
wait state. For that time, Agent checks each worker and the
crossover individuals are sent to Agent. After the crossover
and selection on Agent, survival individual is sent from
Agent and the genetic crossover operator is completed. Af-
ter the operation, SA is performed until the next crossover
cycle.

Agent checks each worker every fixed cycle speci-
fied by the user and realizes the genetic crossover between
workers. However, on the Grid environment, the perfor-
mance of each node running workers is not uniform and it
is expected that Agent cannot contact to any Workers ac-
cording to some troubles. Then, Agent will perform the
crossover with pairs, which is generated by the individu-
als gathered from workers reaching the crossover cycle and
enabling communication at the checkpoint.

5.2 Hybrid model

The other logical model is the hybrid model. In this
model, there are several the PSA/GAc operations. In the
PSA/GAc operation, genetic crossovers are performed. Af-
ter some steps, the best search point is chosen from each
the PSA/GAc. These points are exchanged between the
PSA/GAc. This logical model in shown in Figure6.

SA
SA
SA

Steps (time)

PSA/GAc

PSA/GAc

Figure 6. Hybrid model

To build this system, one Super Agent and several
Agents are prepared. Each Agent manages several Work-
ers. In this model, the PSA/GAc is performed in a sub clus-
ter. The several sequential SAs are performed on Worker
and the crossover is performed through Agent. In the up-
per cluster, Super Agent monitors the searching progress of
each sub cluster and exchanges the best search point among
them. One Agent sends the best search point to the Super
Agent. Other Agent receives it through Super Agent.

In this implementation, it is needed to define how the
clusters are constructed. In the following simulation, our
classification is based on that PC cluster systems the node
belongs. In the simulation, we use the Grid made from 3
PC cluster systems. Therefore, three clusters exist in the
simulation. However, important thing is the developer does
not know how many clusters create. That means, if there

��������� �����
	���� ��
Osaka Sangy

��	���� ��

Internet

Moon Cluster

100Mbps

Gregor Cluster

Galley Cluster

Figure 7. Network environment

Table 2. Thrughput

Network Thruput
Message size Message size
(1KB) (1MB)

Galley–Gregor 10.95 [MB/sec] 11.21 [MB/sec]
Galley–Moon 107.7 [KB/sec] 92.12 [KB/sec]

are 5 PC cluster systems in the simulation, five clusters will
exist.

6 Experimental Results

6.1 Machine and Networks

Two PC clusters installed in Intelligent Information Center
at Doshisha University and the PC Clusters installed in Os-
aka Sangyo University were used for our experiment. The
specification of each cluster is shown in Table1. Linux is
used as OS of each node. The Globus Toolkit and MPICH
are installed in the gateway machine. On all nodes, Java
runtime environment is usable. Figure7 shows that Gal-
ley and Gregor cluster installed in the same building are
connected with 100 Mbps networks, but the networks be-
tween Galley and Moon, between Gregor and Moon are
connected through the Internet. The network thrughput be-
tween the gateway machines before and after our experi-
ment is shown in Table2.

In our experiment, Agent or Super Agent is executed
on the gateway machine on Galley and it spawns other
Workers. Spawned Worker or Agent is executed on other 8
nodes on Galley, 12 nodes on Gregor and 4 nodes on Moon.
Agent and Worker is executed on the same nodes. A total
of 24 Workers will be executed on each node.

6.2 Optimization Problems

In our experiment, we solved the test problem of minimiz-
ing the energy function to predict the protein tertiary struc-
tures, which function was proposed by Okamoto[8]. Target
protein was Met-Enkephalin that is very small-scale protein
and consists of 5 amino acid residues of Tyr-Gly-Gly-Phe-
Met. It is said that this protein has the minimum energy
structures in the range of E ≤ −11kcal/mol inside of the
gaseous field based on the ECEPP/2 energy function[8]. In

Table 1. Machine Specification

Site Cluster name System
Doshisha Univ. Galley Pentium III (1.1GHz), 1CPU

Pentium III (850MHz), 8CPU
Doshisha Univ. Gregor Pentium III (1GHz), 64CPU
Osaka Sangyo Univ. Moon Pentium 4 (1.7GHz), 8CPU

Installed Software

Globus Toolkit 1.1.4, Sun JDK 1.4.0, MPICH 1.2.3

Table 3. Time costs of calculating the energy function

Cluster 1 Basic model Hybrid model

Galley 0.215 41.4
Gregor 0.173 33.2
Moon 0.109 20.9

Table 4. Parameter setting of PSA/GAc

Number of SAs on each node 16
Initial temperature 2.0 (1000K)
Last temperature 0.10 (50K)
Crossover cycle 192 step
Range size 180◦ → (180 × 0.3)◦

our experiment, the design variables are 10 dihedral angles
of the main chain φ1, ψ1 ∼ φ5, ψ5 and 9 dihedral angles of
the side chain χ1

1 ∼ χ4
5 at Met-Enkephalin.

Table3 shows the calculation time of the sequential
SA for this problem. These results are different on the node
of each cluster. Table3 shows the result of executing 1 step
on 16 sequential SAs and executing 192 steps.

6.3 Results

The parameter setting in our experiment is shown in Ta-
ble4. In the basic model, PSA/GAc is performed using 24
nodes. In the hybrid model, PSA/GAc using 8 nodes, 12
nodes and 4 nodes is executed in parallel.

Firstly, the searching progress in the basic model is
shown in Figure8. Figure8 shows the energy value of the
best search point and the number of step when the point
is gathered by Agent at the checkpoint. These results show
that the searching process of Workers in one PC cluster sys-
tem is separated from the one of Workers in another PC
cluster system. This also shows that there is a possibility
for promotion of search efficiency and improvement in an
execution performance by clustering.

Secondly, the result of comparison of the general
model and hybrid model is shown in Figure9 and Figure10.
In Figure9, the horizontal axis is the number of steps. In
this graph, Agent acquires the searching point having the

0 4 8 12 16 20 24 28 32 36
0

500

1000

1500

2000

2500

3000

3500

4000

 ��� �����	�
� �������� �
� ����� ����� �������	� ���
 E������� y �	�
� �������� �
� ����� ����� �������	� ���

Checkpoint
A

nn
ea

lin
g

st
ep

-12

-8

-4

0

4

8

12

16

20

E��
�� y [kcal/m

ol]

Figure 8. Progress of the protein energy and search step

same step as before at the different checkpoint, even though
the performance of the node running Workers is different.
This figure shows that the hybrid model can find the better
solution than the basic model.

On the other hand, Figure10 also shows the results
of the comparison of the basic model and hybrid model.
However, in this figure, the horizontal axis is elapsed time.
In the basic model, Agent acquires information from the
group of early search Worker or the group of late search
Worker at each checkpoint. Then, the best search point
gathered from Workers may be good or bad along the time
line. This figure also shows that the hybrid model performs
the effective search compared with the basic model by the
viewpoint of the time line.

6.4 Discussion

The hybrid model has two advantages. Firstly, it is use-
ful for not-scaled application. Performing the parameter
sweep of parallel executing is more effective for the ap-
plication that has a not-scaled algorithm. In the example
of the PSA/GAc, 8 or 12 parallel execution might show
the better search than 24 parallel execution. This is our
future research subject. In addition, evolutionary compu-
tation enables not only performing the simple parameter
sweep but also exchanging some information between clus-
ters and tuning the more suitable parameter on each cluster.

Secondly, the scalability of the performance is ob-
tained by making the hybrid model. The EVOLVE/G has a

0 500 1000 1500 2000 2500 3000
-15

-10

-5

0

5

10

15

20

� �
��
��

��
�	

�
�

�

Annealing step

 Basic model
 Hybrid model

Figure 9. Comparison of basic model and hybrid model
(Viewpoint of step)

0 200 400 600 800 1000
-15

-10

-5

0

5

10

15

20

� ��
���

�� �
���
��

��

Elapsed time [sec]

 Basic model
 Hybrid model

Figure 10. Comparison of basic model and hybrid model
(Viewpoint of time)

hierarchical topology for data communication. On this sys-
tem, any logical model can be constructed. In the hybrid
model proposed in this paper, it performs frequent commu-
nication for the genetic crossover over Workers in the lower
cluster. It is an effective model where nodes are classified
into sub groups according to the network distance. By this
clustering, the fine grained communication is occurred in
a cluster system and the coarse grained communication is
performed over the cluster systems.

The EVOLVE/G system enables clustering. Then,
any logical model such as the hybrid model can be con-
structed. It is very useful as the Grid System.

7 Conclusion

In this paper, the EVOLVE/G system, which is a Grid tool
for developer of evolutionary computation, is proposed.
This system consists of Agent and multiple Workers. Since
the data can be exchanged between Agent and Workers
freely, any logical models of EC can be integrated. This
system also has the mechanism of clustering nodes on the
Grid. These clusters are placed in the tree topology.

Using the EVOLVE/G, the Grid model of the
PSA/GAc is implemented which is one of the applications
of EC. Two types of logical models of the PSA/GAc are
prepared; the general model and hybrid model. For the
hybrid model, the clustering of the nodes that are based
on the distance of the network has been performed. In the
simulation, the protein tertiary structure problem is solved.
The experiment is performed in the real Grid computing
environment. Through the experiment, it is shown that
the hybrid model has a good performance. In the hybrid
model, the fine grained communication is performed in a
PC cluster and the coarse grained communication is oc-
curred between PC clusters. As a result, it presents that the
EVOLVE/G system is useful to develop systems of evolu-
tionary computation.

Acknowledgments

This work was supported by a grant to RCAST at Doshisha
University from the Ministry of Education, Science.

References

[1] I.Foster and C.Kesseleman, The Grid: Blueprint for a
New Computing Infrastructure (San Francisco: Mor-
gan Kaufmann, 1998).

[2] H.Casanova and J.Dongarra, Netsolve: A Network
Server for Solving Computational Science Problems,
Int. J. of Supercomputer Applications and High Perfor-
mance Computing, Vol.11, No.3, 1997, 212-223.

[3] H.Nakada, M.Sato and S.Sekiguchi, Design and Imple-
mentations of Ninf: toward a global computing infras-
tructure, Proc. of Future Generation Computing Sys-
tems, Metacomputing Issue, Vol.15, 1999, 649-658.

[4] D.Levine, A parallel genetic algorithm for the set par-
titioning problem, T.R. No. ANL-94/23 (Algonne Na-
tional Laboratory, Mathematics and Computer Science
Division, 1994).

[5] R.Tanese, Distributed genetic algorithms, Proc. of the
3rd ICGA, 1989, 434-439.

[6] M.Gorges-Schleuter, ASPARAGOS: an asynchronous
parallel genetic optimization strategy, Proc. of the 3rd
ICGA, 1989, 422-428.

[7] T.Hiroyasu, M.Miki and M.Ogura, Parallel Simulated
Annealing using Genetic Crossover, Proc. IASTED
PDCS 2000, Las Vegas, USA, 2000, 139-144.

[8] Y.Okamoto, T.Kikuchi and H.Kawai, Prediction of
Law-Energy Structures of Met-Enkephalin by Monte
Carlo Simulated Annealing, CHEMISTRY LETTERS,
1992, 1275-1278.

[Source]

14th International Conference on Parallel Distributed
Computing and Systems (PDCS 2002), pp.39–44, Nov.
4–6, 2002.

