
A Dynamic Hierarchical System for Large Scale Distributed
Applications

Junichi Uekawa
Graduate School of

Doshisha University,
Kyoto, Japan

email: dancer@mikilab.doshisha.ac.jp

Tomoyuki Hiroyasu
Doshisha University, Kyoto, Japan

email: tomo@is.doshisha.ac.jp

Mitsunori Miki
Doshisha University, Kyoto, Japan
email: mmiki@mail.doshisha.ac.jp

Yusuke Tanimura
Graduate School of

Doshisha University,
Kyoto, Japan

email: tanisuke@mikilab.doshisha.ac.jp

ABSTRACT
A system for creating a dynamically generated hierarchical
communication structure, ”DNAS”, is designed. DNAS is
a middleware for Grid applications that need communica-
tions. It is a hierarchical system with mechanisms to make
the system more robust. The system has low network load
due to restricted nature. An application for genetic algo-
rithm is implemented to demonstrate the applicability of
the system.

KEY WORDS
Internet Computing, Fault Tolerance, Hierarchy, Genetic
Algorithm

1 Introduction

Recent advancement in networking has made more ma-
chines available to the network, with much excess com-
puting power. The grid computing is a kind of infrastruc-
ture like the power grid. The grid computing is the oper-
ation form of the application based on a network. In the
grid computing, a lot of computers and huge super com-
puters are connected by network, especially by the NET.
Users can use these computational resources as a system.
Therefore, they can treat tremendous data and can operate
huge application. However, there is a big network latency
between nodes, while computational power of each node
is large. Therefore, not all applications but only some of
them are suitable for the grid computing. The characteris-
tics of these applications which match the characteristics of
the grid, and have the potential to be ran effectively on the
grid can be summarized as follows,

• Jobs can be divided on multiple parts, and the individ-
ual portions can be executed independently from each
other on different nodes.

• The divided jobs running on each nodes may require
some communication between them, but the require-

ment is modest.

• Low cost for continuing the job when some nodes are
removed, and the job will utilise new nodes added to
the system.

We call applications that have these characteristics as“Grid
Oriented Computing Application (GOA)”.

As an example of GOA, there are projects like
SETI@home[1], and Folding@home[2]. There are
also Grid RPC systems, such as NetSolve[3], Ninf[4],
Nimrod/G[5] and so on. Some applications can be worked
on these Grid RPC. However, these projects target at prob-
lems that do not require communication between the in-
dividual nodes or assume a low latency high-speed inter-
connect. There is currently a lack of projects which con-
sider high latency network communication between nodes
on running GOA type applications.

In this paper, for running GOA type applications,
a system called Distributed Network Application System
(DNAS) is proposed.

DNAS has a hierarchical logical network structure.
A hierarchical logical network structure is a system where
information packet from a node can only be sent to a re-
stricted member of the network. The packet is not freely
sent to random hosts. It is more limiting compared to
P2P[6][7][8][9][10] model where anyone can communicate
with anyone else in the network. However, it has the ad-
vantage of optimizing network traffic to local communi-
cation that may be less costly, and resulting in more scal-
ability. Some researches on applications using hierarchi-
cal network exist. DNS is a hierarchical protocol to pro-
vide name to number matching service. It handles a mostly
static data with caching technology. It has been fine-tuned
for name services, but it is not suited for running applica-
tions on them. IRC[11] is an hierarchical network but it has
been tailored for data broadcasting technology. There are
dynamic routing protocols but they do not consider running
applications on them. DNAS is different in that its aim is in



master

servent

Figure 1. A logical tree-shaped network structure

running a GOA. The interfacing between GOA and DNAS
is strong, but DNAS itself remains simple in nature.

To consider the advantages of the hierarchical sys-
tem, genetic algorithm[12] (GA) is considered. For GA,
there is a model suited for distributed execution called Dis-
tributed Genetic Algorithm[13] (DGA). GA is an algorithm
where problems are applied to logic of genes and evolu-
tion, where parameters are what the genes represent, and
individuals that have closer value to the optimal value have
better chance of survival. DGA is an algorithm for operat-
ing GA, using a model of islands. GA operations are per-
formed for several generations within islands. After the
generations, some individuals are communicated between
them. This is the modeling the real-life situation where far-
away islands receive an occasional migrant visitor. Since
the network communication between the islands does not
happen frequently, GA is one of GOA. Through the simu-
lation, the operation of DNAS is confirmed and results of
DGAs on GOA are discussed.

2 DNAS

Our goal is to create a middleware system for running GOA
to utilize the excess computing powers. On this system,
GOA that needs communication between nodes can be ap-
plied. In this paper, a system called Distributed Network
Application System (DNAS) is implemented. The require-
ment for DNAS is as follows:

• It allows GOA to run on multiple machines

• Automatic determination of the computational net-
work topology

• Avoid overloading a machine when other jobs are run-
ning on a node.

2.1 Data communication in DNAS

A hierarchical logical network structure forms a logical tree
structure like fig. 1. DNAS requires a central server to exist,
which is called a DNAS master system, and the child sys-
tem called downlinks, which can serve any number of chil-
dren themselves. Each node processes input, and sends the

Info-packet :- meta-header each-host-info*
each-host-info: host-name host-info
host-name:- ":hostname:"
host-info:- tag-data*
tag-data :- "tag: data"

Figure 2. Information packet

processed data to another node closer to the master node,
called uplinks. These hosts are called servents, because
they are a server to one and a client to the other. By be-
ing distributed like thus, the central sever is not overloaded
with individual requests. Calculations can work with the
collection of partial solutions, therefore, it is possible to
calculate partial solutions in servents and the results are ac-
cumulated at the central server.

The system is constructed around the idea of creat-
ing a dynamically changing hierarchical network structure.
This is a logical network structure, as opposed to physical
actual wiring for the network. The physical network struc-
ture can be such that network packets are able to commu-
nicate to any host within the network. It is logically made
hierarchical by creating restrictions on what host to send
message to.

The topology construction should be scalable, and it
is ideal if the formation of tree can be done with least com-
munication of current topology.

2.2 Topology formation

The initial topology is given. It is an arbitrary set up which
can be a server-client type where all the clients are con-
nected to one master system. From this state, DNAS ser-
vents use reconnection algorithms to form a tree structure.

Manually defined hierarchy can be made optimal us-
ing human hands, but such an hierarchy is weak against
changes. Nodes that relay information exist in an hierarchi-
cal topology, and that the network is weak against removal
of such nodes. However, by creating measures to recon-
struct network structures by removing the defunct system
from the routing, it is possible to have a network that sur-
vives node removals.

Each host sends information packet (fig. 2) with host-
name at the start, followed with tag-data pairs. Tag and data
are text delimited with a colon, and paired in a line-based
manner.

2.3 Reconnecting Algorithms

To achieve the network structure, Information about how
the network is constructed is given. The information used
here are Seen-By, Route-To, and Data-Seen.



servent B

servent A

master

seen-by: servent B

seen-by:
servent B, servent A

Route-To: master

Route-To:
master,servent A

Figure 3. Information flow of Route-To: and Seen-By:
message

while link (car(Route-To)) fails do
Route-To=cdr(Route-To)

Figure 4. Algorithm to relink to uplink, when uplink is lost

Route-To information goes from uplink to downlink.
This information is used to determine what hosts exist in
the uplink side of a specific host. Each host adds itself to
the Route-To information as the information is passed on.

Seen-By is a reverse of the Route-To. It is sent from
the downlink to uplink, relayed upwards along with other
tag-data pairs. Each host adds its own hostname to the
Seen-By information. Each host will then have a collec-
tion of Seen-By information, which has a list of hosts that
the information packet has passed through. It is then pos-
sible to reconstruct the current network structure. The flow
of information is as shown in fig. 3.

Data-Seen is an internal flag that each hosts have for
each served hosts, and its downlinks. Any information has
this flag, and tagged as ”Seen” if it has been propagated
to the uplink. So that it would be possible to know that
information is already sent up to the uplink once.

Applications reconnect using the algorithm shown in
fig. 4 and fig. 5. In fig. 4, hosts detect that a connection to
uplink is failing. Each host utilises the available Route-To
information to find out available alternative hosts to con-
nect to. The topmost item in the Route-To information
is the direct uplink which stopped responding, that item
is dropped, and connection to the grandparent node is at-
tempted. If grandparent node is not available, the uplink to
that node is attempted, proceeding one-by-one through the
Route-To information until a host that responds is found. It
will fail at the root node, if no host responds.

There might be problems with too many hosts link-
ing to the same uplink when algorithm in fig. 4 is applied,
since the algorithm always tries to connect hosts to upper
links when failure happens. Hosts closer to the root of tree
will need a way to lessen the load. In the current implemen-
tation, each host has a limit on how many nodes it serves.

D=list of active downlinks
A=random member from D
B=random member from D
if A!=B then

set Route-To[A]=B+Route-To[A]

Figure 5. Algorithm to relink on too many downlinks

When the number of direct downlink exceeds the limit, two
arbitrary downlinks A and B, are selected. Then, a fake
Route-To message is sent to host A from the uplink, pre-
tending that A is talking to B. Host A then will consider
the uplink to be B, and will connect to host B from the next
iteration. The algorithm is shown on fig. 5. This method
allows decreasing the number of hosts connecting to the
same host at the same time. To avoid conflicting simulta-
neous operations which can cause looping network, only
one relink from a host is allowed at one time.

3 DGA on DNAS

To demonstrate that some useful calculation can be ap-
plied upon the DNAS system, a system to perform com-
putation using Distributed Genetic Algorithm was imple-
mented. Genetic Algorithm is a optimisation method and
can be an example of GOA with suitable implementation. It
is an algorithm based on theory of evolution, where individ-
uals which have higher fitness to the environment survive
to cross over, to reproduce offsprings, eventually evolving
into individuals which are generally fit to live in the envi-
ronment after generations. It is a probabilistic searching
method with multiple point search. It is known to work
well to find a global optimum and easy to apply to several
types of optimization problems.

3.1 Conventional DGA

A typical conventional DGA forms some random topology
such as a ring topology, where hosts communicate individ-
uals to the consecutive member of the ring. The individuals
are communicated between random islands. Migration oc-
curs every few generations, and almost half of the individu-
als migrate to other islands. This assumes that the network
system is homogeneous, and cost of communicating is not
high.

3.2 DGA on hierarchical network

On top of the DNAS system, a variant of DGA is con-
structed. Each servent represents an island, and individuals
are distributed on each node. Each servent performs GA
operation. Communication of individuals are done through
uplinks as shown on fig. 6.



Figure 6. Implementation of DGA

cross over

mutation

selection

send individual
to DNAS

receive individual
from uplink DNAS

is i < migration 
interval ?

start

end

terminate?

i=0

i=i+1

yes

no

yes

no

Figure 7. Flow chart for client side logic for the DGA
model

In this system the GOA runs on each node, communi-
cating directly with DNAS. Each node has a pool of indi-
viduals. Random individuals are communicated to the up-
link, and the uplink passes the information upward. The up-
link pools the individual, indexed with the hostname. When
there are old individuals from the last migration from the
same host, they are overwritten with the new individual.
Each node polls the uplink for individuals, and the pooled
individuals reach the downlink.

Each child node sends their individual to the local
DNAS on every migration interval, and tries to retrieve in-
dividual information from the uplink DNAS. The logic is
summarised in fig. 7. The uplink DNAS pools the received
individuals indexed on hostname, and keeps only one copy
of the individual per each servent host. DNAS responds
to retrieval request with sending back the individuals that

-25

-20

-15

-10

-5

 0

 10000  100000  1e+06  1e+07  1e+08

F
itn

es
s 

va
lu

e

Number of evaluations

DGA
random search

Figure 8. Searching progress of a random search program
and a DGA program running on 10 nodes on a DNAS sys-
tem

were received from the GA process. Nodes communicate
with each other through their uplinks, as shown in fig. 6.
DNAS relays information to further uplinks, and individ-
ual information is replicated.

The operations are fully asynchronous and do not de-
pend on states of other nodes. The constructed DGA sys-
tem satisfies the defined qualities for being a GOA and can
be considered an example of GOA.

4 Experiments for DGA/DNAS

Some experiments for verifying the network system func-
tionality was done by running DGA process on the system.
In this system, 256 computers connected via 100BASE-TX
connection was used in carrying out the experiments. In
this paper, this system is simulating the grid computation
environment.

The test function used in the DGA experiment is a
Rastrigin function, coded in 5 variables of 32-bits using
bit-coding method, totalling in 160 bits. The problem was
to find the maximum value of the function, which isxi = 0
for all i. The range of the variablexi was [−5.12, 5.12].
The function used is shown in (1).

f = −
(

10n +
n∑
1

x2
i − 10cos(2πxi)

)
(1)

There are 100 individuals per island. Every individual
is operated through one-point crossover operation in one
generation, and mutation happens at0.1%.

In the hierarchical system, DGA was ran on multiple
machines. The topology was left to form with using the
rule that only 4 downlinks allowed on each system.

To see the effectiveness of DGA, a random-search
program which searches the optimal design variables using
a random number generator was ran on 10 nodes. The re-
sult of the run is compared with DGA program running on



-2

-1.5

-1

-0.5

 0

 20  40  60  80  100  120  140  160

F
itn

es
s 

va
lu

e

Number of servents

Figure 9. Fitness value after 2000 generation running with
10 to 160 nodes.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 1  10  100  1000  10000

F
itn

es
s 

va
lu

e

Migration interval

Fitness after 3000 generations

Figure 10. Fitness value after 3000 generations on 5-node
set up, with 4 nodes representing islands of 100 popula-
tions each. Comparison is done based on different migra-
tion rates. Average of 5 tries.

10 nodes. The application was run on DNAS system, and
observed from remote network through the master node.
The result in fig. 8 shows DGA performing better.

To verify the scalability of this system, the DGA sys-
tem was ran on 10 to 160 nodes. The average fitness values
of the individuals after 2000 iterations is shown in fig. 9.
Migration was performed on every generation. The results
suggest that the DGA process gained better results with
more nodes available. With more nodes, the search is per-
formed with greater number of individuals, namely100×n,
wheren is the number of nodes. The result suggests that
the effect of increasing the number of nodes to the result
may be saturated after 60 nodes.

An experiment was executed on a 5-node set up with
differing migration intervals to see the effect of migration.
Result is shown in fig. 10 which shows that migration in-
terval less than 10 is significantly better than the rest. The
result shows that migration rate does have an effect. This
suggests that frequent migration allows earlier arrival to a
better fitness value.

type 1 type 3type 2

Figure 11. Three different topologies

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

F
itn

es
s 

va
lu

e

Generation

Results for flat topology, topology 1
Results for balanced topology, topology 2

Results for unbalanced topology, topology 3

Figure 12. System having different static topologies, and
running DGA process for 2000 generations

An experiment was done to verify the effect of the
topology to the DGA operation. The topology was manu-
ally created and fixed as shown in fig. 11, using 6 servents
and 1 master node. The result is shown in fig. 12. It shows
that none of them reached the optimal value, and was not
good enough to reach the optimal value reliably. The value
shown is the average value of 10 trials, and although it is
not visible from the result shown, they do reach the opti-
mal result sometimes. The result suggests that topology 3
is quite fast in converging to the solution while topology
2 and 1 is not very good. This result shows that the bal-
anced tree is not necessarily the optimal structure in this
hierarchical model of DGA.

To experiment with fault-tolerance, system was put
to an endurance test. 7 hosts were used and evaluation
was done with 6 islands. The line marked as ”fitness value
without node failure” in fig. 13 shows a result of such set
up. DGA process was run for 2000 generations, and ter-
minated. It was then resumed for another 2000 generations
using fresh DGA process, which used the information left
over from previous iterations on the servents. Another such
run was done. In total 6000 generation of calculation was
done. This shows that DGA search is able to pick up a good
value from system, and continue searching.

Another experiment was done, with 3 iterations of
2000 generations each. This time, an artificial network
problem was introduced, so that servent was not available
at one of the nodes in the middle 2000 generation. Out of 6



-5

-4

-3

-2

-1

 0

 0  1000  2000  3000  4000  5000  6000

F
itn

es
s 

va
lu

e 
of

 e
lit

es

Generations

Fitness value node with fault
Fitness value without any network failure

Figure 13. Comparison of DGA with resume at 2000 gener-
ations, running total of 6000 generations. Average value of
fitness on all hosts. 7 hosts are used, with 6 islands. Com-
paring the effect of node with fault. One trial with manual
fault in one host, and another without. Average of 10 tries.

servents, the servent process running one node was explic-
itly killed, and DGA process was ran while it was down. It
can be seen that without network interaction, where simple
GA iteration was performed, the fitness value did not reach
a good value. However, when the system is reconnected to
the network, it was possible to attain a better fitness value.

The results in fig. 9 and fig. 10 suggest that the DNAS
system is useful in applying DGA. However, the scalability
of the GOA stops at about 60 nodes. It is required that GOA
that comes on DNAS to be with a better scalability.

Migration process and having more nodes affects the
outcome of DGA operation in this system, meaning that
migration is contributing to the DGA search. The system
shows some actual fault tolerance as in fig. 13. The result
in fig. 12 suggests that the current relinking mechanism is
not necessarily suboptimal, and that current relinking algo-
rithms shown in fig. 4 and fig. 5 are useful.

According to these results, GOA is able to run even
when DNAS has failed to communicate with other nodes.

5 Conclusion

DNAS, a system to construct hierarchical computing net-
work for executing GOA was constructed. Some experi-
ments were done and DNAS proved to be useful in run-
ning a GOA application, DGA. In the process, requirement
for GOA became apparent, that the DGA process used in
the experiment did not have enough scalability, but DNAS
itself proved to be quite tough against failures. The ex-
periment was performed on PC clusters consisting of 256
nodes. The experiment in the real grid computation envi-
ronment is the future work.

Acknowledgements

This work was supported by a grant to RCAST at Doshisha
University from the Ministry of Education, Culture, Sports,
Science and Technology.

References

[1] SETI@home: search for extraterrestrial intelligence
at home, http://setiathome.ssl.berkeley.edu/.

[2] Folding@home: Folding@home Distributed Com-
puting, http://folding.stanford.edu/.

[3] Arnold, D., Agrawal, S., Blackford, S., Dongarra, J.,
Miller, M., Seymour, K., Sagi, K., Shi, Z. and Vad-
hiyar, S.: Users’ Guide to NetSolve V1.4.1, Innova-
tive Computing Dept. Technical Report ICL-UT-02-
05, University of Tennessee, Knoxville, TN (2002).

[4] Sato, M., Nakada, H., Sekiguchi, S., Matsuoka, S.,
Nagashim, U. and Takagi, H.: Ninf: A Network
Based Information Library for Global World-Wide
Computing Infrastructure,HPCN Europe, pp. 491–
502 (1997).

[5] Rajkumar Buyya, David Abramson, J. G.: Nimrod/G:
An Architecture for a Resource Management and
Scheduling System in a Global Computational Grid,
The 4th International Conference on High Perfor-
mance Computing in Asia-Pacific Region (HPC Asia
2000), IEEE Computer Society Press (2000).

[6] Stoica, I., Morris, R., Kaashoek, F. and Balakrishnan,
H.: Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications,SIGCOMM ’01, August 27-
31, 2001, San Diego, California, USA(2001).

[7] Sun Microsystems:JXTA, http://www.jxta.org.

[8] Wego Systems, Inc.: Gnutella,
http://gnutella.wego.com (1999).

[9] Napster:Napster, http://napster.com (2001).

[10] Freenet Project:Freenet, http://freenetproject.org.

[11] Oikarinen, J.: RFC1459: Internet Relay Chat Proto-
col, http://www.ietf.org/ rfc/rfc1459.txt (1993).

[12] Goldberg, D. E.:Genetic algorithms in search, op-
timization and machine learning, Addison Wesley,
Reading, Massachusetts (1989).

[13] Tanese, R.: Distributed Genetic Algorithms,Proc.
3rd International Conference on Genetic Algorithms,
pp. 434–439 (1989).



The paper is presented in :
Proceedings of the 14th IASTED International Conference,
Parallel and Distributed Computing and Systems, pp. 422–
427 (2002)


