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Abstract

In this study, the protein tertiary structure prediction sys-
tems on the Grid are proposed for progress of the bioinfor-
matics. The prediction is mainly performed by the protein
energy minimization. However, this method has many iter-
ated calculation of the protein energy in most cases. To use
the Grid as the large-scale computing environment would
be valuable for this system. In the system, Parallel Simu-
lated Annealing using Genetic Crossover (PSA/GAc) is a
minimization engine and NetSolve is a basic tool to use the
Grid. In this study, two types of implementations are pre-
pared. The first naive implementation of the system has a
critical overhead due to large communication delay over
the Internet. The second system, asynchronous Crossover
model, improves the performance in the second implemen-
tation. The details of the system and the experimental re-
sults solving C-peptide are shown as an example of Grid
application.

1. Introduction

The protein is a natural substance and an essential part
in the organic phenomenon. Since the biological function
of the protein is specified by the 3-D structure, the protein
folding problem, how it folds into this structure, is one of
the great challenges in science today. The design of new
medicine, creating an artificial protein and analysis of ge-
netic disease are achieved from the resolution of that prob-

lem. The natural conformation of the protein in real world
is corresponded to free-energy minimal state and it is pre-
dictable by computational search with optimization algo-
rithm. In this study, Parallel Simulated Annealing using
Genetic Crossover (PSA/GAc)[6] is applied to the energy
minimization. PSA/GAc is a combined model with Sim-
ulated Annealing (SA)[7] and Genetic Algorithm (GA)[5].
In this algorithm, plural processes of SA are running sepa-
rately. GA’s crossover is performed in exchange of the tran-
sient solution that has been found by each SA. In the previ-
ous study[6], PSA/GAc has applied for minimizing the en-
ergy of protein structures on distributed memory computes
like PC Clusters. The implementation models of PSA/GAc
were discussed. Then, it was found that the master-slave
model can keep high parallel efficiency and search capabil-
ity. However, it was also found that huge computing power
to search in the large conformation space is necessary for
the energy minimization of the protein that has more than
several hundreds of amino acids. Therefore, huge computa-
tional resources are necessary for minimizing protein struc-
tures. On of the solutions for preparing these resources is
the Grid technology. Those resources could be provided
from several computer centers and shared with many scien-
tific application users.

In this study, PSA/GAc systems that are work on the
Grid are proposed. In the proposed system, the Grid is a
basic infrastructure to execute PSA/GAc and the NetSolve
is a tool to build it. The SA calculation service is prepared
as NetSolve server on remotes and registered to NetSolve
agent. NetSolve client can get service information by query



to the agent. GAs crossover is implemented as a part of the
client and it works after the client receives the results of SA
calculation on remote servers. In this study, two types of im-
plementation models of PSA/GAc using NetSolve are pre-
pared. In the nave master-slave model, the crossover opera-
tion is performed after all the processes of SA are returned
to the client. However, to submit a SA execution from the
client is a RPC request. The client must invoke the RPC
many times in the Master-slave model. The RPC has some
overhead and it would be very large over the Internet. In the
asynchronous master-slave model, the crossover operation
is performed just after two processes of SA are returned to
the client. In this model, it is expected that the overhead of
Grid RPC is small. By applying these systems to minimize
the energy of C-peptide, the network overheads of systems
and search capability are compared between these two mod-
els.

2. Application Development on The Grid

2.1. The Grid

The Grid is a terminology from the Power Grid and it is
distinguished as future computing infrastructure that is flex-
ible, secure, coordinated resource sharing among dynamic
collections of individuals, institutions, and resources[3]. It
enables the Grid users to access huge sharable resources
and useful public information from anywhere at anytime.
To build the Grid computing environment, the middleware
is highly needed to establish secure and efficient system
examined about fault tolerance, authentication, authoriza-
tion, scheduling, resource monitoring, and several commu-
nication methods. Globus Toolkit[2], Ninf[10], NetSolve[1]
and Condor[8], which are middlewares to solve some of the
above issues. Most application programmers can develop
their own application easily with those middleware without
particular knowledge for the Grid.

2.2. GridRPC Programming Framework

The GridRPC is one of the programming models that
have a Remote Procedure Call (RPC) mechanism tailored
for the Grid[14]. It provides a simple API to invoke RPC
for coarse-grained parallel tasking. The Ninf and the Net-
Solve mainly support this GridRPC API and their devel-
oper’s teams contributed their experiments and results to
the Advanced Programming Model Research Group of the
Global Grid Forum[4].

2.3. The NetSolve/GridSolve

The proposed system has been developed using the
GridRPC API of NetSolve. NetSolve is a client-server sys-
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Figure 1. The NetSolve System

tem which provides remote access to hardware and software
resources through a variety of client interfaces, such as C,
Fortran and Matlab[1].

The NetSolve system consists of three entries, as illus-
trated Figure 1. The Client may have a user interface that
sometimes includes interactive operation. The RPC call is
invoked from the client to the Server. The server executes
its service according to the client request. The Agent keeps
information for all servers and provides it to the client. A
typical RPC to NetSolve involves several steps, as follows:

Step 1 The client queries the agent for an appropriate
server that can execute desired function.

Step 2 The agent returns a list of available servers, ranked
in order of suitability.

Step 3 The client attempts to contact a server. The client
then sends the input data to the server.

Step 4 Finally the server executes the function on behalf of
the client and returns the results.

In NetSolve, there are several types of overhead to in-
voke the call: cost to query to the agent, communication
cost between the client and the server, and cost of NetSolve
internal process.

3. Implementation of PSA/GAc using NetSolve

3.1. PSA/GAc Overview

Parallel Simulated Annealing using Genetic Crossover
(PSA/GAc) is the optimization method. In this algo-
rithm, several SA processes are running in parallel. Af-
ter some steps, these processes are stopped and the tempo-
ral solutions among SAs running in parallel by the genetic
crossover[6]. In case one SA obtains an optimum value of
one of the design variables, the crossover operation works
to transfer the value to the other SA. It is expected that the
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optimum solution is derived in the early stage. In this al-
gorithm, the total number of SAs running in parallel is de-
fined as population size and the solution of each SA is cor-
responded to one individual of GA. The following steps are
the flow of PSA/GAc.

Step 1 Initial individuals are generated in GA.

Step 2 Each individual is given to one SA as an initial
searching point. SA is executed in parallel in the or-
der of generating a new solution, accept the solution,
and cooling a temperature.

Step 3 When annealing has been done for the specified d
steps (Crossover interval), the transient solution of SAs
come back to GA. The pairs are generated randomly
from those solutions. The number of pairs is a half
number of the individuals.

Step 4 The crossover is applied to a pair and two children
are generated. The crossover method is explained later.

Step 5 The best two individuals are selected from four in-
dividuals; two parents and two children. These two in-
dividuals are new initial searching points for the next
SA.

Step 6 The operations from Step 4 to Step 5 are applied to
all the pairs.

Step 7 The steps between two to six are iterated until the
terminal criterion is satisfied.

3.2. Synchronous Master-slave Model

The first naive system is implemented as Synchronous
Master-slave model of PSA/GAc in the framework of
GridRPC. SA calculation is executed on the server and the
crossover is performed on the client. In general, the master-
slave model requires large calculation on the server side in
order to ignore communication delay between master and
slave. To apply it to this case, SA on the server is useful
because SA includes many iterated calculation of the pro-
tein energy. Figure 2 describes the implementation of the
synchronous master-slave model of PSA/GAc. NetSolve
servers work as a slave and NetSolve client does as a mas-
ter. The genetic crossover is operated after all SAs have
finished for specified steps. A periodical synchronization
over all servers is necessary for this algorithm. The SA pro-
gram is previously prepared on the server using NetSolve
IDL and the client calls it with GridRPC API of NetSolve.
The search procedure is shown as follows:

Step 1 The client prepared initial individuals in GA.

d
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Figure 2. Synchronous Master-slave Model

Step 2 The client queries a SA service to the agent and then
the client invokes RPC to an introduced server from the
agent. The input data that is an individual information
is transferred to the server and the SA is started.

Step 3 SA is executed independently on each server for the
specified d steps.

Step 4 After all SAs return the results to the client, the
client decides pairs randomly and operates the genetic
crossover.

Step 5 Steps between two to four are repeated until the ter-
minal criterion is satisfied.

The synchronous master-slave model can be imple-
mented without any change of the basic PSA/GAc. Since
the RPCs are called with non-blocking, SAs are executed
in parallel. However, the non-blocking call is processed se-
quentially and there is still small delay. This overhead of
1 RRC is 0.05 [sec] between 2 nodes of the same PC clus-
ter networked with 100 Mbps Ethernet. The total overhead
of the RPC is in proportion to (number of individuals −1)
×0.5.

3.3. Asynchronous Master-slave Model

Asynchronous Master-slave model is an implementation
to hide communication delay and dispersion of time to fin-
ish RPCs. It is predictable that latency is very high on the
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Figure 3. Difference of Synchronous Model and Asynchronous Model

Grid because the client is far away from the server. Each
server is running on a varied node that has different perfor-
mance. The asynchronous master-slave model solves these
issues to omit the synchronization at the genetic crossover.
A pair of the crossover is decided in the order of time, in
which the results are returned. The search procedure of this
model is described as follows:

Step 1 The client prepared initial individuals in GA.

Step 2 The client queries a SA service to the agent and then
the client invokes RPC to an introduced server from the
agent. The input data that is individual information is
transferred to the server and the SA is started.

Step 3 SA is executed independently on each server for the
specified d steps.

Step 4 When each SA finished the specified d steps, the
results are returned to the client’s receive archive.

Step 5 If there are two individuals in the receive archive,
the first two individuals are selected as a pair of the
genetic crossover and two children are generated.

Step 6 The best two individuals are elected and stored in
the send archive.

Step 7 If there are some individuals in the sending archive,
those are transferred to the server that is assigned by
the agent. The next SA process is started.

Step 8 Steps from three to seven are repeated until the ter-
minal criterion is satisfied.

Figure 3 describes the difference of the synchronous
master-slave model and the asynchronous master-slave
model of PSA/GAc. By using the asynchronous master-
slave model, the total execution time would be reduced,
however the search model is different from original one.
Therefore, there is a possibility that the accuracy of the de-
rived solution is worse than that of synchronous model. In
the following section, these points are discussed through the
numerical experiments.

4. Comparison of Synchronous Master-slave
Model and Asynchronous Master-slave
Model

4.1. Overview of Numerical Examples

In the first experiment, the synchronous master-slave
model and the asynchronous master-slave model are com-
pared in the total execution time and the searching capabil-
ity.

In this numerical experiment, C-peptide is a target pro-
tein to solve with PSA/GAc. C-peptide consists of 13 amino
acids, Ly+, Gl-, Thr, Ala, Ala, Ala, Ly+, Phe, Glu, Ar+,
Gln, Hi+, and Met. From the experiments by Okamoto et
al[12], the structure has minimal energy when seven amino
acids shape alpha helix, in the gas-phase simulation based
on ECEPP/2[9, 11, 15]. The minimal energy is about −42.2

kcal/mol. In this paper, the alpha helix is shaped when the
dihedral angles (φi, ψi) by more than 3 series of amino acids
are (−60±45◦, −50±45◦). The design variables of energy
minimization are 26 dihedral angles of the main chain and
38 dihedral angles of the side chain. In the SA to solve C-
peptide, 1 MCsweep (described at next subsection) has 64
metropolis judgments.

The function to derive the energy of protein is based on
the energy parameters of ECEPP/2. This function is the
gas-phase simulation. The dihedral angles of backbone and
side chains are applied as design variables. Values of the
dihedral angles are in the range of [−180◦, 180◦]. Each
dihedral angles is generated and given the accept criterion
sequentially, and then the temperature is cooled. This series
of operation is defined as a Monte Carlo Sweep (MCsweep)
in this paper.

In this experiment, the initial dihedral angles are gener-
ated randomly. In generating process, the next state is pro-
duced in the neighborhood using probabilistic model of uni-
form distribution. Equation 1 gives the range of the neigh-
borhood. Total # sweeps equals to the number of MCsweeps
at the end of SA. # sweep shows the current number of MC-
sweeps.
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Table 1. Specification of PC Cluster

# Proc Processor Memory
Doshisha (Server) 5 PentiumIII 800 MHz 256 MB
Doshisha (Server) 20 PentiumIII 600 MHz 256 MB
Doshisha (Server) 5 PentiumIII 500 MHz 512 MB
Doshisha (Agent) 1 PentiumIII 500 MHz 512 MB
Doshisha (Client) 1 PentiumIII 600 MHz 256 MB

# Proc: Number of processors

Table 2. Specification of Internet Environment
# Proc Processor Memory

Tennessee(Server) 10 PentiumIII 900 MHz 256 MB
Tennessee(Server) 10 PentiumIII 550 MHz 512 MB
Doshisha(Server) 3 Pentium4 2400 MHz 512 MB
Doshisha(Agent) 1 PentiumIII 1100 MHz 256 MB
Doshisha(Client) 1 Pentium4 2400 MHz 512 MB

# Proc: Number of processors







max = 180◦ −
180◦ × 0.7× # sweep

Total # sweeps
min = −max

(1)

The experiments are performed on both the PC cluster
system and the Internet environment.

In the PC Cluster system, all nodes are connected to the
local network of 100 Mbps Ethernet, while each node has
different performance showed in Table 1

Table 2 shows the specification of the internet environ-
ment. The difference from the PC cluster is that some nodes
for the server are far away from the client. The site of
the client is Doshisha University and the site of the some
servers is University of Tennessee. The throughput between
them are showed in Table 3.

Table 4 shows the parameters of PSA/GAc in this exper-
iment. Cooling schedule and neighborhood range are based
on the papers [13]. The crossover intervals are 10 MCsweep
and 100 MCsweep, which affect the results significantly. In
case the interval is 10 MCsweep, the total RPC count is
(number of individuals ×150). In case of 100 MCsweep,
the total RPC count is (number of individuals ×15) so that
the aveage number of the energy calculation is 1500 MC-
sweep per individual in each SA.

4.1.1 Total Execution time

Total execution time is calculated between spawning the
client process and halting it after all RPCs have been done.
The average results of five trials are shown in Figure 4. This

Table 3. Throughput between Client and
Server

Netperf Client Netperf Server Throughput
Doshisha (Client) Doshisha (Server) 94.05Mbps
Doshisha (Server) Doshisha (Client) 94.12Mbps
Doshisha (Client) Tennessee (Server) 0.49Mbps
Tennessee (Server) Doshisha (Client) 0.86Mbps

Table 4. Parameters of PSA/GAc in Exper-
iment of Synchronous and Asynchronous
Master-slave Model

Initial temerature 2.0 (1000K)
Population size 2, 4, 8, 16
Crossover interval 10, 100 MCsweep
Cooling rate 0.998
Range size 180◦ → (180 × 0.3)◦

Number of trials 5

figure shows the execution time (sec) with the horizontal
one does the number of individuals (as same as the number
of parallel execution in this case) for PSA/GAc. The paral-
lelization of PSA/GAc is not for reduction of execution time
but for improvement of searching capability. It means that
the execution time must be constant as the number of par-
allilization is getting higher. However, the overhead of RCP
system prevents it. Figure 4 shows that the execution time of
asynchronous model is lower than that of the synchronous
one in all the cases. This result leads that the asynchronous
model is very effective. At the same time, while the dif-
ference is small in the experiment at the cluster, it is very
large in the experiment at the internet environment. Fig-
ure 4 also shows that the difference of the execution time is
remarked when the crossover interval is short. The lowest
result comes from the case where the synchronous model
with 10 MCsweep interval was performed at the internet
environment. On the other hand, the asynchronous model
with enough interval is clearly useful on the internet envi-
ronment.

4.1.2 Details of Execution Time

Figure 5 shows the profile of the execution time of the asyn-
chronous master-slave model and RPC calls to the total ex-
ecution time are illustrated.

When the crossover interval is short like 10 MCsweep,
the most part of the total execution time is the communica-
tion and waiting time to finish RPC. From this result, it is
found that the crossover interval is expected to be longer.
On the other hand, the longer crossover interval might re-
duce the search capability. This affection is explained in the
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Figure 4. Comparison of Total Execution Time

next section.

4.1.3 Accuracy of Solution

The asynchronous model has the different searching capa-
bility from the original PSA/GAc due to the different se-
lection method of the crossover. A pair is not selected ran-
dom from the total population in the asynchronous model.
It depends on the performance of the assigned server to ex-
ecute SA. In all the cases of Figure 6, the derived results
by asynchronous model are almost the same as those of
synchronous model. From these results, the asynchronous
model is also acceptable due to the similar searching ability
as the synchronous one.

4.2. Effect of Crossover Interval

In the previous experiment, there are two types of the
crossover intervals. It was founded that the longer interval
is effective to reduce the ratio of overhead in total execution.
The interval, however, affects the search capability.

Figure 7 shows the success ratio to find the sufficiently
low energy to shape well-known C-peptide structure in
ECEPP/2 and the minimum energy found by each trial,
in case to use the synchronous master-slave model of
PSA/GAc . In Figure 7, PSA indicates that each SA is inde-
pendently executed at the same time without any exchange
of searching information due to no crossover. The parame-
ters of the results are shown in Table 5.

The results in Figure 7 describes that there is an opti-
mum interval for the genetic crossover. In case of execu-
tion with (16 individuals ×6000) MCsweep, the optimum
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Table 5. Parameters of PSA/GAc in Experi-
ment for Crossover Interval

Initial temerature 2.0 (1000K)
Population size 16, 32, 64
MCsweep per each SA 6000
Crossover interval 2, 4, 8, 16, 32, 64, PSA
Cooling rate 0.998
Range size 180◦ → (180 × 0.3)◦

Number of trials 50

crossover interval is 32 MCsweep. As the same case of ex-
ecution with (32 × 3000) MCsweep, the optimum is four
MCsweep. In case of (64 × 1500) MCsweep, the optimum
is two MCsweep. The total MCsweep of all SAs is constant
in those cases. These results describe that it is important
to set an appropriate optimum crossover interval. Neverthe-
less, it causes a tradeoff between searching capability and

parallel efficiency.

5. Conclusion

The protein tertiary structure prediction system with Net-
Solve is proposed, developed and experimented on the Grid.
PSA/GAc is used not only for superior prediction engine
but also for easiness to implement a master-slave model us-
ing GridRPC API. To execute SA, which is a part of the
main calculation, on the slave side is valuable for the Grid
where communication delay might be high. There are two
types of implementation models; the synchronous master-
slave model and the asynchronous master-slave model. The
latter model can hide the network and RPC overhead dur-
ing maintaining the parallel efficiency and the accuracy of
the solutions. On the other hand, the experiment shows that
there is some difficulty to set an appropriate the crossover
interval. This study describes an example to implement the
Grid application using the GridRPC based system and it re-
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veals how overhead should be hidden in the master-slave
model.
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