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Abstract— This paper proposes the Voronoi Model-Building
Genetic Algorithm (VMBGA), which is one of real-coded GAs.
In the VMBGA, a voronoi model is constructed using with
voronoi diagrams. Because of this mechanism, the distribution
of offspring can adapt to the landscape of the objective function
by changing the voronoi model. Through the some standard
test functions, the effectiveness of the VMBGA is examined.
It is clarified that the VMBGA has higher searching ability
than the UNDX-m, which is one of the typical real-coded GAs.
Additionally, the distribution of the offspring is also discussed.

I. I NTRODUCTION

Crossover design is very important to perform an efficient
search in Genetic Algorithms (GAs)[1][2]. In particular, in
real-coded GAs, offspring are often generated based on a par-
ent distribution in design space from a small number of parents
extracted from a population[3][4][5][6][7]. In addition, in real-
coded Probabilistic Model-Building GAs (PMBGAs)[8][9], a
probabilistic model is created using the statistical informa-
tion of individuals who have higher evaluation values, and
offspring are generated. The common feature here is the
generation of offspring following the average, variance and
covariance of the parents. Therefore, as for the offspring
generated from a certain parent group, the landscape of the
objective function is generally not taken into consideration,
and depending on the parent distribution, offspring are not
concentrated in regions with a satisfactory evaluation value. In
the case of real-coded GA, offspring are often generated using
a normal distribution and uniform distribution, but with prob-
lems where many local optima exist or problems where local
optima are discrete, it is difficult to concentrate offspring for
plural local optima simultaneously for a particular generation
alternation. Therefore, for such a problem, a large population
size is taken, generation alternation is repeated many times,
and searches are performed while maintaining the diversity
of the population. However, in such an approach, the essential
problem in crossover cannot be solved, and many offspring are
generated in regions with poor evaluation values as a result.
Due to this, offspring not only inherit the distribution of the
parents, but also be generated in accordance with the landscape
of the objective function.

Therefore, in this paper, the Voronoi Model-Building Ge-
netic Algorithm (VMBGA) which generates offspring by
creating a voronoi model using a voronoi diagram is proposed.

In the proposed method, the number of voronoi regions is
changed according to the landscape of the objective function,
and the voronoi model is created by finely dividing parts with a
satisfactory evaluation value and roughly dividing parts with a
poor evaluation value. By generating offspring with a uniform
probability in each region, many individuals are concentrated
in parts with a satisfactory evaluation value.

In this paper, the performance of the proposed method was
verified by making a comparison with the Multi-Parental Uni-
modal Normal Distribution Crossover (UNDX-m)[6] which is
one of the typical real-coded GAs proposed by Kita et al. The
effectiveness of the proposed method was also discussed from
the distribution of the generated offspring.

II. V ORONOI MODEL

In this paper, the Voronoi Model-Building Genetic Algo-
rithm (VMBGA) is proposed. In the VMBGA, a voronoi
model for generating offspring is created using a voronoi
diagram. First, in this section, an outline of the voronoi
diagram will be given, and the method of constructing the
voronoi model will then be described.

A. Voronoi Diagram

The voronoi diagram[10] decides how to divide the space
between the region of each point and its boundary as in
Equation 1. In Equation 1,P = {~p1, ~p2, ~p3, ..., ~pn} is given in
a two-dimensional space andd(~pi, ~pj) expresses the Euclidean
distance of~pi and~pj .

V (~pi) = {~p|~p ∈ R2, d(~p, ~pi) < d(~p, ~pj), j 6= i} (1)

Fig. 1 shows an example of a voronoi diagram. Each point in
the point setP which generates the voronoi diagram is called
a voronoi generator, the region divided by certain voronoi
generators is known as a voronoi region, and the regionV (~pi)
divided by the points~pi shows that, at any arbitrary point
in the region,~pi is an element which is a grouping of the
closest points. The edge of plural voronoi regions is known as
a voronoi edge, and the intersection of three or more voronoi
edges is known as a voronoi vertex.



Fig. 1. Voronoi diagram.

Fig. 2. Contour line of objective function and voronoi diagram.

B. How to Construct the Voronoi Model

In the VMBGA, a two-dimensional space is created from
information about parents extracted from a population, and
a model for generating offspring is created using a voronoi
diagram. Fig. 2 shows an outline of the voronoi diagram which
is created. The purpose of the model created by the VMBGA
is to change the number of voronoi regions according to the
landscape of the objective function. In other words, parts with
a satisfactory evaluation value are finely divided, and parts
with a poor evaluation value are roughly divided. Hence, if the
voronoi generators forming each voronoi region are regarded
as offspring, many offspring are generated in the parts with a
satisfactory evaluation value, and offspring can be generated in
the whole region which created the voronoi diagram without
concentrating them in the parts with a satisfactory evaluation
value.

As shown in Fig. 3, the following procedure is used for
creating N offspring using a voronoi diagram.

1) Three parents are extracted from the population at ran-
dom, and a two-dimensional space is created in design
space.

2) A region is defined for creating a voronoi diagram in
the two-dimensional space.

3) Three extracted parents are taken as an initial point set
P in the two-dimensional space.

Fig. 3. How to construct the voronoi space.

4) A voronoi diagram is generated from the point setP .
5) From the generated voronoi diagram, one voronoi region

is chosen at random and one search point is generated
in the region using a uniform distribution.

6) The generated search point is evaluated in the design
space. When the fitness is higher than a predefined
reference point, the generated search point is added to
the point setP .

7) When the number of elements in the point setP is less
than N+3, it returns to 4. Also, when the number of
elements in the point setP is N+3, N search points are
taken as offspring except for three parents in the design
space.

When N offspring are generated using the voronoi diagram,
as there are points which are not added to the point setP in
Step 6, N or more evaluations are required. Therefore, how the
region which generates offspring is defined, or how reference
point is set, leads to efficient generation of offspring.

C. Region for generating Offspring

The VMBGA defines a region for creating a voronoi
diagram from three parents extracted from a population as
described in Section II-B. This region shows a region for
generating offspring in a two-dimensional space. Therefore,
the region which generates offspring can be changed in various



ways by defining this region. The discussion of the definition
of this region will be left for future discussion, but in this
paper, for convenience, this region is defined as follows.

First, a center of gravity of parents extracted from a pop-
ulation is found. Next, the distance between the center of
gravity and each of the extracted parents is found, and the
maximum distance is set tod. Then, based on Equation 2, a
radius r is found, and a circular region centered on the center
of gravity is defined. This equation is determined referring to
the Multi-Parental Unimodal Normal Distribution Crossover
(UNDX-m)[6], which is a typical real-coded GA proposed by
Kita et al. Moreover, as the region for generating offspring in
the primary search component of UNDX-m ( m=2 ) are all
satisfied whenamp = 3, in this paper,amp is taken as 3.

r = d/
√

2 ∗ amp, amp = 3 (2)

D. Reference Point

When a model is built for offspring generation using a
voronoi diagram, a value used as a reference for determining
whether a generated individual is added to a point setP
based on the fitness of the individual, is required. When
the model is built, the setting of this reference point is
the most important element. In other words, by setting this
reference point appropriately, the number of voronoi regions
can be appropriately adjusted according to the landscape of
the objective function. If this value is set low, most of the
generated individuals are added to the point setP , which
is synonymous with searching the region which created the
voronoi diagram at random. When this value is set high, most
of the generated individuals are not added to the point setP ,
and the number of evaluations for generating a fixed number
of offspring greatly increases. Although the setting of the
reference point which can build the model most efficiently
will be left for future discussion, this paper defines this value
as the average fitness or the worst fitness of the point setP .
When the average fitness is used, the reference point becomes
higher as more individuals with a high fitness are added to
the point set. In other words, the reference point is set with a
relatively low value in the initial stage of model construction,
and with a comparatively high value at the end.

III. V ORONOI MODEL-BUILDING GENETIC ALGORITHM

A. Overview of the Voronoi Model-Building Genetic Algorithm

The VMBGA proposed by this paper generally indicates a
real-coded GA using the voronoi model described in Section
II. In VMBGA, it is assumed that the voronoi model is used for
part of the determination of coordinate system values used for
offspring generation in the crossover method of existing real-
coded GA. For example, in BLX-α[3] which is a crossover
method of typical real-coded GA, two coordinate system
values selected at random can be determined using a voronoi
model. Moreover, in the Distributed Probabilistic Model-
Building Genetic Algorithm (DPMBGA)[11] proposed by the
authors, some of the coordinate system value rotated using
principal component analysis can be similarly determined as

BLX-α. This paper focuses particularly on UNDX-m which is
a crossover method for typical real-coded GA, wherein part of
the UNDX-m crossover method is replaced by a determination
of values using a voronoi model.

B. Multi-Parental Unimodal Normal Distribution Crossover
using Voronoi Model

One well-known crossover method for a real-coded GA
is the Unimodal Normal Distribution Crossover (UNDX)[4],
[5] proposed by Ono. The Multi-Parental Unimodal Normal
Distribution Crossover (UNDX-m)[6] is a technique which ex-
tends UNDX. It is considered that these techniques efficiently
inherit the character of the parents used for crossover, and
efficiently generate offspring. In UNDX-m, m+2 parents are
chosen first from a population at random. Then the following
algorithm is used for generating offspring:
Let the parental vectors bex1, ...,xm+1, the center of
parental vectors bep =

∑m+1
i=1 xi/(m+1) and the difference

vectors betweenxi andp be di = xi − p(i = 1, ..., m + 2).
Let D be the size of component ofdm+2 that is orthogonal to
d1, ...,dm. Let e1, ...,en−m be an orthonormal bases orthog-
onal to the subspace spanned byd1, ...,dm (n expresses the
number of dimensions). Then the offspringxU is generated
in the form

xU = p +
m∑

i=1

wid
i + D

n−m∑

i=1

vie
i, (3)

where wi and vi are random variables that follow normal
distributionN(0, (1/

√
m)2) andN(0, (0.35/

√
n−m)2).

In Equation 3, the first two terms are called a primary
search component and the third term is called a secondary
search component. In the algorithm of UNDX-m, the primary
search component formed from m+1 parents can be regarded
as a m-dimensional space. Therefore, in this paper, attention is
focused on UNDX-2 ( m=2 ), and a voronoi model is used for
determination of the value of the primary search component.
As m=2, the primary search component is a two-dimensional
space. For a generation alternative model, a model which
extends the Minimal Generation Gap(MGG)[12] as UNDX-
m to plural parents was used.

IV. N UMERICAL EXAMPLE

In this experiment, to verify the performance of the VM-
BGA, UNDX-2 is compared with UNDX-2 using the voronoi
model described in Section III-B. The performance difference
also is discussed from a comparison of the offspring distribu-
tion generated by the two techniques.

A. Target Problems

The test functions in this paper are five functions: Rastrigin
function, Schwefel function, Rosenbrock function, Griewank
function and Rotated Rastrigin function shown below. The
Rotated Rastrigin function is obtained by rotating design
variables byπ/6 and applying the Rastrigin function. The
Rastrigin function and Schwefel function are multipeak func-
tions which do not have correlation between design variables.



The Rosenbrock function is a single-peak function which has
correlation between design variables. The Griewank function
and Rotated Rastrigin function are multipeak functions which
have correlation between design variables. In this experiment,
to verify the performance of VMBGA, a two-dimensional
and a four-dimensional problem were used. In the case of
the two-dimensional problem, in UNDX-2, only the value
of the primary search component is determined and there
is no secondary search component. Hence, the performance
difference of offspring generation between the voronoi model
and a normal distribution can be clearly verified.

FRastrigin = 10n +
n∑

i=1

(
x2

i − 10 cos(2πxi)
)

(4)

(−5.12 ≤ xi < 5.12)

FSchwefel =
n∑

i=1

−xi sin
(√

|xi|
)
− C (5)

(C : optimum.,−512 ≤ xi < 512)

FRosenbrock =
n∑

i=2

(
100(x1 − x2

i )
2 + (1− xi)2

)
(6)

(−2.048 ≤ xi < 2.048)

FGriewank = 1 +
n∑

i=1

x2
i

4000
−

n∏

i=1

(
cos

( xi√
i

))
(7)

(−512 ≤ xi < 512)

B. Comparison of the UNDX-2 using Voronoi Model with the
UNDX-2

In this experiment, the performance difference of UNDX-2
and UNDX-2 using a voronoi model is compared by numer-
ical simulation. In the numerical simulation, we prepare the
following two models of UNDX-2 using the voronoi model.

• Model 1 : The average fitness of the point setP is used
for the reference point.

• Model 2 : The worst fitness of the point setP is used
for the reference point.

The comparison is made from the number of optima discov-
ered in 20 trials, and the average number of evaluations when
the optima are discovered. When the function evaluation value
is less than10−8, it is considered that the optimum has been
reached. The search terminating condition was considered as
the case where all individuals are concentrated within the
limits of 10−7 of the width of the design space, when the
number of evaluations exceeded2.0 ∗ 106. Moreover, the
number of offspring generated for every generation alternation
is verified together with variation of search performance due
to number of offspring using 200 and 500. The population size
was taken as 15 for a two-dimensional problem, and 40 for a
four-dimensional problem. Table I, Table II and Table III show
the number of optima discovered for the two-dimensional and

TABLE I

NUMBER OF TRIALS WHEN THE OPTIMUM IS FOUND(UNDX-2)

2 dimensions 4 dimensions
Number of children 200 500 200 500

Rastrigin 17 20 17 19
Schwefel 16 17 12 13
Rosenbrock 20 20 20 20
Griewank 13 16 4 7
Rotated Rastrigion 19 20 19 19

TABLE II

NUMBER OF TRIALS WHEN THE OPTIMUM IS FOUND(MODEL 1)

2 dimensions 4 dimensions
Number of children 200 500 200 500

Rastrigin 20 20 16 15
Schwefel 20 20 13 17
Rosenbrock 20 20 20 20
Griewank 16 20 14 12
Rotated Rastrigion 20 20 18 19

four-dimensional problems. Fig. 4 shows the average number
of evaluations when the optima are discovered.

In Table I, Table II and Table III, UNDX-2 using the voronoi
model is better than or the same as UNDX-2. In UNDX-2
using the voronoi model, the model using the worst fitness
of the point setP for the reference point is better than or
the same as the model using the average fitness. This shows
that it is more effective to use a voronoi model rather than
a normal distribution to determine the value of the primary
search component of UNDX-2. With the Schwefel function
for which local optima exist near the end of the design space,
and the Griewank function for which an infinite number of
local optima exist, it is seen that generation of offspring by a
normal distribution easily degenerates into local optima, and
an effective search is difficult. However, an effective search
can still be performed in this type of problem by generating
offspring using a voronoi model. On the other hand, when the
number of generated offspring was increased, the optimum
search performance was improved in generation of offspring
by a normal distribution, and in generation of offspring using
the voronoi model, the optimum search performance decreased
depending on the problem. This will be discussed later.

Fig. 4 describes that more evaluations are required to
discover optima for UNDX-2 using a voronoi model in all
the functions. This is due to the fact that many evaluations
are required to build the voronoi model. Construction of the
voronoi model for an efficient search is thus a future problem.

C. Distribution of the generated individuals

To verify the optimum search performance difference of
UNDX-2 using the voronoi model and UNDX-2, Fig. 5
shows the distribution of offspring generated from the same
three parents in both techniques. The target problems are a
two-dimensional Rastrigin function, Schwefel function and
Rosenbrock function, and the number of generated offspring is
1000. Fig. 6 shows the distribution of offspring generated from



TABLE III

NUMBER OF TRIALS WHEN THE OPTIMUM IS FOUND(MODEL 2)

2 dimensions 4 dimensions
Number of children 200 500 200 500

Rastrigin 20 20 19 20
Schwefel 20 20 18 17
Rosenbrock 20 20 20 20
Griewank 20 20 9 14
Rotated Rastrigion 20 20 19 18

Fig. 4. Average number of evaluations when the optimum is found.

different parents in the models of UNDX-2 using the voronoi
model. The target problem is a two-dimensional Schwefel
function. Contour lines for each function are shown on the left-
hand side of Fig. 5 and Fig. 6, and the positions of the parents
are displayed on the contour lines. In UNDX-2 using the
voronoi model, all points generated during model construction
are also displayed.

Fig. 5 shows that, in offspring generation using a normal
distribution, the same offspring are generated from the same
parent regardless of the landscape of the objective function.
On the other hand, in offspring generation using the voronoi
model, offspring are generated mainly in regions having a low
function evaluation value, and the distribution of offspring
changes in accordance with the landscape of the objective
function. In particular, for the Rastrigin function, offspring are
generated mainly for plural local optima. This is impossible
when individuals are generated using a normal distribution,
and from this, it is seen that the proposed offspring generation

using a voronoi model is an effective technique.
On the other hand, Fig. 6 shows that offspring generated

from two different parents are concentrated in different local
optima. In particular, this tendency is strongly found in the re-
sults from the model using the average fitness for the reference
point. This suggests many search points were generated into
local optima discovered in the initial stage of voronoi model
construction. Therefore, it is necessary to correct the method
of setting a reference point used in constructing the voronoi
model. In other words, it appears that when the average fitness
of the point setP which creates the voronoi diagram is taken
as a reference point, search points generated in regions other
than the local optima are difficult to add to the point setP . On
the other hand, in regions near the local optima, local search
progresses by finely dividing regions, and many search points
are added to the point setP . Therefore, it may be considered
that search points are no longer generated in any regions other
than the local optima discovered in the initial stage. This is
thought to be the reason why an increase in the number of
offspring generated in the numerical simulation of Section IV-
B does not lead to an improvement in search performance.
In other words, even if the number of generated offspring
is increased, search points are concentrated in specific local
optima, and various offspring cannot be generated.

V. CONCLUSIONS ANDFUTURE WORKS

In this paper, the Voronoi Model-Building Genetic Al-
gorithm (VMBGA) was proposed. VMBGA was developed
by considering the landscape of the objective function and
focusing on the effective crossover. In the proposed technique,
a voronoi model for generating offspring was created using a
voronoi diagram. In this process, the distribution of offspring
is changed by altering the voronoi model in accordance with
the landscape of the objective function.

Using plural test functions, the effectiveness of the VMBGA
was shown as a result of comparison with UNDX-m which is
a typical real-coded GA. On the other hand, by comparing
the number of evaluations required to discover optima, it was
found that an efficient voronoi model must be built. It was also
found that the number of offspring generated in accordance
with the landscape of a function in the VMBGA can be
changed from the distribution of generated offspring. How-
ever, the offspring may also be concentrated in specific local
optima, and the setting of the reference point in constructing
the voronoi model is thus a future problem. Additionally,
it is also a future work that the VMBGA is applied to
a higher-dimensional problem by using the Extrapolation-
Directed Crossover ( EDX )[13].
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