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Abstract- In this paper, the local search al-
gorithm to improve the searching capability
of Parallel Simulated Annealing using Genetic
Crossover (PSA/GAc) for the energy minimiza-
tion of protein tertiary structures is proposed.
Our previous research shows that PSA/GAc
is effective for the energy minimization of the
small proteins. However, because the energy
minimization of larger proteins requires larger
number of calculations, it is essential to reduce
the amount of calculations required to reach
the global optimum. In this paper, the local
search algorithm to search α-helix efficiently is
proposed and is applied to the energy minimiza-
tion of proteins. Also, for the verification of the
algorithm, the test function which has a similar
characteristic to the energy function of proteins
that have α-helix structures is proposed. Fi-
nally, PSA/GAc with the proposed local search
is applied to the same proteins and its capa-
bility is discussed. The result indicates that as
for the target proteins of this paper, PSA/GAc
with local search has obtained the more accu-
rate solutions and additionally, total number of
evaluations required to reach the optimum can
be reduced. From the results, the possibility of
effectiveness of proposed local search algorithm
on the energy minimization of the proteins with
α-helices has been verified.

1 Introduction

The prediction of tertiary structures of proteins from
only its amino acid sequence is called the prediction
from the first principle. This problem, known as the
protein folding problem, is an important problem due
to the fact that the biological functions of proteins are
derived from its tertiary structure. Tertiary structure

of proteins is believed to correspond to the conforma-
tion with the lowest energy. Therefore as one of the
methods to predict the tertiary structure of proteins,
the optimization methods such as Simulated Annealing
(SA)[1], Genetic Algorithms (GA)[2], and Multicanon-
ical Algorithms[3] have been employed. However, the
energy function that determines the tertiary structure
is very complicated with large numbers of global and
local minima that it is difficult to predict the tertiary
structure by simple minimization algorithms. As one of
the optimization method, Parallel Simulated Annealing
using Genetic Crossover (PSA/GAc) that is the hybrid
algorithm of Parallel SA and an operator of GA is re-
ported to be effective on the energy minimization of
small proteins[4].

However, because the energy minimization of larger
proteins require larger number of calculations, finding
its global optimum require vast amount of time. There-
fore it is essential to reduce the amount of calculations
required to reach the global optimum in the energy
minimization of large proteins. It is conceivable that
if some kind of a local search algorithm can be applied
to the energy minimization of proteins, then the total
amount of calculations can be reduced. As an object
to apply the local search algorithm, in this research, we
apply an α-helix structure, which is a secondary struc-
ture of the protein tertiary structures. In this paper, we
propose the local search algorithm based on the charac-
teristic of α-helices. This local search is combined with
PSA/GAc. The effectiveness is confirmed through the
numerical examples.

2 Energy Minimization of Proteins by
PSA/GAc

Parallel Simulated Annealing using Genetic Crossover
(PSA/GAc) is the optimization method to exchange



the information of solutions among SAs running in par-
allel by the genetic crossover[5]. In case the optimum
values of some design variables are obtained by the SAs
running in parallel, the crossover operation works to
transfer the values to other individuals. Thus, the con-
vergence of the annealing is precipitated. In this algo-
rithm, the total number of SAs running in parallel is
defined as population size and each SA is defined as
individual[5].

In this article, the energy minimization of proteins is
the gas-phase simulation based on the energy parame-
ters of ECEPP/2[6, 7, 8]. The dihedral angles of back-
bone and side chains are applied as design variables.
Values of the dihedral angles are in the range of [-180◦,
180◦]. Each dihedral angle is generated and given the
accept criterion sequentially, and then the temperature
is cooled. We define this series of operations as a Monte
Carlo Sweep (MCsweep).

Our previous research shows that PSA/GAc has
higher searching capability than SSA on the en-
ergy minimization of a small protein called Met-
enkephalin[4]. However, because our simulation is
based on the energy parameters of ECEPP/2, the
amount of calculation required for an evaluation of
the energy strongly depends on the number of amino
residues that make up the protein. Thus, it is obvious
that the calculation time required for the energy min-
imization by PSA/GAc increases rapidly as the target
protein becomes larger. Therefore it is essential to de-
velop an algorithm to reduce the amount of calculations
required to reach the optimum range. So in the next
section, the algorithm, based on the characteristic of
a secondary structure of protein called α-helix, is pro-
posed to search the α-helix efficiently.

3 PSA/GAc with Local Search Algo-
rithm

In this section, we propose the local search algorithm
to reduce the total amount of calculations required to
reach the global optimum in the energy minimization
of proteins. As an object to apply the local search
algorithm, in this research, we apply α-helix structure,
which is a secondary structure of the protein tertiary
structures. In this research, we propose the local search
algorithm based on the characteristic of the α-helices.

3.1 α-helix Structure

The α-helix is the most abundant helical conforma-
tion found in the globular proteins. An amino residue
is in the α-helix configuration when the dihedral an-
gles (φ, ψ) fall in the range (−70 ± 30◦,−37 ± 30◦)[9].

The α-helix consists of plural numbers of this α-helical
residues. Since there are 3.6 residues per turn in the
α-helix[10] we consider a conformation as helical when
the length of the helical residues is greater than four.

The α-helix is maintained by hydrogen bonding be-
tween backbone peptide chain, and therefore it is a
stable structure.

Figure 1: The α-helix structure of proteins. The il-
lustration is the lowest energy conformation (Ala)10

which consists of 10 Alanynes. (Ala)10 has α-helices
in residues (2-9), that is 2.2 turns of helices.

3.2 Local Search Algorithm Based on α-helix

As stated in the previous section, α-helix is formed
when there are plural number of amino residues which
have certain value in its dihedral angles (φ, ψ). Thus,
we propose an algorithm that searches the α-helix effi-
ciently using this characteristic of α-helix. In the pro-
posed algorithm, when a part of the α-helix is found
during the search of the energy function, the α-helix is
expanded to the adjacent residues. As an effect of this
local search operation, the α-helix is hoped to form in
the early stage of the searching, and as a result the
total amount of calculations can be reduced.

In this research, the local search algorithm is intro-
duced in the energy minimization by PSA/GAc. In the
algorithm of PSA/GAc with local search, after certain
number of MCsweeps, a determination whether there
are α-helical residues in the target protein is made.
If the α-helical residues that reduce the total energy
are found, values of the dihedral angles (φ, ψ) of corre-
sponding residue are copied to the ones of the adjacent
residues. Figure 2 describes the detail of the algorithm.
The figure describes the case of PSA/GAc with three
SAs running in parallel. First, after certain number
of MCsweeps, genetic crossover is performed among
the individuals. This operation does not differ from
the crossover operation of conventional PSA/GAc. Af-
ter another certain number of MCsweeps, the local
search is performed on each SA independently. In Fig-
ure 2, optimum tertiary structure has an α-helix in
the residues (2-6). In the left hand SA, there is α-



helical residue in the fourth residue and its energy is
5.2kcal/mol. After local search is performed and the
values of the residues (φ, ψ) are copied to the adjacent
residues, its energy is reduced to 0.2 kcal/mol. If the
energy reduces like in this case, the operation of local
search is accepted. The local search is then continu-
ously performed while the energy lowers. In the case of
middle SA of the figure, there is no α-helical residues,
therefore the local search will not be performed. In the
right hand SA, the local search is performed on the fifth
residue, however, copied dihedral angles of the adjacent
residues are rejected because the energy has increased
from 3.4 kcal/mol to 9.2 kcal/mol.

Figure 2: PSA/GAc with local search. The illustra-
tion describes the case of three SAs running in parallel.
Crossover operation is performed after certain number
of annealing. After another certain number of anneal-
ing, each SA performs local search independently.

4 Simplification of the Energy Function
of Proteins

In the previous section, we proposed the local search
algorithm that works to search α-helix structures effi-
ciently. That is, by expanding the part of the α-helix
to the adjacent residues, total amount of calculations
to obtain the lowest energy conformation can be re-
duced. In this section, we propose a test function that
imitates the energy function of proteins, especially the
characteristic of α-helix structure. We adopt this test
function to verify the effectiveness of the proposed local
search algorithm. That is, because the minimization

of the actual energy function of proteins requires high
calculation cost, it is inefficient to verify the new al-
gorithm using the actual energy function. If somekind
of a test function with a similar characteristic to the
energy function of proteins and low calculation cost is
available, it can be used effectively to verify the algo-
rithm to search the energy function of proteins. In this
research, we proposed the algorithm to search for the
α-helix structures. Therefore we develop the test func-
tion that has the similar characteristic to the α-helix
structures.

4.1 Specification of the Test Function

The test function we develop here is required to have
the characteristics of the proteins, especially the α-
helix structures. To meet the requirement, the test
function must have the following specifications:

• Among the plural design variables that make up
the test function, the energy of the function de-
creases by copying the value of some design vari-
able to the adjacent variables.

• The test function should have a plural number of
local minima. The search may be trapped to the
local minima by applying the local search on the
improper design variables.

The first specification corresponds to the character-
istic of α-helix structure of proteins. Thus the proposed
local search algorithm works to lower the energy of the
test function. The second specification corresponds to
the local minima of the energy function of proteins.
When the α-helix is formed in the improper part of the
proteins by the local search algorithm, the search may
be trapped by the local minima.

4.2 Mechanism of the Test Function

The test function we develop here has the following
characteristics:

1. The function is composed of 20 design variables
and each design variable has a continuous value
between -180 and 180 which is same as the design
variables of proteins.

2. Using an evaluation function described in (1), an
evaluation value for each design variable x is cal-
culated. Sum of the evaluation values is the tem-
porary evaluation value of the test function.

3. A bit pattern is generated according to the values
of the design variables. For each design variable
xI , 0 is given when the value is in the range of



(−180◦ ≤ xI < −60◦) or (60◦ < xI ≤ 180◦)
and 1 is given when the value is in the range of
(−60◦ ≤ xI ≤ 60◦).

4. By referring a database of the bit patterns, a
bonus point for the bit pattern generated in 3
is determined.

5. The sum of the temporary evaluation value cal-
culated in (2) and the bonus point determined in
(4) is the evaluation value of the proposed test
function.

An outline of the test function is illustrated in Figure
3.

F (x) =





− 1
120

x− 3
2

if − 180 ≤ x < −60

− 1
15
x− 5 if − 60 ≤ x < 0

1
15
x− 5 if 0 < x ≤ 60

1
120

x− 3
2

otherwise

(1)
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Figure 3: The evaluation of the test function. Database
of bit patterns and the bonus points has to be prepared
beforehand. The evaluation value of the test function
is calculated from the evaluation values of the design
variables and the bonus point.

In the tertiary structure of proteins, the α-helix
structure is formed when the values of the dihedral an-
gles (φ, ψ) fall in the range (−70 ± 30◦,−37 ± 30◦)[9].
To give the test function this characteristic, a bit pat-
tern is generated according to the value of the design
variable xI . The I th element of the bit pattern is set
to 1 when the value of the design variable xI is in the
range of (−60◦ ≤ xI ≤ 60◦) and set to 0 otherwise. In
the generated bit pattern, elements with 1 coresspond
to the α-helix structure of protein and elements with 0
correspond to other structures.

For each design variable, the evaluation value is cal-
culated using the evaluation function. The evaluation
function is designed to return high evaluation value
when the value of xI is in the range of (−60◦ ≤ xI ≤
60◦). Therefore, the design variables with 1 as the bit
pattern have the high evaluation values. For each of
the 20 design variables, the evaluation values is cal-
culated and sum of these values become a temporary
evaluation value of the test function.

In the test function, a database of the bit patterns
has to be prepared beforehand. The bit patterns regis-
tered in the database each possess a bonus point. The
bit pattern generated according to the values of the
desing variables is then checked with the bit patterns
registered in the database. Then the database returns
the corresponding bonus point when the matching bit
pattern was found in the database. Sum of the tempo-
rary evaluation value and the bonus point is the evalu-
ation value of this test function. By registering a num-
ber of bit patterns in the database, one optimum and
a number of local minima can be created.

In the algorithm of local search for the test func-
tion, after certain number of MCsweeps, a determi-
nation whether there are design variables xI with the
value of (−60◦ ≤ xI ≤ 60◦) is made. If found, val-
ues of the corresponding design variables are copied to
the ones of the adjacent design variables. If the func-
tion value lowers by the local search, the copied design
variables will be accepted. By this operation, values of
the design variables with 1 as the bit pattern will be
copied to the adjacent design variables. Since the de-
sign variables with one as the bit pattern have higher
evaluation value, it is conceivable that the local search
works to lower the value of the test function. However,
because the number of bit patterns are registered in
the database as local minima, there is a possibility of
being trapped in the local minima by accepting the lo-
cal search operation performed on the improper design
variables.

4.3 Experiment

Here, we apply PSA/GAc with local search on the pro-
posed test function. The purpose of the experiment
here is to compare the searching capability of conven-
tional PSA/GAc and PSA/GAc with local search al-
gorithm.

Parameters of the experiment are shown in Table 1.
The result of the experiment is shown in Figure 4.

The figure shows the average of 5 runs of both
PSA/GAcs. From the figure, it is obvious that the lo-
cal search algorithm is working properly. That is, the
figure of PSA/GAc with local search indicates that the



Table 1: Parameters of PSA/GAc on the test function
Parameter Value
Initial Temperature 2.0
Last Temperature 0.1
Number of MCsweeps 10,000
Crossover Interval 30 MCsweeps
Local Search Interval 20 MCsweeps
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Figure 4: Energy transition of PSA/GAc with local
search compared with the conventional PSA/GAc ap-
plied on the test function.

function value decreases rapidly in every local search
interval. This is because every time the local search is
performed, design variables with the high evaluation
values are copied to their adjacent design variables.
Although both PSA/GAcs have reached the optimum
range (in this test function, -200) in about the same
number of MCsweeps, the local search algorithm was
confirmed to work properly to lower the energy of the
test function that has the characteristic of the α-helix
structures.

From the experiment using the proposed test func-
tion, PSA/GAc with local search was revealed to have
a possibility of showing faster convergence to the opti-
mum range than the conventional PSA/GAc. So in the
next section, PSA/GAc with local search is applied to
the energy minimization of proteins and its searching
capability is compared to the conventional PSA/GAc.

5 Energy Minimization of Proteins by
PSA/GAc with Local Search

Here, we apply PSA/GAc with local search on the en-
ergy minimization of proteins. The target proteins are
(Val)10, C-peptide, and PTH(1-34). Parameters of the
experiment are shown in Table 2. In Table 2, initial
temperature and last temperature are the same val-

ues as the Reference[11]. We used the parameters of
Okamoto’s to compare the performance of PSA/GAc
with the Okamoto’s results. For PSA/GAc, we set the
interval of each genetic crossover to 32 MCsweep.

Table 2: Parameters of PSA/GAc
Parameter Value
Initial Temperature 2.0
Last Temperature 0.1
Crossover Interval 32 MCsweeps
Local Search Interval 50 MCsweeps

5.1 Target Proteins

The target proteins of this paper are (Val)10,
C-peptide, and Parathyroid Hormone Fragment(1-
34)(PTH(1-34)). The local search algorithm proposed
in this research is based on the characteristic of the
secondary structure called α-helix. In order to ex-
amine the performance of the algorithm, the target
proteins must contain the α-helices. Therefore in
this research, we adopt the stated proteins, which
are known to have the α-helices in its lowest energy
conformation[12, 10, 13] as target proteins. Number
of amino residues, dihedral angles, and atoms of each
protein are described in Table 3.

Table 3: Target proteins
# amino # dihedral # atoms
residues angles

(Val)10 10 50 163
C-peptide 13 64 218
PTH(1-34) 34 178 582

Thus, 50 Metropolis criterions are performed in one
MCsweep in the case of (Val)10, 64 in the case of C-
peptide, and 178 in the case of PTH(1-34).

Okamoto’s experiments, using the energy function
that adopts ECEPP/2 energy parameters, shows that
(Val)10 has the lowest energy conformation when eight
residues (2-9) form an α-helix. The energy of this low-
est energy conformation was -0.8 kcal/mol[9].

Likewise, C-peptide has the lowest energy conforma-
tion when eight residues (4-11) form an α-helix and its
energy was -42 kcal/mol[10]. Also, the lowest energy
conformation of C-peptide obtained in this experiment
corresponds to the structure deduced from the X-ray
crystallography experiment[3].

It is known by the NMR experiment that PTH(1-34)
has two α-helices[14]. The lowest energy conformation



of PTH(1-34) deduced from Okamoto’s experiment also
had two α-helices and its energy is -210.0 kcal/mol[13].

From the above statements, we define the optimum
energy range of (Val)10 as < −0.8kcal/mol, C-peptide
as < −42kcal/mol, and PTH(1-34) as −210kcal/mol.

5.2 Results

Figure 5, Figure 6, and Figure 7 show the results of the
energy minimization of (Val)10, C-peptide, and PTH(1-
34) by PSA/GAc with local search. We made 30 runs of
PSA/GAc with local search on each protein. Each line
of the figures indicate the Best, Worst, and Average of
the energy transition. For comparison, along with the
results of PSA/GAc with local search, average energy
transition of conventional PSA/GAc is also indicated
in the figures.

Figure 5: Energy transition of PSA/GAc with local
search applied on the energy minimization of (Val)10.

Figure 6: Energy transition of PSA/GAc with lo-
cal search applied on the energy minimization of C-
peptide.

Figure 7: Energy transition of PSA/GAc with local
search applied on the energy minimization of PTH(1-
34).

5.3 Discussion of the Results

In this section, two discussions are made from the re-
sults of the experiment. First discussion is about the
accuracy of the solution. Figure 5, Figure 6, and Figure
7 indicate that in either proteins, PSA/GAc with local
search has obtained lower energies than conventional
PSA/GAc. Comparing the Averages of the figure, in
(Val)10 of Figure 5, energy of PSA/GAc with local
search at the end of the run differs from the energy of
conventional PSA/GAc in approximately 2 kcal/mol.
Likewise, C-peptide of Figure 6 differs in approximately
15 kcal/mol and PTH(1-34) of Figure 7 differs in ap-
proximately 63 kcal/mol. From these results, in either
protein, the proposed algorithm is working effectively
to reduce the energies. This result is due to the char-
acteristic of α-helices stated in Section 3.1. That is,
because α-helix is a stable secondary structure, longer
α-helix derives more stable structure with lower en-
ergy. The proposed local search algorithm is based on
this characteristic of α-helix and is the algorithm to
accelerate the development of the α-helices. Therefore
with the proposed algorithm, longer α-helix has formed
in the structure than the conventional PSA/GAc, and
as the result lower energies were obtained.

Second discussion is about the amount of calcula-
tion required to reach the optimum energy range. The
result is obvious from Figure 5, Figure 6, and Figure
7. That is, in either proteins the required MCsweeps
to reach the optimum energy range by PSA/GAc with
local search are less than the conventional PSA/GAc.
From the result of (Val)10 in Figure 5, the optimum en-
ergy range is reached approximately 11,000 MCsweeps
faster than the conventional PSA/GAc. The result of
C-peptide in Figure 6 indicates that the conventional
PSA/GAc has not reached the optimum range. On the



other hand, PSA/GAc with local search has reached
the optimum range in approximately 1,500 MCsweeps.
Likewise, the result of PTH(1-34) in Figure 7 indicates
that PSA/GAc with local search has reached the opti-
mum range approximately 1,500 MCsweeps faster than
the conventional PSA/GAc.

We also discuss the total number of evaluation re-
quired to reach the optimum range in each protein. In
PSA/GAc, as stated in Section 5.1, number of evalua-
tions in 1 MCsweep is equal to the number of dihedral
angles. Therefore the total number of evaluations in
PSA/GAc can be described as :

# DihedralAngles × Total # MCsweeps+ α (2)

Here, α is the number of evaluations required for the
genetic crossover and can be described as :

# of individuals× # of MCsweeps

Crossover interval
(3)

For example, when minimizing the energy of PTH(1-
34) with 16 individuals × 6,000 MCsweeps and
crossover interval of 32, the number of evaluations re-
quired for the genetic crossover is 16 × (6, 000/32) =
3, 000. On the other hand number of evaluations for
the MCsweeps is 178 × 6, 000 = 1, 068, 000. Figure 8
describes the ratio of total number of evaluation re-
quired to reach the optimum range by PSA/GAc with
local search when the total number of evaluation re-
quired by the conventional PSA/GAc is described as
1. However, since the conventional PSA/GAc did not
reach the optimum range of C-peptide, as for C-peptide
the total number of evaluation required until the end
of the run is described as 1. The number of evaluations
required in the local search can be described as :

# of MCsweeps

LS interval
× #of evaluation in 1 LS (4)

LS : Local search

The number of evaluations required in a single
local search is not fixed, however depends on the
number of dihedral angles. So we set this value to
[# of dihedral angles]/2. That is using the exam-
ple stated above, number of evaluations required in a
single local search is (6000/50)× (178/2) = 10, 680.

Figure 8 indicates that the total number of evalu-
ations required in PSA/GAc with local search is less
than the conventional PSA/GAc. As for PTH(1-34)
required number of evaluations is approximately half,
and as for C-peptide required number of evaluations is
approximately 1/3. From the results, the local search
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Figure 8: The ratios of the numbers of evaluations re-
quired to reach the optimum. For each protein, num-
bers of evaluations required to reach the optimum by
the conventional PSA/GAc is described as 1.

is working effectively to reduce the number of evalua-
tions required in the energy minimization of the tar-
get proteins. This denotes that by applying the lo-
cal search to the energy minimization of proteins, the
α-helix is formed in the early stage of the run, and
as a result faster convergence than the conventional
PSA/GAc was achieved. Also, as for the target pro-
teins of this research, every run have reached the opti-
mum energy range without trapped to the local minima
of the energy function.

From the above discussions, PSA/GAc with local
search based on the characteristic of α-helix is effective
on the energy minimization of proteins.

6 Conclusion

In this paper, the local search algorithm based on the
characteristic of α-helix, which is a secondary struc-
ture of proteins, is proposed and is introduced to
Parallel Simulated Annealing using Genetic Crossover
(PSA/GAc). In the proposed algorithm, when a part
of the α-helix is found during the search of the energy
function, α-helix is expanded to the adjacent residues.

Before applying the proposed algorithm to the en-
ergy minimization of proteins, the test function with
the characteristic of the energy function of proteins was
proposed for an efficient verification of the algorithm.
The proposed test function has two characteristics of
the energy function of proteins: the characteristic of
α-helices and a number of local minima. By apply-
ing PSA/GAc with local search to the proposed test
function, the effect of the local search algorithm was
confirmed.

Then, PSA/GAc with the proposed local search
was applied to the energy minimization of (Val)10, C-
peptide, and PTH(1-34). From the comparison of the
results of PSA/GAc with local search and the conven-



tional PSA/GAc, two effects of the local search were
confirmed. One is the accuracy of the solution. That
is, in either protein PSA/GAc with local search has ob-
tained lower energies than the conventional PSA/GAc.
Second effect is about the total number of evaluations
required to reach the optimum energy range. That is,
PSA/GAc with local search has reached the optimum
range in less number of evaluations than the conven-
tional PSA/GAc.

From the results, the possibility of the effectiveness
of the proposed local search algorithm on the energy
minimization of the proteins with α-helices has been
verified.
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