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Abstract – Simulated annealing (SA) is an effective
general heuristic method for solving many optimization
problems. This paper deals with the two problems in SA.
One is the long computational time of the numerical an-
nealings, and the solution to it is the parallel processing
of SA. The other one is the determination of the appro-
priate neighborhood range in SA, and the solution to it is
the introduction of an adaptive mechanism for changing
the neighborhood range. The multiple SA processes are
performed in multiple processors, and the neighborhood
range in the SA processes are determined by a genetic al-
gorithms. The proposed method is applied to solve many
continuous optimization problems, and it is found that
the method is very useful and effective.

Keywords: Simulated Annealing, Genetic Algorithm,
Adaptive Neighborhood Range, Continuous Optimiza-
tion Problems.

1 Introduction
There is a strong incentive to parallelize the compu-

tation for optimization problems since it requires many
iterations of analysis. Especially, simulated annealing,
which are very effective for solving complicated opti-
mization problems with many optima, requires tremen-
dous computational power. Consequently, paralleliza-
tion of the method is very important.

It was Kirkpatrick et al. who first proposed simu-
lated annealing, SA, as a method for solving combina-
torial optimization problems[3]. It is reported that SA
is very useful for several types of combinatorial opti-
mization problems and also for continuous optimization
problems. One of the most advanced continuous opti-
mization problems solved by SA is the prediction of the
tertiary structure of Protein[5].

Some difficulty in using SA for continuous optimiza-
tion problems exists for the determinations of an appro-
priate temperature schedule and neighborhood range.
For discrete or combinatorial optimization problems,
the neighborhood structure is uniquely determined by
the generation method of a new solution from the
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current one and it is difficult to control. However,
the neighborhood structure for continuous optimization
problems is very simple, and it is easily controlled by
the neighborhood range, or the scaling parameter of the
search step.

For the control of the neighborhood range, Corana
proposed an adaptive neighborhood mechanism, where
the neighborhood range is so adjusted that the accep-
tance ratio is maintained to be 0.5 [1]. However, the
validity of the target value of 0.5 is not certain, and
Miki et al. found that the appropriate acceptance ratio
for an adaptive neighborhood is 0.1-0.2 [6].

This type of adaptive neighborhood method is very
effective and useful in SA for continuous optimization
problems, but the target acceptance ratio should be
determined experimentally. In order to reduce such
preliminary experiments, a new adaptive neighborhood
mechanism where the neighborhood range is optimally
determined by a genetic algorithm (GA) is proposed in
this paper.

2 Effect of Neighborhood Range
For continuous optimization problems, the neighbor-

hood range in SA has a significant effect on the accuracy
of the solutions. In order to find this effect, some nu-
merical experiments were carried out with various fixed
neighborhood range. The parameters of the experi-
ments are shown in Tables 1 and 2. The distribution
for generating neighbors is uniform in this experiment.
That is, a neighbor is generated by the following equa-
tion.

xnext = xcurrent + rR, (−1 ≤ r ≤ 1) (1)

where r is a random value and R means the neighbor-
hood range.

Figure 1 shows the effects of the fixed neighborhood
range on the energy of the optimum solutions for the
Rastrigin [9], Griewank [9] and the Rosenbrock func-
tions [9], which are typical ones among standard mathe-
matical test functions for continuous optimization prob-
lems. It can be seen from these results that the neigh-
borhood range has a significant effect on the perfor-
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Figure 1: Effect of neighborhood range (n-D means n dimensional)

Table 1: Parameters used (Rastrigin, Griewank)
Function Rastrigin Griewank
Max.(Initial) temperature 10.0 20.0
Min.(Final) temperature 0.01 0.001
Cooling rate 0.8 0.726
Markov length 10240 30720

Table 2: Parameters used (Rosenbrock)
Function Rosenbrock
Max.(Initial) temperature 1.0
Min.(Final) temperature 0.001
Cooling rate 0.81
Markov length 307

mance of SA. For the Rastrigin function, the appropri-
ate neighborhood range is 1.0 in 2 and 3 dimensional
variable spaces. For the Griewank function, the ap-
proproate neighborhood range is around 5.0 in 2 and
3 dimensional variable spaces. That is, the appropriate
neighborhood range depends on problems to be solved.
Furthermore, the appropriate neighborhood range also
depends on the dimension of problems. For the Rosen-
brock functions the appropriate neighborhood range is
around 0.3 in 2 dimensional variable space and around
0.08 in 3 dimensional variable space.

From these results, it is found that the neighbor-

hood range has very large effect on the accuracy of the
obtained solutions and the appropriate neighborhood
range is very difficult to find.

For continuous optimization problems, the neighbor
is generated by using a particular distributions, such as
uniform distributions, Normal distributions, and some
special distributions used in the Fast Simulated An-
nealing (FSA) [8] and the Very Fast Simulated An-
nealing (VFSA) [2]. These distributions can be divided
broadly into two categories, such as uniform and center-
weighted, as shown in Fig. 2. The center-weighted dis-
tributions can be represented by a triangle distribution.

x

Neighborhood range

P(x)

x

Neighborhood range
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Triangle distributionUniform distribution

Figure 2: Typical distribution types

The effect of the distributions for generating neigh-
bors is examined by using these two distributions. The
performance of SA with these distributions is shown in
Fig. 3, and the triangle distributions show a better per-
formance for all the test functions used. It is found that
the center-weighted distribution is better than the uni-



form distribution for generating neighbors. Therefore,
the triangle distributions are used hereafter.
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Figure 3: Effect of the distributions on the accuracy of
the converged solutions

3 Parallel Simulated Annealing

with Adaptive Neighborhood
Determined by Genetic Algo-

rithm

3.1 Concept of PSA/ANGA

We found that the appropriate neighborhood range
in SA exists for continuous optimization problems,
but such appropriate neighborhood range is problem-
dependent and it is difficult to find the appropriate
neighborhood range in advance. Therefore, we consider
an adaptive mechanism for determining an appropriate
neighborhood range for parallel SA (PSA). This method
is called the parallel simulated annealing with adap-
tive neighborhood range determined by genetic algo-
rithms (PSA/ANGA). Each neighborhood range of PSA
is determined by a conventional GA (genetic algorithm).
The schematic of the proposed method is shown in Fig.
4. It should be noted that the neighborhood range can
be evolved since multiple SA processes are performed in
parallel, and the population of the neighborhood ranges
can be constructed.

3.2 Algorithm of PSA/ANGA

Figure 5 shows the algorithm of PSA/ANGA, where
the initial neighborhood ranges are generated with ran-
dom numbers and multiple SA processes start with these
neighborhood ranges. After the prescribed annealing
steps the neighborhood ranges are evolved by using GA
operators, and new neighborhood ranges are assigned to
the multiple SA processes.

The features of the method is as follows.

1. Generation, Acceptance criterion, Transition
The generation of a new solution, the acceptance
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Figure 4: Schematic of the parallel SA with adaptive
neighborhood range
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Figure 5: Algorithm of PSA/ANGA

criterion, and the transition of the solution are the
same as conventional SA.

2. Neighborhood range is determined by GA
The synchronization of all the processes is done
with a certain period, and the neighborhood ranges
are determined by a GA based on the fitness value
calculated from the energy of the solutions.

The neighborhood ranges of the multiple SA pro-
cesses are changed by crossover, mutation, and se-
lection. That is, the neighborhood ranges that gives
good solutions survive. Thus, all the neighborhood
ranges are expected to be converged to an appro-
priate neighborhood range for a problem.



The coding of the neighborhood range is repre-
sented by the following equation.

NeighborhoodRange = MaxRange · 10X , (2)
(−3 ≤ X ≤ 0)

where X is the design variable and it is a 10-bit Grey
coded binary. Therefore, the range of neighborhood
can be very wide.

The 1-point crossover is used and the mutation is
carried out by the 1-bit flip for the 10-bit string.
The crossover rate is 0.6.

3.3 Fitness value

The fitness values for the multiple neighborhood
ranges for the selection of better neighborhood range
are the minimum energies in multiple SA processes in
the interval of the GA operations.

Fitness =
1

Energy
(3)

4 Numerical Experiments

4.1 Outline of experiments

To verify the validity and the effectiveness of the pro-
posed method, PSA/ANGA, a parallel SA with opti-
mum fixed neighborhood range, PSA/FN, a tempera-
ture parallel SA, TPSA, and the TPSA with Corana’s
adaptive neighborhood, TPSA/AN, are applied to solve
three typical continuous optimization problems.

The parameters used are shown in Tables 3 and 4.
The number of neighborhood ranges is the same as the
number of the SA processes. The maximum tempera-
ture is determined so that the acceptance rate for the
worst solutions becomes 0.5 in the preliminary experi-
ment. The minimum temperature is determined accord-
ing to the required accuracy[7].

Table 3: Parameters used for PSA/ANGA (Rastrigin,
Griewank)

Function Rastrigin Griewank
Max.(Initial) temperature 10.0 20.0
Min.(Final) temperature 0.01 0.001
Cooling rate 0.8 0.726
Markov length 102400 307200
Synchronise cycle 1600 4800
Number of processors 32 32

For the TPSA, the temperatures are determined by
the conventional method mentioned in [4], and the in-
terval for exchange solutions are the same as the tem-
perature change interval shown in Tables 3 and 4.

Table 4: Parameters used for PSA/ANGA (Rosenbrock)
Function Rosenbrock
Max.(Initial) temperature 1.0
Min.(Final) temperature 0.001
Cooling rate 0.81
Markov length 3072
Synchronise cycle 48
Number of processors 32

4.2 Parallel computer used

The parallel computer used is a PC cluster (Cambria
cluster system) with 256 processor elements shown in
Fig. 6, and 32 nodes are used for the experiments. The
detail of the computer system is shown in Table 5.

Figure 6: PC cluster used

Table 5: Detail of the PC cluster used
CPU Pentium3 800MHz(256CPU)

Memory 256MB ×256
Network FastEthernet

OS Debian GNU/Linux 2.4

4.3 Experimental results

Figure 7 shows a typical example of the histories of
the neighborhood ranges in 32 SA processes in solving
the Rastrigin function. From this figure, it is found that
the appropriate neighborhood range varies between 0.2
and 2 at the beginning, but it gradually decreases to
around 0.1, and it finally converges to 0.01. That is,
the appropriate neighborhood range varies from large
to small, while the optimum fixed neighborhood range
is 1.0.

Figure 8 shows a typical history of the neighborhood
range of the SA process that gives the best solution in
TPSA/AN. It can be seen that this type of adaptive
mechanism provides a very small neighborhood range
from the beginning, and the solution is trapped into
a local optimum. However, the TPSA alleviates this
problem since multiple SA processes with various tem-
peratures is running simultaneously and the solutions
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Figure 7: History of the neighborhood range in 32 SA
process in solving the Rastrigin function

are interchanged among those SA processes, while sin-
gle sequential SA with Corana’s adaptive neighborhood
mechanism provides a local optimum at all times[7].
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Figure 8: History of the neighborhood range of the SA
process that gives the best solution in TPSA/AN

For the Rastrigin function, the minimum neighbor-
hood range to escape a local optimum is 1.0, there-
fore the optimum fixed neighborhood range becomes
1.0. However, once the search region is within a global
optimum region, the neighborhood range should be de-
creased to obtain high accuracy. The proposed method
can realize it. Furthermore, the population of the neigh-
borhood ranges has a certain diversity as shown in Fig.
7, and the escape from a local minimum is easy.

Figure 9 shows the performance of various methods.
These plots represent the median of 30 trials. The rea-
son why the median is used is that the median is very
reliable for comparing the converged energy values. The
converged energy values sometimes vary in a wide range
and the average value is affected by one extreme value.

From this figure, neither PSA/FN nor TPSA/FN give

Methods

E
n

e
rg

y

Figure 9: Comparison of the converged energies

good performance in finding the minimum energy, while
the proposed method, PSA/ANGA, provides the best
performance of all. On the other hand, TPSA/AN pro-
vides good performance for the Rastrigin and the Rosen-
brock functions, but it does not give good performance
for the Griewank function. This is due to the enormous
local optima in the function.

Figure 10 shows the typical histories of the energies of
32 SA processes. The proposed method, PSA/ANGA,
shows fast decrease in the energy and very low minimum
value, while other methods do not. In TPSA/FN and
TPSA/AN, only the best history is effective, but, the
best history does not outperform the result obtained by
the proposed method. It can be seen that many other
SA processes except for the best process do not greatly
contribute in finding the optimum solution.

Consequently, the proposed mechanism for determin-
ing the appropriate neighborhood by GA is found very
effective, and PSA/ANGA can be considered to be a
useful parallel SA method for continuous optimization.

It should be noted that the neighborhood range adap-
tation mechanism adopted here can be realized with par-
allel SA since the criterion for selecting“ good”neigh-
borhood range can be established from the relative value
of the energies of the multiple SA processes. From this
standpoint of view, parallelization of SA will give an-
other new insight to optimization research field as well
as speedup.

5 Conclusions
A new parallel simulated annealing method with

adaptive neighborhood range mechanism is proposed
here. The conclusions are as follows.

1. It is not easy to determine an appropriate neighbor-
hood range for a continuous optimization problem
in simulated annealing (SA).

2. The effect of the neighborhood range on the perfor-
mance of SA is investigated, and the appropriate
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Figure 10: Typical history of energies of 32 SA processes

neighborhood range is problem-dependent, and it
varies during the annealing.

3. It is found that the neighborhood range of parallel
SA processes can be optimized using GA and the
above characteristics.

4. A new parallel SA with the above adaptation
mechanism is proposed, and the effectiveness and
the usefulness of the proposed method are shown
clearly for the three standard test problems. This
method is called PSA/ANGA and the method is
very easy to use since we do not have to determine
the neighborhood range, and it gives very good so-
lutions as well.
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