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Abstract—This paper proposes the Voronoi Model-Building In the proposed method, the number of voronoi regions is
Genetic Algorithm (VMBGA), which is one of real-coded GAs. changed according to the landscape of the objective function,
In the VMBGA, a voronoi model is constructed using with 51 the yoronoi model is created by finely dividing parts with a

voronoi diagrams. Because of this mechanism, the distribution - . A .
of offspring can adapt to the landscape of the objective function satisfactory evaluation value and roughly dividing parts with a

by changing the voronoi model. Through the some standard POOr evaluation value. By generating offspring with a uniform
test functions, the effectiveness of the VMBGA is examined. probability in each region, many individuals are concentrated

|L is i:afilf_ijt’?\ldmt(hat thﬁ_ XMBGA h?shhighe_f slearclhin% 3%3’ in parts with a satisfactory evaluation value.

than the -m, which is one of the typical real-code S. .

Additionally, the distribution of the offspri)rllg is also discussed. 'T‘.th's Paper, the performa.mce Of the propoged method was

verified by making a comparison with the Multi-Parental Uni-

modal Normal Distribution Crossover (UNDX-m)[6] which is

one of the typical real-coded GAs proposed by Kita et al. The
Crossover design is very important to perform an efficiegffectiveness of the proposed method was also discussed from

search in Genetic Algorithms (GAs)[1][2]. In particular, inthe distribution of the generated offspring.

real-coded GAs, offspring are often generated based on a par-

ent distribution in design space from a small number of parents

extracted from a population[3][4][5][6][7]. In addition, in real-

coded Probabilistic Model-Building GAs (PMBGAS)[8][9], a In this paper, the Voronoi Model-Building Genetic Algo-

probabilistic model is created using the statistical inform"ﬁ'thm (VMBGA) is proposed. In the VMBGA, a voronoi

tion qf individuals who have higher evaluation values,. angd Jdel for generating offspring is created using a voronoi
offspring are generated. The common feature here is

- f offsoring followi h . rtifatgram. First, in this section, an outline of the voronoi
generation of offspring following the average, variance a agram will be given, and the method of constructing the

covariance of the parepts. Therefore, as for the OﬁSp”r\‘/%ronoi model will then be described.
generated from a certain parent group, the landscape of the

objective function is generally not taken into consideration, o

and depending on the parent distribution, offspring are nft Voronoi Diagram

concentrated in regions with a satisfactory evaluation value. InThe voronoi diagram[10] decides how to divide the space
the case of real-coded GA, offspring are often generated usw&ween the region of each point and its boundary as in
a normal distribution and uniform distribution, but with prob- uation 1. In Equation 12 = {j1, s, s, .., 7} iS given in
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Iems where many Ioga[ oppma exist or problems where IOCgtlft]wo—dimensional space addp;, p;) expresses the Euclidean
optima are discrete, it is difficult to concentrate offspring fo&istance of, and j;
plural local optima simultaneously for a particular generation ! 7
alternation. Therefore, for such a problem, a large population
size is taken, generation alternation is repeated many times,  V(p:) = {plp € R*,d(p,p;) < d(P,D}),j # i} (1)
and searches are performed while maintaining the diversity
of the population. However, in such an approach, the essentiaFig. 1 shows an example of a voronoi diagram. Each point in
problem in crossover cannot be solved, and many offspring ahe point set” which generates the voronoi diagram is called
generated in regions with poor evaluation values as a resdltvoronoi generator, the region divided by certain voronoi
Due to this, offspring not only inherit the distribution of thegenerators is known as a voronoi region, and the relji¢)
parents, but also be generated in accordance with the landsagipeled by the pointsp; shows that, at any arbitrary point
of the objective function. in the region,p; is an element which is a grouping of the

Therefore, in this paper, the Voronoi Model-Building Geelosest points. The edge of plural voronoi regions is known as
netic Algorithm (VMBGA) which generates offspring bya voronoi edge, and the intersection of three or more voronoi
creating a voronoi model using a voronoi diagram is proposesgtiges is known as a voronoi vertex.

I. INTRODUCTION

Il. VORONOIMODEL
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Fig. 1. Voronoi diagram.

A two-dimensional space is created
from three points in design space.

A region is defined

in the two-dimensional space.
These points are taken

as an initial point set P.

 Z

If the generated point is better,
the point is added to the point set P.

AN

Contour line of f(X)

Voronoi Diagram

The generated point is evaluated
in the design space.

@ -

One search point is generated
in the region.

A voronoi diagram is created
from the point set P.

e

One voronoi region is chosen.

Fig. 2. Contour line of objective function and voronoi diagram.

B. How to Construct the Voronoi Model

information about parents extracted from a population, and
a model for generating offspring is created using a voronoi

Fig. 3. How to construct the voronoi space.

. ) ) 4) A voronoi diagram is generated from the point st
In the VMBGA, a two-dimensional space is created from 5) From the generated voronoi diagram, one voronoi region

diagram. Fig. 2 shows an outline of the voronoi diagram which g
is created. The purpose of the model created by the VMBGA
is to change the number of voronoi regions according to the

landscape of the objective function. In other words, parts with
a satisfactory evaluation value are finely divided, and parts7)
with a poor evaluation value are roughly divided. Hence, if the

voronoi generators forming each voronoi region are regarded
as offspring, many offspring are generated in the parts with a
satisfactory evaluation value, and offspring can be generated in

the whole region which created the voronoi diagram without

value.

is chosen at random and one search point is generated
in the region using a uniform distribution.

The generated search point is evaluated in the design
space. When the fitness is higher than a predefined
reference point, the generated search point is added to
the point setP.

When the number of elements in the point Beis less
than N+3, it returns to 4. Also, when the number of
elements in the point sét is N+3, N search points are
taken as offspring except for three parents in the design
space.

) X X ) "~ When N offspring are generated using the voronoi diagram,
concentrating them in the parts with a satisfactory evaluatlgg there are points which are not added to the poinPsiet

Step 6, N or more evaluations are required. Therefore, how the

As shown in Fig. 3, the following procedure is used fofaqinn which generates offspring is defined, or how reference

creating N offspring using a voronoi diagram.

1) Three parents are extracted from the population at ran- ] ] ]
dom, and a two-dimensional space is created in desifn Region for generating Offspring

The VMBGA defines a region for creating a voronoi

2) A region is defined for creating a voronoi diagram imliagram from three parents extracted from a population as

space.

the two-dimensional space.

point is set, leads to efficient generation of offspring.

described in Section 1I-B. This region shows a region for

3) Three extracted parents are taken as an initial point generating offspring in a two-dimensional space. Therefore,

P in the two-dimensional space.

the region which generates offspring can be changed in various



ways by defining this region. The discussion of the definitioBLX-«. This paper focuses particularly on UNDX-m which is
of this region will be left for future discussion, but in thisa crossover method for typical real-coded GA, wherein part of
paper, for convenience, this region is defined as follows. the UNDX-m crossover method is replaced by a determination
First, a center of gravity of parents extracted from a popf values using a voronoi model.
ulatn_)n s found. Next, the distance betwe_en the center f Multi-Parental Unimodal Normal Distribution Crossover
gravity and each of the extracted parents is found, and thé .
maximum distance is set t@ Then, based on Equation 2, a's'hg Voronoi Model
radius r is found, and a circular region centered on the centelOne well-known crossover method for a real-coded GA
of gravity is defined. This equation is determined referring #§ the Unimodal Normal Distribution Crossover (UNDX)[4],
the Multi-Parental Unimodal Normal Distribution Crossovel®] proposed by Ono. The Multi-Parental Unimodal Normal
(UNDX-m)[6], which is a typical real-coded GA proposed byPistribution Crossover (UNDX-m)[6] is a technique which ex-
Kita et al. Moreover, as the region for generating offspring itehds UNDX. It is considered that these techniques efficiently
the primary search Component Of UNDX_m (:fﬁ ) are a” inherit the Character Of the pal’entS Used f0r crossover, and

satisfied whemmyp = 3, in this paperamp is taken as 3. efficiently generate offspring. In UNDX-m, m+2 parents are
chosen first from a population at random. Then the following

r=d/\2xamp, amp=3 (2) algorithm is used for generating offspring:
_ Let the parental vectors be?,..,x™*!, the center of
D. Reference Point parental vectors bp = """ 2¢/(m +1) and the difference

When a model is built for offspring generation using &ectors betweer® andp be d® = z* — p(i = 1,...,m + 2).
voronoi diagram, a value used as a reference for determiningt D be the size of component éf™*2 that is orthogonal to
whether a generated individual is added to a point Bet d*....,d™. Lete®, ...,e™ ™ be an orthonormal bases orthog-
based on the fithess of the individual, is required. Whemal to the subspace spannedd; ..., d™ (n expresses the
the model is built, the setting of this reference point isumber of dimensions). Then the offspring’ is generated
the most important element. In other words, by setting thig the form
reference point appropriately, the number of voronoi regions . -
can be appropriately adjusted according to the landscape of U _ i i
the objective function. If this value is set low, most of the zT=p ;wld +D ; vie 3)
generated individuals are added to the point Betwhich N .

é’]ere w; and v; are random variables that follow normal

is synonymous with searching the region which created tq o 5 5
voronoi diagram at random. When this value is set high, mo |Istr|but|on N(0, (1/v/m)*) and N (0, (0.35/v/n = m)?).

of the generated individuals are not added to the poiniPset In lﬁquatlon 3 tthe :;"frt] tvl/r?. (tjertms are C?I”?jd a prlma:jry
and the number of evaluations for generating a fixed numgr cn component an € third term 1S cafled a seconadary
earch component. In the algorithm of UNDX-m, the primary

of offspring greatly increases. Although the setting of thd

reference point which can build the model most efficientl earch gpmponentlformed fFﬁm Tﬂ Partf]’.“s can bettregtgrdgd
will be left for future discussion, this paper defines this valu S @ m-gimensional space. therefore, in this paper, attention Is

as the average fitness or the worst fitness of the poinPset ocused on UNDX-2 { m=2), and a voronoi madel is used for

When the average fitness is used, the reference point beco%)%tgrgn?ﬂon O.f the value r?f the pnmatry seat\r/;:h gpmpopenti
higher as more individuals with a high fitness are added y M=, IN€ primary search component 1 a two-dimensiona

Space. For a generation alternative model, a model which

the point set. In other words, the reference point is set with ha .
relatively low value in the initial stage of model constructione,EXtendS the Minimal Generation Gap(MGG)[12] as UNDX-

and with a comparatively high value at the end. i 10 plural parents was used.
IV. NUMERICAL EXAMPLE

[1l. VORONOIMODEL-BUILDING GENETIC ALGORITHM _ ) _
A. Overview of the Voronoi Model-Building Genetic Algorithné CL?AHB?\I g))((?g”ig]i;]g];zr\éznvf\%t;hs I\I? S;I(_)Zrn:;?ncge tﬁ; t\t]oero\r/xi-
The VMBGA proposed by this paper generally indicates godel described in Section 11I-B. The performance difference

real-coded GA using the voronoi model described in Sectigfiso is discussed from a comparison of the offspring distribu-
IIl. In VMBGA, itis assumed that the voronoi model is used fofion generated by the two techniques.

part of the determination of coordinate system values used for

offspring generation in the crossover method of existing red\ Target Problems

coded GA. For example, in BLX{3] which is a crossover The test functions in this paper are five functions: Rastrigin
method of typical real-coded GA, two coordinate systefiunction, Schwefel function, Rosenbrock function, Griewank
values selected at random can be determined using a vordinmiction and Rotated Rastrigin function shown below. The
model. Moreover, in the Distributed Probabilistic ModelRotated Rastrigin function is obtained by rotating design
Building Genetic Algorithm (DPMBGA)[11] proposed by thevariables byr/6 and applying the Rastrigin function. The
authors, some of the coordinate system value rotated usRastrigin function and Schwefel function are multipeak func-
principal component analysis can be similarly determined &ens which do not have correlation between design variables.



The Rosenbrock function is a single-peak function which has
correlation between design variables. The Griewank function

TABLE |
NUMBER OF TRIALS WHEN THE OPTIMUM IS FOUND(UNDX-2)

and Rotated Rastrigin function are multipeak functions which _ 2 dimensions 4 dimensions
have correlation between design variables. In this experiment—omber of children | 200 | 500 | 200 | 500
to verify the performance of VMBGA, a two-dimensional g?ﬁ&g& 12 i? g ig
and a four-dimensional problem were used. In the case of Rosenbrock 20 20 20 20
the two-dimensional problem, in UNDX-2, only the value Griewank 13 16 4 7
of the primary search component is determined and there_Rotated Rastrigion 19 20 19 19
is no secondary search component. Hence, the performance

difference of offspring generation between the voronoi model TABLE II

and a normal distribution can be clearly verified. NUMBER OF TRIALS WHEN THE OPTIMUM IS FOUND(MODEL 1)

2 dimensions 4 dimensions

n Number of children 200 | 500 200 [ 500

Frastrigin = 10n + Z(x? —10 COS(QT(‘J}Z')) (4) Rastrigin 20 20 16 15
i— Schwefel 20 20 13 17

Rosenbrock 20 20 20 20

(=512 < z; <5.12) Griewank 16 20 14 2

Rotated Rastrigion 20 20 18 19

Fschwefet = Z —Z Sin(\/@) -C (5)
=1
(C : optimum., —512 < z; < 512) four-dimensional problems. Fig. 4 shows the average number

of evaluations when the optima are discovered.

n In Table I, Table Il and Table Ill, UNDX-2 using the voronoi
FRosenbrock = 2(100(951 — 22+ (1—2;)?) (6) model is better than or the same as UNDX-2. In UNDX-2
i=2 using the voronoi model, the model using the worst fithess

(—2.048 < x; < 2.048) of the point setP for the reference point is better than or
the same as the model using the average fitness. This shows
that it is more effective to use a voronoi model rather than
a normal distribution to determine the value of the primary
search component of UNDX-2. With the Schwefel function
for which local optima exist near the end of the design space,
. . . : and the Griewank function for which an infinite humber of
B. Comparison of the UNDX-2 using Voronoi Model with thFocal optima exist, it is seen that generation of offspring b
UNDX-2 plima exist, _ g _ pring by a
normal distribution easily degenerates into local optima, and
In this experiment, the performance difference of UNDX-3n effective search is difficult. However, an effective search
and UNDX-2 using a voronoi model is compared by numegan still be performed in this type of problem by generating
ical simulation. In the numerical simulation, we prepare tr@ffspring using a voronoi model. On the other hand, when the
following two models of UNDX-2 using the voronoi model. number of generated offspring was increased, the optimum
« Model 1 : The average fitness of the point g&ts used search performance was improved in generation of offspring
for the reference point. by a normal distribution, and in generation of offspring using
« Model 2 : The worst fitness of the point sétis used the voronoi model, the optimum search performance decreased
for the reference point. depending on the problem. This will be discussed later.

The comparison is made from the number of optima discov-Fig. 4 describes that more evaluations are required to
ered in 20 trials, and the average number of evaluations wHdigcover optima for UNDX-2 using a voronoi model in all
the optima are discovered. When the function evaluation valti¢ functions. This is due to the fact that many evaluations
is less thanl0~3, it is considered that the optimum has beef® required to build the voronoi model. Construction of the
reached. The search terminating condition was consideredg&onoi model for an efficient search is thus a future problem.
the case where all individuals are concentrated within the = = o
limits of 10~7 of the width of the design space, when thé:' Distribution of the generated individuals
number of evaluations exceedeéd) x 10°. Moreover, the  To verify the optimum search performance difference of
number of offspring generated for every generation alternatitiNDX-2 using the voronoi model and UNDX-2, Fig. 5
is verified together with variation of search performance dwshows the distribution of offspring generated from the same
to number of offspring using 200 and 500. The population siteree parents in both techniques. The target problems are a
was taken as 15 for a two-dimensional problem, and 40 fortwo-dimensional Rastrigin function, Schwefel function and
four-dimensional problem. Table I, Table 1l and Table Il shoiRosenbrock function, and the number of generated offspring is
the number of optima discovered for the two-dimensional ad®00. Fig. 6 shows the distribution of offspring generated from

F 1+i v ﬁ(cos(xi)) @)
Griewank — - =
=y 4000 Vi
(=512 < z; < 512)



TABLE Il

using a voronoi model is an effective technique.
NUMBER OF TRIALS WHEN THE OPTIMUM IS FOUND(MODEL 2)

On the other hand, Fig. 6 shows that offspring generated

_ 2 dimensions 4 dimensions from two different parents are concentrated in different local
Number of children 200 [ 500 200 [ 500 . . . . .
Rastign =5 =5 5 = optima. In particular, this tendency is strongly found in the re-
Schwefel 50 50 18 17 suI.ts from the model using the average fitness for the referepce
Rosenbrock 20 20 20 20 point. This suggests many search points were generated into
Griewank 20 20 9 14 local optima discovered in the initial stage of voronoi model
Rotated Rastrigion 20 20 19 18

construction. Therefore, it is necessary to correct the method
of setting a reference point used in constructing the voronoi

B 200 Children model. In other words, it appears that when the average fitness
MW 500 Children of the point setP which creates the voronoi diagram is taken

0.0e+6

UNDX-m : 2 dimensions UNDXom - 4 dimensions as a reference pgint, seargh points generated ir} regions other
20045 14046 than the local optima are difficult to add to the point 8etOn
12:: 100%5 the other hand, in regions near the local optima, local search
08045 s progresses by finely dividing regions, and many search points
plers EIII_CI—_EIH Pyl fl:l:lfl:[lﬂ are added to the point sé&. Therefore, it may be considered
.Oe+ T T T T T

that search points are no longer generated in any regions other
than the local optima discovered in the initial stage. This is
thought to be the reason why an increase in the number of

Rastrigin
Schwefel

Rosenbrock
Griewank
Rotated
Rastrigin
Rastrigin
Schwefel
Rosenbrock
Griewank
Rotated
Rastrigin

0.0e+5 0.0e+6

Model 1 : 2 dimensions Model 1 : 4 dimensions offspring generated in the numerical simulation of Section IV-
fzz 1401 B does not lead to an improvement in search performance.
1205 100v0 In other words, even if the number of generated offspring
0.8e+5 Eljili 06er is increased, search points are concentrated in specific local
il I BE EE EN EEERC EI:_EIEIE optima, and various offspring cannot be generated.

Rastrigin
Schwefel
Griewank
Rotated

Rastrigin
Rastrigin
Schwefel
Griewank
Rotated

Rastrigin

V. CONCLUSIONS ANDFUTURE WORKS

Rosenbrock
Rosenbrock

Model 2 : 2 dimensions Model 2 - 4 dimensions In this paper, the Voronoi Model-Building Genetic Al-
20e+5 14046 gorithm (VMBGA) was proposed. VMBGA was developed
e 10ov8 by considering the landscape of the objective function and
08055 Pyl focusing on the effective crossover. In the proposed technique,
Odess 02008 a voronoi model for generating offspring was created using a
0,078 0.0e+6 voronoi diagram. In this process, the distribution of offspring

is changed by altering the voronoi model in accordance with

the landscape of the objective function.
Using plural test functions, the effectiveness of the VMBGA
was shown as a result of comparison with UNDX-m which is
a typical real-coded GA. On the other hand, by comparing

different parents in the models of UNDX-2 using the vorondhe number of evaluations required to discover optima, it was
model. The target problem is a two-dimensional Schweftqund that an efficient voronoi model must be built. It was also
function. Contour lines for each function are shown on the lefUnd that the number of offspring generated in accordance
hand side of Fig. 5 and Fig. 6, and the positions of the pareffih the landscape of a function in the VMBGA can be
are displayed on the contour lines. In UNDX-2 using thehanged from Fhe distribution of generated o'ffspnng..'How-
voronoi model, all points generated during model constructi€"> the offspring may also be concentrated in specific local
are also displayed. optima, and the setting of the reference point in constructing
Fig. 5 shows that, in offspring generation using a norméﬁ'? voronoi model is thus a future problem_. Addit.ionally,
distribution, the same offspring are generated from the satheS @ls0 @ future work that the VMBGA is applied to
parent regardless of the landscape of the objective functiéh.nigher-dimensional problem by using the Extrapolation-
On the other hand, in offspring generation using the vorongirécted Crossover ( EDX )[13].
model, offspring are generated mainly in regions having a low
function evaluation value, and the distribution of offspring
changes in accordance with the landscape of the objectiyf Goldberg,D.E.: Genetic Algorithms in Search Optimization and Machine
function. In particular, for the Rastrigin function, offspring are  Learnig. Addison-Wesley (1989)
generated mainly for plural local optima. This is impossible[Z] Holland,J.H.: Adaptation In Natural and Artificial Systems. University
when individuals are generated using a normal distributioqgl of Michigan Press (1975)

SHas ’ ’ Eshleman, L. and Schaffer, J. D.: Real-Coded Genetic Algorithms and
and from this, it is seen that the proposed offspring generation Interval-Schemata. Foundations of Genetic Algorithms 2 (1993)

:

Rastrigin
Schwefel
Griewank
Rotated
Rastrigin
Rastrigin
Schwefel

Rosenbrock
Griewank

Rotated

Rastrigin

Rosenbrock

Fig. 4. Average number of evaluations when the optimum is found.
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