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Abstract – It is difficult to determine the appropri-
ate temperature parameters which control the acceptance
probability in Simulated Annealing, which is a typical
meta-heuristic method in the optimization methods. In
this paper, we propose a new simulated annealing method
that determines the maximum temperature adaptively.
The proposed method is base on an important temper-
ature where optimum solutions were sought effectively.
The proposed method determines the maximum temper-
ature by finding an upper limit of the important temper-
ature in a heating process from the lowest temperature.
Using this method, the total annealing steps can be de-
creased to half without making the accuracy of solution
worse. We apply this method to some of the Traveling
Salesman Problems and confirmed its effectiveness.
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1 Introduction
Recently, heuristic search methods such as genetic al-

gorithms (GA) and simulated annealing (SA) are be-
coming very important for solving complicated real-
world problems[14]. Among various heuristic search
methods, GA and SA are typical and widely-used op-
timization methods. However, GA and SA have differ-
ent search mechanisms and therefore their effectiveness
varies for different types of problems. The key features
in GA are the evolution of a population of solutions and
the crossover of solutions, while the key features in SA
are the neighborhood search of a current solution and
the probabilistic acceptance of a bad solution. There-
fore, GA is suitable for the problems that have partial
solutions, and SA is suitable for the problems that is
hard to solve with GA. For example, SA is very popular
for the search for the tertiary structures of protein[8].

It was Kirkpatrick et al. who first proposed simulated
annealing, SA, as a method for solving combinatorial
optimization problems[9]. It is reported that SA is very
useful for several types of combinatorial optimization
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problems. However, the most remarkable disadvantages
are that it needs a lot of time to find the optimum so-
lution and it is very difficult to determine the proper
cooling schedule[5].

For continuous optimization problems, reduced com-
putation time can be realized by using sophisticated
generating functions such as the very fast simulated re-
annealing[6, 7], but we can not use such approaches for
discrete optimization problems. For discrete optimiza-
tion, the generation of a new solution is determined by
defining the operation for changing the current solution.
Therefore, we can control only the temperature sched-
ule.

The most appropriate temperature schedule has the
following characteristics: sufficiently high maximum
temperature, sufficiently low minimum temperature,
and sufficiently slow cooling[2, 10, 11]. However, this
type of temperature schedule has one drawback, that is,
a long computation time. There are three approaches
to reduce the computation time. They are: 1) to de-
crease the maximum temperature, 2) to increase the
minimum temperature, 3) to increase the cooling rate.
Among those, the minimum temperature is generally de-
termined by the acceptance ratio during the SA process,
that is, the temperature is decreased until the system
is ’freezed’. Therefore, the first and last approaches are
promising. Klebsch et al. proposed a new method for
estimating the maximum temperature by using equilib-
rium dynamics[15], and Romeo et al. proposed an effi-
cient cooling method[4], but these methods use experi-
mental parameters and some tuning of these parameters
is necessary.

From this point of view, a new SA method with adap-
tive maximum temperature is proposed in this paper. In
conventional SA, the maximum temperature is deter-
mined based on the acceptance ratio such that it should
be more than 0.9 for all movements or it should be 0.5
for the worst movement [16]. However, this criterion
is experimental, and the maximum temperature deter-
mined by such methods can be considered to be too
high. The proposed method can yield the lowest max-
imum temperature for various combinatorial problems



without experimental parameters.

2 Important Temperature
Region

The most important characteristic of SA is the prob-
abilistic acceptance of a bad solution. The probability
of acceptance of a newly generated solution, PAC , is as
follows.

PAC =
{

1 if∆E < 0
exp

(−∆E
T

)
otherwise

(1)

This type of criterion is called the Metropolis’s
Criterion[13], and ∆E is the change in the energy, T
is the temperature.

In SA, a particular temperature region where the
search can be performed very effectively exists [1]. It
is called the important temperature region in this pa-
per. In order to find the important temperature region,
some traveling salesman problems (TSPs) are solved by
a SA with constant temperature, where the neighbor is
generated by using the 2-change method[12]. The tem-
perature range is from 1E-6 to 1E+6, and the range
is divided into 32 temperatures. The annealing steps
are 3200n, where n is the number of the cities. Fig-
ure 1 shows the solutions to a TSP (ch150 in TSPLIB
[3]) obtained by SA with constant temperatures. The
results are the averages on 30 trials. At around the
temperature of 10 the solution becomes the optimum,
and such temperature is the important temperature for
ch150 problem. Table 1 shows the important temper-
ature regions, Timp, of various TSPs, where the error
ratio is the ratio of the difference between the solution
obtained and the exact solution to the exact one. From
this table, it is found that every TSP has its own impor-
tant temperature region, and relatively good solutions
can be obtained with this constant and important tem-
perature.
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Figure 1: Effect of constant temperatures in SA

Table 1: Important temperature region

Problem Timp Error ratio

a280 1.5～5 0.85
ch130 5～20 1.06
ch150 6～18 0.51
d198 4～20 0.36
eil51 1～4.5 0
gil262 1.2～3 1.26
kroA100 30～80 0.27
pr76 130～600 0.19
pr144 75～250 0.37
u159 60～150 0.74

In SA, the maximum temperature should be suffi-
ciently high in order to escape local optima, but an
excessively high maximum temperature wastes compu-
tational time. The relation between the important tem-
perature region and the maximum temperature is inves-
tigated for some TSPs. The results are shown in Fig.
2, where the final tour distance of TSPs and the num-
ber of annealing steps are shown as the function of the
maximum temperature. Each value is the average of
30 trials. The maximum temperatures are varied from
1E+6 to 1E-6 with 32 divisions. The shaded area rep-
resents the important temperature region of each TSP.
The maximum temperature of 1E+6 is determined by
the conventional method.

It is clearly found that the maximum temperature
that is higher than the important temperature region
provides good solutions, and the maximum tempera-
ture lower than the important temperature does not.
Therefore, it can be concluded that the effective max-
imum temperature must be higher than the important
temperature region and the lowest maximum tempera-
ture should be the upper bound of the important tem-
perature region. If we can find this lowest maximum
temperature before or at the beginning of searching an
optimum, the number of annealing steps can be reduced
to roughly half. That is, the maximum temperature de-
termined by a conventional method is excessively high,
and massive computation is consumed ineffectively.

3 SA with an adaptive maximum
temperature

From the above result, the lowest maximum temper-
ature is found to be the upper bound of the important
temperature. However, each problem has its own impor-
tant temperature regions, and a lot of experiments have
to be performed to find them. Therefore, we have to
find a characteristic movement of the solutions during
the annealing. The histories of the solutions to some
typical TSPs are investigated here. The temperature
schedule is conventionally determined as follows.
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(b) ch130
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(c) ch150
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Figure 2: Relation between the accuracy of solutions, the number of annealing steps and the maximum temperature

• Maximum temperature:
The temperature where the acceptance probability
for the worst transition is 0.5.

• Minimum temperature:
The temperature where the smallest bad transition
is accepted once in the cooling interval.

• Cooling interval:
20 times the number of cities in a TSP.

• Termination condition:
160 times the cooling inteval.

• Cooling rate:
Determined by 160 divisions of the range between
the maximum and minimum temperatures, and
therefore it differs from 0.93 to 0.96 depending the
problems.

Figure 3 shows the typical history of the energy
(tour distance) during conventional annealing for a
TSP(kroA100), where the shaded area represents the
important temperature region. All other results are sim-
ilar to this result, and we cannot have no sign about the
interaction of the history and the important tempera-
ture region.

Then, we conduct an experiment on SA with reversed
temperature schedule, that is, heating, not cooling. Fig-
ure 4 shows a typical history of a solution to a TSP
problem (KroA100), where the temperature increases
from 1E-2 to 1E+3. At the beginning, the temperature
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Figure 3: A typical history of the energy in solving a
TSP(kroA100) with conventional SA

is very low and hill-climbing local search is performed,
and a local minimum is obtained. And, as the temper-
ature increases the solution remains at the local mini-
mum, but the solution escapes the local minimum and it
becomes better as the temperature enters the important
temperature region. The solution becomes worse as the
temperature increases beyond the important tempera-
ture region. Such characteristics can be seen in many
other TSPs, and it is found that we can identify the up-
per bound of the important temperature region in this
heating method.

The proposed method, which is called the Adaptive
SA for Maximum Temperature (ASA/MaxT) is based
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Figure 4: A typical history of the energy in solving a
TSP(kroA100) with a reversed temperature schedule in
SA

on this method. At first, the temperature is the lowest,
and it is increased until the preliminary maximum tem-
perature determined by a conventional method. The
histories of the energy can be classified into three types
as shown in Fig. 5, where the histories move from left
to right. At T=0, the local hill-climbing search is per-
formed and a local minimum is obtained. After that,
the temperature is increased to the maximum temper-
ature. During this process, the energy decreases below
the local minimum once (Type 1) or more than once
(Type 2), or the energy do not decrease (Type3), and
the energy increases as the temperature increases. The
actual maximum temperature is determined as the tem-
perature where the energy finally increases across the
local minimum, as shown in this figure (Types 1 and
2). When the actual maximum temperature is found,
a conventional SA is carried out with this maximum
temperature. The heating rate is 10 times as fast as
the cooling rate, and therefore, the total computation
time can be reduced considerably. If the energy history
during the heating has no decrease blow the local mini-
mum as shown as Type 3 in Fig. 5, this local minimum
is the global minimum, and the optimum solution has
been obtained already. In this case, a conventional SA is
not necessary. Some easy problems show such behavior,
and the probabilistic hill climbing provides the global
optimum.

This method is called the Adaptive Simulated An-
nealing for Maximum Temperature (ASA/MaxT), and
this method determines the effective maximum temper-
ature in SA adaptively. There is no parameter in the
method, and therefore the method can be considered to
be easy to use for many combinatorial problems.

4 Experimental results and dis-
cussions

The effectiveness of the proposed method,
ASA/MaxT, is verified with numerical experiments for
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Figure 5: Tipical history of the energy for the heating
process

typical ten TSPs. The parameters used are the same
as shown in section 3.

Table 2 shows the comparison of the accuracy of the
solutions obtained by ASA/MaxT and the conventional
SA, where the exact optimum solutions are known for all
these TSPs, and the error ratio can be defined. All the
experimental values are calculated from 30 trials. From
this table, it is found that the accuracy of the proposed
method is almost the same as a conventional SA. On
the other hand, the number of the total annealing steps
are considerably decreased with the proposed method.
Figure 6 shows the comparison of the necessary anneal-
ing steps for obtaining solutions with the accuracy being
below 1%. It should be noted that the number of the
annealing steps in ASA/MaxT includes the annealing



Table 2: Comparison of the accuracy of the solutions obtained by ASA/MaxT and a conventional SA

Error ratio (%)
Best (%) Ave. (%) Worst (%)

Problems SA ASA/MaxT SA ASA/MaxT SA ASA/MaxT

a280 0 0 0.24 0.54 1.2 2.17
ch130 0 0.08 1.06 1.26 2.47 2.39
ch150 0 0.06 0.72 0.86 2.27 2.48
d198 0.07 0.1 0.34 0.55 1.05 3.36
eil51 0 0 0.13 0.17 0.47 0.7
gil262 0.17 0.13 0.96 1.12 2.57 2.06
kroA100 0 0 0.64 1.05 1.72 5.46
pr76 0 0 0.54 0.61 1.32 1.08
pr144 0 0 0.52 0.37 1.53 1.41
u159 0 0 0.65 1 1.52 7.02
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Figure 6: Comparison of the number of the total annealing steps in ASA/MaxT and a conventional SA

steps during heating process. It can be seen from this
figure, the numbers of the required annealing steps for a
prescribed accuracy of the solutions are about the half
of those in conventional SA , and it can be recognized
that the proposed method provides doubled speedups.

5 Conclusions

In solving dicrete optimization problems with SA,
there exists the important temperature region, and the
reduction in the number of the annealing steps can be
realized when the maximum temperature is set to the
upper bound of the important temperature region. The
region can be found by a heating process from very low
temperature in SA. The proposed method, the Adaptive
SA for Maximum Temperature (ASA/MaxT), is based
on this mechanism and it provides considerable speedup
in SA.
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