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Abstract- Simulated annealing (SA) is an effec-
tive general heuristic method for solving many
combinatorial optimization problems. This pa-
per deals with two problems in SA. One is the
long computational time of the numerical an-
nealings, and the solution to it is the parallel
processing of SA. The other one is the determi-
nation of the appropriate temperature schedule
in SA, and the solution to it is the introduc-
tion of an adaptive mechanism for changing the
temperature. The multiple SA processes are
performed in multiple processors, and the tem-
peratures in the SA processes are determined
by a genetic algorithms. The proposed method
is applied to solve many TSPs (Traveling Sales-
man Problems) and JSPs (Jobshop Scheduling
Problems), and it is found that the method is
very useful and effective.
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1 Introduction

There is a strong incentive to parallelize the compu-
tation for solving optimization problems since it re-
quires many iterations of analysis. Especially, sim-
ulated annealing, which are very effective for solv-
ing complicated optimization problems with many op-
tima, requires tremendous computational power. Con-
sequently, parallelization of the method is very impor-
tant.

It was Kirkpatrick et al. who first proposed sim-
ulated annealing, SA, as a method for solving combi-
natorial optimization problems[1]. It is reported that
SA is very useful for several types of combinatorial op-
timization problems. However, the most remarkable
disadvantages are that it needs a lot of time to find the
optimum solution and it is very difficult to determine

the proper cooling schedule.
Because of the progress of parallel computers, there

are several studies on SA using parallel computers[2, 3].
Among these studies, the temperature parallel simu-
lated annealing (TPSA), which was called the time-
homogenous parallel annealing[4] before, is one of the
algorithms that can overcome the cooling schedule
problem, and that can reduce the computation time
also.

However, the higher temperatures assigned to some
of the processors of a parallel computer can be consid-
ered to be too high as the annealing proceeds since the
annealing at the higher temperature does not yield the
convergence of solutions. Therefore, the effectiveness
of multiple processors is somewhat reduced in TPSA.

In order to overcome this problem, we propose a new
method for determining the temperature adaptively as
the multiple annealings proceed. The temperatures as-
signed to all the processors of a parallel computer are
determined by a genetic algorithm(GA)[5]. The tem-
peratures are dynamically changed to appropriate val-
ues during the annealing process.

2 Important Temperature Region for
TSP

2.1 Important Temperature Region

There is an important temperature region in a temper-
ature schedule of SA, where the search is carried out
very efficiently. Harry[6] found that a specific constant
temperature in SA yields good solutions for TSPs, and
Mark[7] obtained the similar results for quadratic as-
signment problems.

Such specific constant temperatures are called the
important temperature regions in SA in this paper,
and our proposed method is based on the important
temperature region.



2.2 Traveling Salesman Problems

The traveling salesman problem (TSP) used in this pa-
per is a problem for finding the minimum distance of
a tour of visiting all the finite number of cities and
returning to the starting point. The tour distance is
expressed as follows[8]:

N−1∑

i=1

d(vπ(i), vπ(i + 1)) + d(vπ(N), vπ(1)) (1)

where v(i) is the i-th point (city) in a tour π ,
d(v(i), v(j)) is the distance between two points, and
d(v(i), v(j)) = d(v(j), v(i)).

The neighborhood structure used in this paper is
the 2-change neighborhood[8], which is the most fun-
damental one for TSPs.

2.3 Confirmation of the Existence of the Impor-
tant Temperature Region

The important temperature region for each TSP is
found by performing many SAs with various constant
temperatures and comparing the qualities of the solu-
tions obtained.

The 32 temperatures used are determined by the
following procedure, which is commonly used for de-
termining temperatures in TPSA[8].

1) Determine the maximum temperature, where the
worst transition is accepted with the probability
of 50%. The worst transition is determined by
some preliminary experiments.

2) Determine the minimum temperature, where a
bad transition is accepted only once for a pre-
scribed annealing steps (20 times the number of
cities).

3) Divide geometrically the range between the max-
imum and minimum temperatures into 32 tem-
peratures.

In order to find the important temperature region,
typical six TSPs (Traveling Salesman Problems) from
TSPLIB[9] were solved by SA with various constant
temperatures.

The one of the experimental results is shown in
Fig.1, where the tour distances of kroA200, which is
one of the TSPs used, are shown as a function of con-
stant annealing temperature. The values shown are the
average of 20 trials. The number of annealing steps are
200N , 800N , and 3200N , where N is the number of
cities.

Figure 1: Result of SA with constant temperature for
kroA200

From Fig.1, nearly optimum solutions are found be-
tween 25 to 50, and this region can be considered as the
important temperature region for the kroA200 prob-
lem. Similar results are obtained for the other TSPs,
and the detail of the experimental results are summa-
rized in Table 1, where Toptregion means the important
temperature region, and Optimum means the obtained
tour distance averaged over 20 trials.

Table 1: Important temperatures for several TSPs

TSP Optimum Topt region

eil101 629 1.1∼2.5

kroA200 29368 26.8∼52.7

lin318 42029 19.5∼39.0

pr439 107217 44.3∼72.3

rat575 6773 1.7∼3.9

d657 48912 13.5∼26.8

2.4 Characteristics of the Transition of the So-
lution

The transitions of the solution in the important tem-
perature region in SA is investigated in order to find
the mechanism for providing good solutions. The his-
tories of the transitions of the solution for eil101 are
shown in Fig.2, where the three histories of the tour
distance for three temperatures are shown as a func-
tion of the annealing steps. One temperature is the
important one, one is the maximum temperature, and
the other is the minimum temperature.

It can be found that the annealing at the maxi-
mum temperature shows a medium fluctuation, and
the solution is far from the optimum solution. On the



Figure 2: Transitions of solutions at different temper-
atures (eil101)

other hand, the annealing at the minimum tempera-
ture shows relatively good solution, but the fluctua-
tions are very little. Therefore, the possibility of find-
ing the global optimum solution is very low. Compared
with these results, the annealing at the important tem-
perature shows a large fluctuation and the shortest dis-
tance. Therefore, even the annealing at constant im-
portant temperature can provide a very near optimum
solution.

The characteristics of the transition of the solution
at the important temperature are as follows:

1) Relatively medium fluctuations

2) Relatively good solution

Using these characteristics, a new method for deter-
mining the important temperature can be constructed
and a new adaptive SA can be devised based on the
important temperature.

3 Parallel SA with Adaptive Tempera-
ture

3.1 Concept of PSA/AT(GA)

We found the important temperature region in SA,
but such temperature range is problem-dependent and
it is difficult to find during the search. Therefore,
we consider an adaptive mechanism for determining
the important temperature for parallel SA (PSA).
This method is called the parallel simulated anneal-
ing with adaptive temperature determined by GA
(PSA/AT(GA)). Each temperature of PSA is deter-
mined by a GA (genetic algorithm). The schematic of
the proposed method is shown in Fig.3. It should be
noted that the temperature can be evolved since mul-
tiple SAs are performed in parallel, and the population
of the temperatures can be constructed.

Figure 3: Schematic of PSA/AT(GA)

3.2 Algorithm of PSA/AT(GA)

Fig.4 shows the algorithm of PSA/AT(GA), where the
initial temperatures are generated with random num-
bers and multiple SAs starts with these temperatures.
After the prescribed annealing steps the temperatures
are evolved by using GA operators, and new tempera-
tures are assigned to the multiple SAs, where the an-
nealings are continued.

Figure 4: Algorithm of PSA/AT(GA)

The features of the method is as follows.

1) Generation, Acceptance, Transition



The generation of a new solution, the acceptance
criterion, and the transition of the solution are
the same as conventional SAs.

2) Temperature is determined by GA

The synchronization of all the processes is done
with a certain period, and the temperatures are
determined by a GA based on the fitness value
calculated from the energy history of the solu-
tions.

The temperatures of the multiple SA processes
are changed by crossover, mutation, and selec-
tion. That is, the temperature that gives good
solutions survives. Thus, all the temperatures
are expected to be converged to the important
temperature region.

3.3 Fitness value

The fitness value for the selection of better temper-
atures are defined based on the characteristics men-
tioned in section 2.4, as follows.

Fitness =
L∑

k=1

(E − Ek) (2)

where Ek is the energy at k-th annealing steps in an
interval, and E is the average value of all energies, and
L is the tempreature change interval. That is, the fit-
ness is the summation of the differential energy values
lowered below the averaged energies of all SA processes
performed in parallel. With this fitness value, the tem-
perature with the characteristics of the transitions at
the important temperature can be selected as a good
temperature.

3.4 Coding of temperature

The temperature in SA is a very important parameter
and the performance of a SA is heavily dependent on
an appropriate temperature schedule[10]. In practice,
the exponential cooling schedule is widely used. There-
fore, the temperature in PSA/AT(GA) is expressed by
Eq.(3).

Temperature = 10X (3)

where X is a binary coded number. Therefore, the
range of temperature can be very wide. The crossover
used is the one-point crossover.

For a continuous desing variable, the real-valued en-
coding is often used, but the appropriate design of the
crossover and mutation is not easy in such case. There-
fore, we adopt the simple binary encoding.

4 Numerical Experiments

4.1 Outline of experiments

To verify the validity and the effectiveness of the pro-
posed method, PSA/AT(GA) and TPSA are applied
to solve six TSPs.

The parameters used are shown in Table 2. The
number of temperatures, which is the same as the num-
ber of SA processes, and the total anealing steps are the
same as in Ref.[8]. The maximum and minimum tem-
peratures are determined so as to include the important
temperature region in this range surely.

Table 2: Parameters used for PSA/AT(GA)
Num of SA processes 32
Temperature change interval 5N
Total steps 5N×160
bit length 10
Selection method Roulette
Crossover rate 0.3
Mutation rate 0.01
N : number of cities

For the TPSA, the temperatures are determined by
the conventional method mentioned in section 2.3, and
the interval for exchange solutions are the same as the
temperature change interval shown in Table 2.

4.2 Parallel computer used

The parallel computer used is a PC cluster (Cambria
cluster system) with 256 processor elements, and 32
nodes are used for the experiments. The detail of the
computer system is shown in Table 3.

Table 3: Detail of the PC cluster used

CPU Pentium3 800MHz(256CPU)
Memory 256MB×256
Network FastEthernet
OS Debian GNU/Linux 2.4
Communication mpich

4.3 Experimental results

The typical histories of the tour distance for
PSA/AT(GA) and TPSA are shown in Fig.5, where
the values are the average of 20 trials. Compared with
PSA/AT(GA) and TPSA, TPSA shows a good con-
vergence at the beginning, but PSA/AT(GA) shows a
better performance at the later stage. The same results



are obtained for the other problems. Therefore, it can
be concluded that PSA/AT(GA) has a better perfor-
mance in searching the global optimum than TPSA.

Figure 5: Energy histories for PSA/AT(GA) and TPSA

The typical histories of the temperature in
PSA/AT(GA) are shown in Fig.6, where all the 32 tem-
peratures of the 32 annealing processes are shown. The
initial temperatures are determined randomly so that
they spread over the very large range of temperature,
but they converge quickly to a certain value, and fluc-
tuate around it. This fluctuation is generated by the
crossover and mutation in the GA operation, and the
converged temperature is the important temperature
for each problem.

From this result, all the temperatures in
PSA/AT(GA) are converged to a narrow range,
and this range corresponds to the important tempera-
ture region shown in Table 1. On the other hand, the
temperatures vary in a complicated manner in TPSA,
and there is no indication that the temperatures are
gathered in the important temperature region. The
reason PSA/AT(GA) shows high performance for
searching optimum solution is that the temperatures
in PSA are determined adaptively so that they are
included in the important temperature region for a
given problem.

Figure 6: Temperature schedules of PSA/AT(GA) and
TPSA for eil101

The best histories of the temperatures in one an-
nealing process that yields the best solution among 32
annealing processes run in parallel are shown in Fig.7,
and the difference in the history of the temperature
between PSA/AT(GA) and TPSA can be clearly seen.
In TPSA relatively low temperatures tend to yield the
best solutions, and the contribution of the annealing
processes with higher temperatures is found to be lit-
tle.

Figure 7: An example of the best temperature schedule
for eil101

The comparison of the search performance for



PSA/AT(GA) and TPSA is shown in Fig.8, where the
error ratio is the ratio of difference between the ex-
act distance and the obtained distance divided by the
exact distance. From this figure, it is concluded that
the proposed method shows very high performance in
finding the optimum. Consequently, PSA/AT(GA) is
found to be very effective and useful method.

Figure 8: Comparisons of error ratios in TSP

Table 4 shows the comparison of the calculation time
for PSA/AT(GA), TPSA and Sequential SA(SSA) with
3 problems. The speedup for PSA/AT(GA) and TPSA
is also shown in the parenthesis based on the time for
SSA.

Table 4: Comparison of PSA/AT(GA),TPSA and SSA
in the execution time

the execution time[sec] (Speedup)
Problems PSA/AT(GA) TPSA SSA
eil101 21.8( 9.3) 10.1(20.0) 202(1.0)
kroA200 54.9(19.0) 41.5(25.1) 1043(1.0)
lin318 89.8(22.5) 76.0(26.6) 2025(1.0)

It is found that the calculation time for
PSA/AT(GA) is a little longer than TPSA, but
the speedup for PSA/AT(GA) and TPSA increases
as the problem size becomes longer. Therefore, the
proposed method shows high parallel efficiency.

5 Application of PSA/AT(GA) to JSPs

The proposed method is applied to solve JSPs (Job-
shop Scheduling Problems). The generation of the
next solution is done by the critical block (CB)
neighborhood[11], and the feasible solution is obtained
by modifying the solution with the GT method[12].
The numerical experiments are carried out with six typ-
ical JSPs.

At first, the important temperature region is ob-
tained by the similar experiments mentioned at section
2.3, and the result is shown in Table 5. Thus, the im-
portant temperature region is recognized, and it has
not been conducted so far.

Table 5: Important temperature region for typical JSPs
JSP Optimum Topt region

FT10 930 5.8∼14.2

FT20 1165 3.1∼9.7

ORB1 1059 7.5∼14.2

ORB3 1005 7.5∼16.0

LA21 1046 3.5∼12.5

LA40 1222 2.7∼12.5

PSA/AT(GA) and TPSA are applied to solve these
six JSPs, and the search performances are compared.
The parameters used in the experiments are shown in
Table 6, and the maximum and the minimum tempera-
tures are determined similarly as mentioned in section
2.3.

Table 6: Parameters used for PSA/AT(GA)
Num of SA processes 32
Temperature change interval 256
Total steps 320000
bit length 10
Selection method Tournament
Tournament size 2
Crossover rate 0.1
Mutation rate 0.01

Examples of the best temperature schedules which
yield the best solutions in PSA/AT(GA) and TPSA
are shown in Fig.9, and the similar result is obtained
as Fig.7. It can be recognized that the converged tem-
perature in PSA/AT(GA) is the same as the important
temperature region shown in Table 5, and the proposed
adaptive mechanism works very well in JSPs.

The comparison of the search performance is shown
in Fig.10, and it can be found that the PSA/AT(GA)
has very high searching ability.

Consequently, the proposed mechanism for deter-
mining the appropriate temperatures by GA is found to
be very effective, and PSA/AT(GA) can be considered
to be a useful parallel SA method.

It should be noted that the temperature adaptation
mechanism adopted here can be realized with parallel
SA since the criterion for selecting ”good” tempera-
tures can be established from the relative value and
the relative fluctuation of the energies of the multiple



Figure 9: An example of the best temperature schedule
for FT10

Figure 10: Comparisons of error ratios in JSP

SA processes. From this standpoint of view, paralleliza-
tion of SA will give another new insight to optimization
research field as well as speedup.

6 Conclusion

A new parallel simulated annealing method with adap-
tive temperature mechanism is proposed here. The
conclusions are as follows.

1) It is not easy to determine an appropriate tem-
perature schedule for a discrete optimization
problem in simulated annealing (SA), but the SA
with a specific constant temperature, which is
called the important temperature here, can yield
very good solutions.

2) The behavior of the transitions of solutions is in-
vestigated, and the characteristics of the behavior
is found for the solutions at the important tem-
peratures.

3) It is found that the temperatures of parallel SA
processes can be optimized using GA and the
above characteristics.

4) A new parallel SA with the above temperature
adaptation mechanism is proposed, and the ef-
fectiveness and the usefulness of the proposed
method are shown clearly for the Traveling Sales-
man Problems and the Jobshop Scheduling Prob-
lems. This method is called PSA/AT(GA) and
the method is very easy to use since we do not
have to determine the temperature schedule, and
it gives very good solutions as well.
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