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Abstract— In this study a new Genetic Algorithm (GA) using
Tabu · Local Search mechanism for large-scale computer systems
is proposed. We call the GA that uses huge computing resources a
Mega Process GA. The GA described in this paper is considered
a Mega Process GA which has the effective mechanism to solve
the problems quickly and to use massive processors, namely
Mega Processors, comprised in large-scale computing systems
such as super PC clusters and Grid computation environments.
Our proposed method has a GA-specific database that possesses
information of space that has been already searched. At the same
time, the proposed GA performs a local search for the space that
is not searched. Such mechanisms enable us to comprehend the
quantitative rate of a searched region during the search. Using
this information, the searched space can be expanded linearly as
the number of computing resources increase and the exhaustive
search is guaranteed under infinite computations. Using and
describing different experiments, the features of the introduced
GA are discussed and examined. At first, this method was applied
on one max problem and 3-deceptive problem; the former is one
of primitive functions and the latter is one of trap functions.
Through this experiment, it is shown that the method ensures
an effective exhaustive search. This method was then applied
to the test functions of continuous optimization problems under
restricted computing costs. Using such an experiment, it is clear
that this method has the same performance as a conventional
GA.

I. INTRODUCTION

Genetic Algorithm (GA) is one of the most effective ap-
proximation algorithms for optimization problems[1]. Various
types of mechanisms are discussed for improving GAs. Mini-
mal Generation Gap (MGG)[2] is proposed as a generation al-
ternation model. The methods using Linkage Identification[3],
[4], Real-coded GA[5], Probabilistic Model-Building GAs[6],
[7],and Distributed GA[8] are other GAs that have strong
searching ability. The restart mechanisms are also applied to
enhance the performance of GA[9], [10], [11], [12].

Heretofore it is indicated that applying a GA to solve
optimization problems has a drawback: GAs require lots of
computing costs. One of the solutions for this problem is
performing GAs in parallel. In a recent decade, owing to
remarkable improvements computing abilities, some parts of
the drawback about computing costs of GAs do not really
matter; furthermore, parallel processing is used to yield the
increase of performance of GAs. Recently, because of the

emergence of super PC clusters and Grid computation envi-
ronments, the number of computational calculation resources
is getting larger; moreover, large computing projects of the
field relating to evolutionally computing become to be feasible.
GA is familiar with parallel processing, consequently the
application in large-scale computing has been done[13], [14],
[15], [16]; however, the adapted methods are mostly simple
parallelization of conventional GAs, which are proposed for
limited computing resources and the effective mechanism to
use huge computing resources has not been designed. The
easiest way that is commonly used for conventional GAs
to use many resources is to increase the population size.
However, when the population becomes large, the diversity of
the solutions also becomes larger. Therefore, the convergence
speed becomes slow. Subsequently when GAs use a lot of
computer resources, the optimum solution is not derived
quickly. Many kinds of GA methods are not optimized to
use enormous computing environments effectively since they
were developed within limited computing environments. At
the same time, for conventional GAs, there is no guarantee
of an exhaustive search on all search space although infinite
computations are performed. Owing to this, though one applies
simple parallelization to those methods, there is no assurance
of improvement of their performance in accordance with an
increased number of available computing resources.

In this study, a new GA using Tabu · Local Search mech-
anism for large-scale computer systems is proposed. We call
such a GA using huge computing resources a Mega Process
GA and our approach is developing the effective mechanism to
use massive processors, namely Mega Processors, comprised
in large-scale computing systems such as super PC clusters
and Grid computation environments. The proposed method
has a database that possesses information of space that is
already searched. At the same time, the proposed GA per-
forms the local search for the space that is not searched to
expand the searched space. These mechanisms enable us to
comprehend the quantitative rate of a searched region during
the search. Additionally using this information, the searched
space increases linearly as the number of computing resources
increase and an exhaustive search is guaranteed under infinite
computations.



II. DATABASE STRUCTURE

A. Representation of Searched Regions

In this study we introduce a GA-specific database that
possesses information of the region that has already been
searched. We use binary-coded individuals. In addition to chro-
mosomes, individuals stored in the database possess bitstrings,
which we call maskstrings. Maskstrings are also bitstrings,
lengths of which are the same as those of chromosomes. A
locus of a chromosome, which stands at ’1’ in a maskstring,
represents that it has already searched all assignable genes to
it. Fig.1 shows that a set of searched individuals is compressed
to one individual using a maskstring.

Fig. 1. An Example of an Individual stored on Database

Our proposed database stores these individuals that hold
maskstrings. Fig.2 shows an instance of the database. The
individual x3, stored in the database shown in Fig.2 implies
that ”0 1 1 1 1” is the best solution under searching the set of
individuals X3 = {0 * * 1 *}(* = 0 or 1). We call a number
of ’1’ in a maskstring the hamming-index, e.g. the hamming-
index of x3 is 3.

When a database stores all the individual information, it
takes a huge time to check an individual that has been already
searched owing to its vast amounts of data. Our proposed
notation of searched individuals is high compressed method
using maskstrings and large searched regions are represented
by several individuals; moreover, checking individuals stored
on the database is not time-consuming work.

B. Quantitative Sizes of Searched Regions

This notation of individuals enables us to provide a quantita-
tive rate of a searched region during a search. In an individual
x we denote its chromosome length by L, a gene of the locus
l of a chromosome by cxl, and a value of the locus l of a
maskstring by mxl. Quantitative sizes of searched regions are
obtained as follows.

Case of one Individual. |X | denotes a number of elements
involved in a set X . The size of a searched region is indicated
by an individual of which the hamming-index standing at h is
2h, e.g. |X3|, which is the size of the searched region indicated
by the individual x3 stored in the database shown in Fig.2, as
23.

Case of N Individuals. Given N individuals xi(1 ≤ i ≤ N)
and their search regions Xi, the total searched region indicated
by them is the union of sets |⋃i∈I Xi|, where the set which
consists of the suffix i is denoted I = {1, 2, · · · , N}. In most
cases, it cannot readily be derived as a function of a number

of elements in a union of sets. On the other hand, that of
a intersection of sets is a closed expression. The size of the
searched region is such a case. Owing to this, |⋃i∈I Xi| is
derived from the sets of |⋂j∈J Xj |, where J is a subset of I
that is shown in equation (1).

∣∣⋃
i∈I Xi

∣∣ =
∑

J⊆I,J �=φ

(−1)|J|−1
∣∣⋂

j∈J Xj

∣∣ (1)

The distance between individuals xi and xj including their
maskstrings, which is represented as d(xi, xj), is defined in
(2).

d(xi, xj) =
L∑

l=1

B|cxil − cxj l|

B =
{

1, if mxil = mxj l = 0
0, otherwise

(2)

|⋂i∈I XI | is a closed expression and derived below as (3),
where [R]=z given real number R and integer z.

|X1 ∩ X2 ∩ · · · ∩ XN | =
{

2M , if K = 0
0, otherwise

K =
N−1∑
i=1

N∑
j=(i+1)

d(xi, xj)

M =
L∑

l=1

[
1
N

N∑
i=1

mxil

] (3)

III. TABU · LOCAL SEARCH MECHANISMS FOR GENETIC
ALGORITHM

A. The Concept of Proposed Method

The proposed method consists of a GA and a local search.
Fig. 3 shows that the flow of our proposed method. To obtain
optima earlier, our method of searches used mainly schemes
of GA; any methods of operators such as a crossover and a
mutation or a generation alternation model can be applied. To
use idle computing resources of enormous computing envi-
ronments effectively, a local search is applied. Our proposed
method is outlined as follows.

Step 1. Generate Npop individuals randomly, where Npop is
the population size. In addition, no individuals are stored in
the database.

Step 2. Apply operators such as crossovers, mutations and
selections to individuals in a GA population.

Step 3. Store the individual ybest, which is the best individual
of a GA population, in database and set to its maskstring the
bitstring of which values of all loci are ’0’; however, ybest is
not stored when it is included in searched regions, which are
indicated by individuals that have been already stored in the
database.

Step 4. / Local search/ Expand a searched region indicated
by a certain individual stored in the database. When a better



Fig. 2. The Aspect of the Database of the proposed method

Fig. 3. The Flow of the Proposed Method

individual is found, replace the worst individual of the popula-
tion of GA with it. The detail of the local search is described
in the next section III-B.

Step 5. Go back to step 2 until some termination conditions,
e.g. computing cost reaches a limited amount or the exhaustive
search is done, are satisfied.

At the step 3, when there are NDB individuals in the
database, replace the individual xworst that has the worst
fitness in the database with ybest if the fitness of ybest is bigger
than that of xworst, otherwise ybest is not stored, where NDB

is the parameter of capacity of the database.

B. Local Search

We choose a certain individual from the database to apply
the local search in every generation. This individual satisfies
the condition that the hamming-index is the minimum value
and its fitness is the maximum value. In our proposed local
search, one of the loci, the values of which stand at ’0’ of the
maskstring of the selected individual, is changed into a value
of ’1’. The locus, which holds the biggest variance of genes
among whole loci, is selected. This operation is performed
because it is suitable to keep much the same hamming-index
among individuals stored in the database for the process of
merging individuals, which is described later; moreover, it is

desirable to retain genes of loci which have the lower variances
since they can be considered part of a better solution.

Given N individuals xi(1 ≤ i ≤ N) stored in the database,
the process of the local search is outlined as follows. Fig.4
shows the example of the local search.

Step 1. Find the results of al using the equation (4), which is
the absolute value of the difference between the average value
of genes and 0.5 at each locus.

al =

∣∣∣∣∣ 1
N

N∑
i=1

(cxil) − 0.5

∣∣∣∣∣ (1 ≤ l ≤ L) (4)

Step 2. Select the individual x, which has the minimum
hamming-index and the maximum fitness, from N individuals
stored in the database.

Step 3. Select the locus l∗, which indicates mxl∗ = 0. At the
same time, al∗ is minimum, from al(1 ≤ l ≤ L).

Step 4. Prepare the individual x′, which has the same
maskstring as that of x. In its chromosome, each gene is
exactly the same as that of x at loci standing at ’1’ except
l∗ in its maskstring. x′ is the best individual under searching
X ′, which should be searched to expand the search region.

Step 5. Update mxl∗ to ’1’ and hx to hx+1; furthermore, let
x be x′ and replace the worst individual of the population of
GA by x if x < x′. The exhaustive search is finished when
hx approaches L.

At step 4, described above, X ′ is comprised of individuals
produced by flipping the gene at l∗ in the chromosome of
each individual included in X . This needs to search 2hx

individuals where the hamming-index of x is hx; nevertheless,
parallelization can be applied to easily search X ′. Moreover,
this mechanism uses computing resources effectively since the
searched space increases linearly as the number of computing
resources increase and an exhaustive search is guaranteed
under infinite computations.

C. Merge Operation in Database

Following the local search, a merge of individuals stored in
the database is executed in every generation to avoid overlap-



Fig. 4. An Example of Local Search on one max problem: The individual of which the search region is expanded is individual x2. Expanding the region
X2={* 1 0 1 * 1 } to the region {* 1 * 1 * 1 } requires searching the region X′

2={* 1 1 1 * 1 }. The searched region of x2, i.e. X2, becomes {* 1 * 1 *
1 }, after applying this expanding

ping searches in the process of the local search. Individuals
can be merged when the following conditions are satisfied:

Condition 1. xa and xb are given individuals. When they
satisfy the following conditions, they are in condition 1. They
have the same maskstrings, d(xa, xb) = 1, and locus is l∗ ,
which satisfies mxal∗ = mxbl∗ = 0 and cxal∗ �= cxbl∗ . In this
case, select one that has the better fitness from xa and xb, and
let its value of l∗ in its maskstring be ’1’. At the same time,
the other one is deleted from the database. For example, in
Fig.4, the individual x1 and the updated individual x2 can be
merged with the condition 1 then let mx22 be ’1’ and hx2 be
’4’. x1 is then deleted.

Condition 2. xa and xb are given individuals. When those
individuals satisfy the following conditions, they are in con-
dition 2: d(xa, xb) = 0 and no locus exists that satisfies
mxal = 1, mxbl = 0(1 ≤ l ≤ L). In this case, xa is deleted
from the database because of Xa ⊂ Xb. For example, in Fig.4,
the individual x3 and the individual x4 can be merged meeting
condition 2. Therefore, x3 is deleted.

Condition 3. xa and xb are given individuals. When Xa ∩
Xb �= φ and |Xa| ≥ |Xb|, they are in condition 3 shown
Fig. 5. In this case, Xa is expanded until it can include Xb,
and then they are merged using condition 2. X ′

a indicates the
region which is required to expand until it can include Xb.
X ′

a ∩ ¬Xb must be searched to merge using the condition
2. We introduce parameter A, which indicates the ratio of
|Xa∩Xb| of |X ′

a∩¬Xb|, i.e. |Xa∩Xb|/|X ′
a∩¬Xb|, because

we get a better solution under the available limited computing
resources. This merge is not applied when A is bigger than a
certain value. To decide an appropriate A, the size of search
space and the number of available computing resources or
costs must be considered. In this paper, we set A to eight.

IV. NUMERICAL EXPERIMENTS

To discuss the effectiveness of our proposed method both
in infinite computation and limited computation, it is applied
to one max problem and 3-deceptive problem[17]. The former
is the most primitive benchmark problem of bitstrings, and

Fig. 5. Merge using Condition 3

its fitness is a summation of the number of ’1’ included in a
chromosome. The latter is one of trap functions described as
equation (5).

F3−deceptive =
N∑

i=1

fi (5)

fi =

⎧⎪⎪⎨
⎪⎪⎩

0.9, ui = 0
0.8, ui = 1
0.7, ui = 2
1.0, ui = 3

The effectiveness of our method is discussed by solving
these problems under limited computation. The following
equations (6), (7), (8), and (9) are the continuous test functions.

FRastrigin =
n∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

(6)

xi ∈ [−5.12, 5.12)

FSchwefel =
n∑

i=1

−xi sin
(√

|xi|
)

(7)

xi ∈ [−5.12, 5.12)

FRidge =
n∑

i=1

( i∑
j=1

xj

)2

(8)

xi ∈ [−64, 64)



FGriewank = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

(
cos

( xi√
i

))
(9)

xi ∈ [−512, 512)

A. The Performance of Proposed Method in Infinite Compu-
tation Cost

We apply the proposed method to one max problem and
3-deceptive problem with the length of string L=30 without
limiting computing resources. This search is terminated when
all the combinations are searched. Exhaustive search needs
230 solutions. ER model[18] is used as the alternation in each
generation. We apply a GA with uniform crossover and each
couple, or parents, generates 20 children by a crossover. The
mutation rate is 0.03(=1/L) and population size is 20; the
capacity of the database, NDB , is 5 in this examination.

Fig. 6 shows the transition of the fitness and the ratio of
the searched region on solving one max problem. In Fig. 6(b),
when the ratio of the searched region attains 1.0, all the area
has been searched.

(a) History of the Fitness

(b) History of the Searched Region Rate

Fig. 6. Performance of GA using Local · Search Mechanism on One Max
Problem

The performance of the proposed method is similar to that
of the conventional GA. This is because the proposed method
searches using mainly schemes of GA. It is certain that an
obtained solution is optimum by an exhaustive search, though

the optimal solution is obtained in the earliest part of the
search. Moreover, these mechanisms enable us to show the
quantitative ratio of the searched region during the search like
Fig. 6(b).

Fig. 7 shows the transition of the fitness on 3-deceptive
problem. It indicates that both conventional GA and our
proposed method fall into local optima in the early stages
of search. 3-deceptive problem is difficult for GAs to obtain
the optimal solution because populations tend to be trapped
by local optima. Our proposed method gets convergence like
a conventional GA; nevertheless, it can obtain the optimum
since increase of computing costs derives increase of searched
regions, in consequence the optimal solution can be certainly
found by continuing search.

Fig. 7. Performance of GA using Local · Search Mechanism on 3-deceptive
Problem

B. The Performance of Proposed Method in Limited Compu-
tation Cost

To perform the exhaustive search, many evaluations of
individuals are required. Our proposed method can perform an
exhaustive search; moreover, it is expected that the proposed
method has high possibility to find the optimum solution in
the early stages of searches because it mainly uses schemes of
GA. In this section, it is then examined that our method can
obtain the optimum under limiting evaluations.

We apply the proposed method to four test continuous func-
tions to compare it with conventional GA. In each function, an
optimum solution is attempted by the proposed method. Each
function is 10 dimensions and the number of evaluations is
limited to 2.5x105. ER model is used as the alternation in
each generation. We apply a GA with uniform crossover and
each couple, or parents, generates 20 children by a crossover.
We set the mutation rate to 0.01(=1/L) and the population size
to 200; the capacity of the database, NDB , is set to 3, 5, 7
and 9 in this experiment.

Fig.8 and 9 describe the number of trials that obtained the
optimum and the average of the number of evaluations, which
were needed to acquired the optimum. These are the results
of 50 trials.

Fig.8 illustrates the fact that the proposed method and the
conventional GA obtained the optimal solution in all trials
at Rastrigin function, Schwefel function and Ridge function.
The proposed method derived the optimal solutions several



times at Griewank function. Additionally, Fig.9 indicates that
our method could obtain the optimum with fewer evalua-
tions than that of a conventional GA though our proposed
method requires lots of evaluations at the local search phase.
These results indicate that our method also keeps its superior
performance with the limited computing costs. Furthermore,
we focus attention on the effect of parameter NDB on the
performance of our method. The numbers of successful trials
of NDB = 3 and 9 were more than those of NDB = 5 and 7,
whereas the result of the number of evaluations was contrary at
Ridge function. As opposed to this, the number of successful
trials of NDB = 9 was better than those of NDB = 3, 5 and 7.
As a result, there is no setting that can acquire a more optimal
solution with fewer evaluations but the proposed method can
search free from the setting of parameter NDB .

Fig. 8. Number of trials with the optimum

Fig. 9. Number of evaluations where method gets the optimum

V. CONCLUSIONS AND FUTURE WORK

GAs are suitable algorithms for parallel processing; how-
ever, there is an issue that an increase of individuals, along
with an increase of computing resources, does not yield
improvement of performance in most methods because the
diversity of the solution is increased. Our proposed method,
Tabu · Local Search mechanism for Mega Process GA, can
expand the searched region linearly as the number of available
computing resources increase; furthermore, the exhaustive
search is guaranteed under infinite computations, while the
exhaustive search is not guaranteed in the conventional GAs.
The proposed method was tested on one max problem and 3-
deceptive problem without limiting computing resources, as

a result, it is confirmed that this method promises that an
obtained solution is optimum by exhaustive search, though
the optimal solution is obtained in the earliest part of the
search. Additionally, we applied the proposed method to four
test continuous functions for deriving the optimum solutions
to compare it with conventional GA; these results indicate that
the proposed method also keeps its superior performance with
the limited computing costs.

For future work, we will apply our proposed method to
a large-scale computing Grid and examine its effectiveness;
moreover, we apply restarts at the non-searched region when
the population of a GA gets convergences since the proposed
method can distinguish the non-searched region from the
whole search space.

REFERENCES

[1] Goldberg,D.E.: Genetic Algorithms in Search Optimization and Machine
Learnig. Addison-Wesley (1989)

[2] H. Satoh, M. Yamamura and S. Kobayashi: Minimal Generation Gap
Model for GAs Considering Both Exploration and Exploitation. Proc.
of IIZUKA. pp.494-497. 1996

[3] H. Kargupta: SEARCH, polynomial complexity, and the fast messy
genetic algorithm. University of Illinois at Urbana-Champaign, Urbana,
IL. IlliGAL Report No. 95008. 1995

[4] G. R. Harik: Linkage learning in via probabilistic modeling in the
ECGA. University of Illinois at Urbana-Champaign, Urbana, IL. IlliGAL
Technical Report No. 99010. 1999

[5] I. Ono and S. Kobayashi: A Real-coded Genetic Algorithm for Function
Optimization Using Unimodal Normal Distribution Crossover. Proc. of
7th Int. Conf. on Genetic Algorithms. pp.246-253. 1997

[6] Pelikan,M., Goldberg,D.E., and Lobo,F.: A Survey of Optimization
by Building and Using Probabilistic Models. Technical Report 99018,
IlliGAL (1999)

[7] Larranaga,P., Lozano,J.A.: Estimation of Distribution Algorithms. A
New Tool for Evolutionary Computation. Kluwer Academic Publishers
(2001)

[8] Reiko Tanese: Distributed Genetic Algorithms. Proc. 3rd International
Conference on Genetic Algorithms. pp.434-439. 1989

[9] T. Jansen: On the Analysis of Dynamic Restart Strategies for Evolu-
tionary Algorithms Proc. Parallel Problem Solving from Nature - PPSN
VII, 7th International Conference. pp.33-43. 2002

[10] Alex S. Fukunaga: Restart Scheduling for Genetic Algorithms, Lecture
Notes in Computer Science, vol.1498, pp.357-369. 1998

[11] Sean Luke: When Short Runs Beat Long Runs, Proceedings of the
Genetic and Evolutionary Computation Conference, pp.74-80. 2001

[12] J. Maresky et al.: Selectively Destructive Restart, Proc. of Sixth Inter-
national Conference on Genetic Algorithms, pp.144-150. 1995

[13] Yusuke Tanimura: Parallel and Distributed Genetic Algorithm on The
Cluster System and The Computational Grid. University of Doshisha.
2003, in Japanese

[14] Hiroaki Imade et al.: A Grid-Oriented Genetic Algorithm for Estimating
Genetic Networks by S-Systems, Proc. SICE Annual Conf. pp3317-
3322, 2003

[15] Hiroaki Imade et al.: A framework of grid-oriented genetic algorithms
for large-scale optimization in bioinformatics Proc. of The Congress on
Evolutionary Computation in Canberra. vol.1, pp623- 630, 2003

[16] H. Nakata et al.: Protain structure optimizaion using Genetic Algorithm
on Jojo Journal of Information Processing Society of Japan. 2002-HPC-
93, pp. 155-160, 2003. in Japanese

[17] Martin Pelikan et al.: BOA:The Bayesian Optimization Algorithm.
IlliGAL Report No. 99003 1999

[18] D. Thierens, D. E. Goldberg: Elitist Recombination: an integrated
selection recombination GA Proceedings of the 1st IEEE Conference
on Evolutionary Computation pp.508-512. 1994



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


