
Optimization Problem Solving System using Grid RPC

Tomoyuki HIROYASU Mitsunori MIKI Hisashi SHIMOSAKA

Doshisha University, Kyoto, Japan, tomo@is.doshisha.ac.jp
Jack DONGARRA

University of Tennessee, Innovative Computing Lab.

1 Introduction

Optimization problems are to find design variables that
minimize or maximize the value of objective function
under constraints. Many problems that need decision
making can be turned into optimization problems. For
example, when structures are designed, this designing
problem becomes an optimization problem by choosing
a total volume of the structure as an objective and sizes
of the structure elements as design variables. One of
the models to solve optimization problems by computer
simulation is shown in Figure 1. In this model, there are
two modules: an optimizer and analyzer. An optimizer
determines the search point and an analyzer derives the
value of objective of its search point. Then, the op-
timizer determines the next search point again. After
many iterations, the optimum result can be derived.

In this research, the problems whose calculation cost
is huge are targeted; those are structural optimization
problems, fluid dynamic problems, layout problems, pro-
tein folding problems, and so on. While this feature ex-
ists and this system needs many iterations, it takes a
long time to perform this system. One of the solutions
is to perform this system in parallel.

Recently, the computational Grid has been the fo-
cus. In the computational Grid, there are many calcu-
lation resources in the network and users can use them
without consideration of the physical arrangement and
special certification. There are many grid computing
systems. Among them, there are Grid remote proce-
dure calls (RPCs) [1]. In the GGF workshop, the work
on standardizing and implementing the RPC mechanism
for grid computing is carried out. This is the Grid RPC.
NetSolve[2] and Ninf [3] are grid computing systems that
are based on the Grid RPC API.

The goal of this research is to present the framework
of the optimization system for general purpose in the
computational Grid using Grid RPC. In this abstract,

Optimizer

Wrapper

Genetic Algorithm

Simulated Annealing

Gradient Method

Analyzer

FEM

CFD

MDA

Data

Result

Figure 1: Optimization System

the concept and overview of the system are explained.
At the same time, the APIs for the modules that build
the system are explained.

2 Overview of Proposed System

In Figure 2, the overview of the proposed system is il-
lustrated.

(3) Input Data of FEM

(4)Result of FEM

(2) Infomation of

 FEM Server

(1) Search for FEM Server

Optimizer Analyzer
Analyzing

Agent

(2)Analyzing System using Grid RPC Framework(2)Analyzing System using Grid RPC Framework

(3) Input Data of GA

(4)Result of GA

(2) Infomation of

 GA Server

(1) Search for GA Server

Optimizing

Agent

(1)Optimization System using Grid RPC Framework(1)Optimization System using Grid RPC Framework

Client

SA

FEM

CFD

MDA

GA

SQP

Figure 2: Overview of Proposed System using Grid RPC

2.1 System Construction Phase

There are five components in this system: client, op-
timizer server, analyzer server, optimizing agent, and
analyzing agent. System developer has to be prepared
optimizers and analyzers. These modules have to be fol-
lowed the APIs that are explained later. After system
developer has prepared optimizers and analyzers, the in-
formation of the optimizer server is registered to opti-
mizing agent. The same thing is required for analyzer
server and analyzing agent.

2.2 User Performing Phase

The basic procedure of using this system can be summa-
rized as follows,

1. A user chooses the methods of optimization and
analyzation.

2. The client asks optimizing agent who has the ser-
vice of the user chosen optimization method. The
optimizing agent has the information and he replies
the server to the client. The client also asks opti-
mizing agent who has the service of the analyzing.
This question is transferred to analyzing agent who

1

has the information of the services of the analyzers.
The analyzing agent returns the server information
of the agent to the optimizing agent and the opti-
mizing agent returns the answer to the client. Be-
cause of this mechanism, users need not have the
information of the optimizer and analyzer servers.

3. The selected optimizing server starts optimization.

4. When the optimizer needs to have the values of
objective function and constraints, he asks to the
analyzer servers.

5. The analyzer server returns the values of the ob-
jective and constraints to the optimizer server.

6. The routines from 3 to 5 are performed until the
terminal condition is satisfied.

7. When the optimization has finished, the result is
returned to the client.

3 APIs for Optimization Problem Solving
System using Grid RPC

In this abstract, APIs for analyzer and optimizer are
prepared. System developer follows these APIs and users
can operate the system properly.

3.1 API for Optimizer

The API for optimizer is defined as Figure 3.

int optimize(Name_of_Optimizer,
Tag,Name_of_Analyzer,File1,File2,File3);

Figure 3: Optimizer API

Name of Optimizer indicates the method of opti-
mizing such as gradient method, GA, and so on.

Tag is chosen from the following four options.

• Analyze Init: When this tag is set, the configura-
tion file for analyzer is sent.

• Analyze Config: When this tag is set the input
output relation file of the analyzer is sent.

• Run: When this tag is set, the optimization has
started. The results are written in the output file.

• Finalize: When this tag is set, the optimizer per-
forms the terminal procedures.

Name of Analyzer indicates the method of ana-
lyzer such as FEM, CFD, and so on.

int analyze(Name_of_Analyzer,
Tag,File1,File2,File3);

Figure 4: Analyzer API

3.2 API for Analyzer

The API for analyzer is defined as Figure 4.
Name of Analyzer indicates the method of ana-

lyzer such as FEM, CFD, and so on.
Tag is chosen from the following six options.

• Initialize: When this tag is set, the configuration
file for analyzer is sent.

• Config: When this tag is set the input output re-
lation file of the analyzer is sent.

• Solve: Analyzer is performed with the specified in-
put file. Results are written in the output file.

• Result: When this tag is set, all the results are
returned.

• Finalize: When this tag is set, the analyzer per-
forms the terminal procedures from optimizer.

• All Finalize: When this tag is set, the analyzer
performs the terminal procedures for Grid RPC.

4 System Demonstration

Because of the restriction of the pages, the explanations
how to use these APIs and how to perform the system
are skipped. These explanations will be performed at
the poster session.

The proposed system is implemented using NetSolve.
Some demonstration will be also performed at the ses-
sion.

Bibliography

[1] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra,
C. Lee, and H. Casanova. Grid RPC: A Remote
Procedure Call API for Grid Computing algorithms.
In http://www.eece.unm.edu/ apm/docs
/APM GridRPC 0702.pdf.

[2] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra,
M. Miller, K. Sagi, Z. Shi, and S. Vadhiyar Users
Guide to NetSolve V1.4. Computer Science Dept.
Technical Report CS-01-467, University of Tennessee,
Knoxville, TN, 2001.

[3] H. Nakada, M. Sato, and S. Sekiguchi. Design and
Implementations of Ninf: towards a Global Com-
puting Infrastructure. Future Generation Computing
Systems, Metacomputing Issue, 15(5-6):649.58, 1999.

2

