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Abstract. In this study, a new Genetic Algorithm (GA) using the Tabu
· Local Search mechanism is proposed. The GA described in this paper
is considered a Mega Process GA, which has an effective mechanism to
use massive processors, i.e., Mega Processors, in large-scale computing
systems. Our proposed method has a GA-specific database that pos-
sesses information of searched space and performs a local search for the
space that is not searched. Such mechanisms enable us to comprehend
the quantitative rate of a searched region during the search. Using this
information, the searched space can be expanded linearly as the number
of computing resources increases and the exhaustive search is guaranteed
under infinite computations. The proposed GA was applied to numerical
test functions and the energy minimization problems of protein tertiary
structures. The latter problem was performed under a heterogeneous
distributed computing environment, which was built up with Grid MP
produced by United Devices Inc.

1 Introduction

Genetic Algorithms (GAs) are among the most effective approximation algorithms
for optimization problems[1]. Various mechanisms for improving GAs have been
discussed. Minimal Generation Gap (MGG)[2] was proposed as a generation al-
ternation model. Methods using Linkage Identification[3, 4], Real-coded GA[5],
Probabilistic Model-Building GAs[6, 7], and Distributed GA[8] are other GAs that
have strong search capabilities. The restart mechanisms have also been applied to
enhance the performance of GAs[9, 10, 11, 12]. However, application of a GA to
solve optimization problems has the drawback that GAs incur large computing
costs. One solution to this problem is to perform GAs in parallel. In recent decades,
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due to the remarkable improvements in computing capabilities, some parts of the
drawback regarding computing costs of GAs are not really important. Further-
more, parallel processing is used to yield increases in performance of GAs. Re-
cently, because of the emergence of super PC clusters and Grid computation en-
vironments, such as PC Grid comprised of desktop machines for home use or of-
fices, the number of computational calculation resources is increasing. Thus, large
computing projects in fields relating to evolutionary computing have become fea-
sible. GAs are well suited to parallel processing environments due to the ability
to search with multiple points, and consequently GAs have found application in
large-scale computing[13, 14, 15, 16]. However, adapted methods are mostly simple
parallelization of conventional GAs, which have been proposed for limited comput-
ing resources and an effective mechanism to make use of huge computing resources
have yet to be designed. The easiest way that is commonly used for conventional
GAs to use many resources is to increase the population size. However, enlarging
the population also increases the diversity of the solutions, i.e., the convergence
speed becomes slow. Subsequently, when GAs use a large amount of computer re-
sources, the optimum solution is not derived quickly. At the same time, for con-
ventional GAs, there is no guarantee of an exhaustive search in all search space
although infinite computations are performed. As a result, although simple paral-
lelization is applied to these methods, there is no assurance of improvement of their
performance in accordance with the increase in available computing resources.

In this study, a new GA using the Tabu · Local Search mechanism for large-scale
computer systems is proposed. We call such a GA using huge computing resources
a Mega Process GA and our approach is to develop an effective mechanism to use
massive processors, i.e., Mega Processors, in large-scale computing systems, such
as super PC clusters and Grid computation environments. The proposed method
uses a database that possesses information of space that has been searched already.
At the same time, the proposed GA performs the local search for the space that is
not searched to expand the searched space. These mechanisms enable us to com-
prehend the quantitative rate of the searched region during the search. Moreover,
using this information, the searched space increases linearly as the number of com-
puting resources increases and an exhaustive search is guaranteed under infinite
computations. In addition, we examined the performance of the proposed method
in a distributed computing environment, which is built up using the commercially
available PC Grid middleware Grid MP that is currently used to develop several
large-scale distributed computing projects produced by United Devices Inc1.

2 Tabu · Local Search Mechanism for Mega Process GA

2.1 Database Structure

In this study, we introduce a GA-specific database that possesses information of
the region that has already been searched. We used binary-coded individuals. In

1 United Devices : http://www.ud.com
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Fig. 1. An Example of an Individual stored in a Database

Fig. 2. The Aspect of the Database of the proposed method

addition to chromosomes, individuals stored in the database possess bitstrings,
which we call maskstrings. Maskstrings are also bitstrings, lengths of which are
the same as those of chromosomes. A locus of a chromosome, which stands at ’1’
in a maskstring, represents that it has already searched all assignable genes to
it. Fig. 1 shows that a set of searched individuals is compressed to one individual
using a maskstring.

Our proposed database stores these individuals that hold maskstrings. Fig. 2
shows an instance of the database. The individual x3, stored in the database
shown in Fig. 2 implies that ”0 1 1 1 1” is the best solution under searching
the set of individuals X3 = {0 * * 1 *}(* = 0 or 1). We call the number of ’1’
in a maskstring the hamming-index, e.g. the hamming-index of the individual
x3 is 3.

When a database stores all the individual information, it takes a large time
to check an individual that has been already searched due to its vast amounts
of data. Our proposed notation of searched individuals is a highly compressed
method using maskstrings and large searched regions are represented by several
individuals. Moreover, checking individuals stored on the database is not time-
consuming.

This notation of individuals enables us to provide a quantitative rate of a
searched region during a search. In an individual x we denote its chromosome
length by L, a gene of the locus l of a chromosome by cxl, and a value of the locus
l of a maskstring by mxl. Quantitative sizes of searched regions are obtained as
follows.
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Case of one Individual. |X| denotes a number of elements involved in a set
X. The size of the searched region is indicated by an individual of which the
hamming-index standing at h is 2h, e.g., |X3|, which is the size of the searched
region indicated by the individual x3 stored in the database shown in Fig. 2,
as 23.

Case of N Individuals. Given N individuals xi(1 ≤ i ≤ N) and their search
regions Xi, the total searched region indicated by them is the union of sets
|X1 ∪ X2 ∪ · · · ∪ XN |, i.e., |⋃i∈I Xi|, where the set which consists of the suffix
i is denoted I = {1, 2, · · · , N}. In most cases, it cannot be derived readily as a
function of the number of elements in a union of sets. On the other hand, that
of an intersection of sets is a closed form. The size of the searched region is such
a case.

As a result, |⋃i∈I Xi| is derived from the sets of |⋂j∈J Xj |, where J is a
subset of I, which is shown in equation (1).2∣∣ ⋃

i∈I Xi
∣∣ =

∑
J⊆I,J �=φ

(−1)|J|−1
∣∣ ⋂

j∈J Xj
∣∣ (1)

The distance between individuals xi and xj including their maskstrings,
which is represented as d(xi, xj), is defined in (2).

d(xi, xj) =
L∑
l=1

B|cxil − cxj l|

B =
{

1, if mxil = mxj l = 0
0, otherwise

(2)

|⋂i∈I XI | is a closed form and derived below as (3), where [R]=z given real
number R and integer z.

|X1 ∩ X2 ∩ · · · ∩ XN | =
{

2M , if K = 0
0, otherwise

K =
N−1∑
i=1

N∑
j=(i+1)

d(xi, xj)

M =
L∑
l=1

[
1
N

N∑
i=1

mxil

]
(3)

2.2 Concept of the Proposed Method

The proposed method consists of a GA and a local search. The flow of our pro-
posed method is shown in Fig. 3. To obtain optima earlier, our method of searches

2 For instance, the number of elements of the union of three sets, X1, X2, and X3, is
obtained as follows:
|X1∪X2∪X3| = |X1|+ |X2|+ |X3|−|X1∩X2|−|X2∩X3|−|X3∩X1|+ |X1∩X2∩X3|
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Fig. 3. The Flow of the Proposed Method

used mainly schemes of GA. Any method of operators, such as a crossover and
mutation, or a generation alternation model can be applied. To use idle comput-
ing resources of enormous computing environments effectively, a local search is
applied. Our proposed method is outlined as follows.

Step 1. Generate Npop individuals randomly, where Npop is the population size.
In addition, no individuals are stored in the database.

Step 2. Apply operators, such as crossovers, mutations, and selections to indi-
viduals in a GA population.

Step 3. Store the individual ybest, which is the best individual of a GA popula-
tion, in the database and set its maskstring to the bitstring of which the values
of all loci are ’0’. However, ybest is not stored when it is included in the searched
regions, which are indicated by individuals that have already been stored in the
database.

Step 4. /Local search/ Expand a searched region indicated by a certain individ-
ual stored in the database. When a better individual is found, use it to replace
the worst individual of the population of GA. The details of the local search are
described in the next section 2.3.

Step 5. Go back to step 2 until some termination conditions, e.g., computing
cost reaches a limited amount or the exhaustive search is done, are satisfied.

At step 3, when there are NDB individuals in the database, replace the indi-
vidual xworst that has the poorest fitness in the database with ybest if the fitness
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of ybest is bigger than that of xworst, otherwise ybest is not stored, where NDB
is the parameter of database capacity.

2.3 Local Search

We chose a certain individual from the database to apply the local search in
every generation. This individual satisfies the condition that the hamming-index
is the minimum value and its fitness is the maximum value. In our proposed local
search, one of the loci, the values of which stand at ’0’ of the maskstring of the
selected individual, is changed to a value of ’1’. The locus that holds the largest
variance of genes among all loci is selected. This operation is performed because
it is suitable to keep essentially the same hamming-index among individuals
stored in the database for the process of merging individuals, which is described
later. Moreover, it is desirable to retain genes of loci, which have lower variances
as they can be considered part of a better solution.

Given N individuals xi(1 ≤ i ≤ N) stored in the database, the process of the
local search is outlined as follows. Fig. 4 shows an example of the local search.

Step 1. Find the results of al using equation (4), which is the absolute value of
the difference between the average value of genes and 0.5 at each locus.

al =

∣∣∣∣∣ 1
N

N∑
i=1

(cxil) − 0.5

∣∣∣∣∣ (1 ≤ l ≤ L) (4)

Step 2. Select the individual x, which has the minimum hamming-index and
maximum fitness, from N individuals stored in the database.

Step 3. Select the locus l∗, which indicates mxl∗ = 0. At the same time, al∗ is
the minimum value, from al(1 ≤ l ≤ L).

Step 4. Prepare the individual x′, which has the same maskstring as that of x.
In its chromosome, each gene is exactly the same as that of x at loci standing at
’1’ except l∗ in its maskstring. x′ is the best individual under search X ′, which
should be searched to expand the search region.

Step 5. Update mxl∗ to ’1’ and hx to hx+1. Furthermore, let x be x′ and replace
the worst individual of the population of GA by x if x < x′. The exhaustive
search is finished when hx approaches L.

At step 4, described above, X ′ is comprised of individuals produced by flip-
ping the gene at l∗ in the chromosome of each individual included in X. This
requires searching of 2hx individuals where the hamming-index of x is hx. Never-
theless, parallelization can be applied to easily search X ′. Moreover, this mecha-
nism uses computing resources effectively as the searched space increases linearly
with increasing computing resources and an exhaustive search is guaranteed un-
der infinite computations.
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Fig. 4. An Example of Local Search in the one max problem: The individual of which
the search region is expanded is individual x2. Expanding the region X2={* 1 0 1 * 1
} to the region {* 1 * 1 * 1 } requires searching the region X ′

2={* 1 1 1 * 1 }. The
searched region of x2, i.e., X2, becomes {* 1 * 1 * 1 }, after applying this expansion

2.4 Merge Operation in Database

Following the local search, a merge of individuals stored in the database is exe-
cuted in every generation to avoid overlapping searches in the process of the local
search. Individuals can be merged when the following conditions are satisfied:

Condition 1. xa and xb are given individuals. When they satisfy the following
conditions, they are in condition 1. They have the same maskstrings, d(xa, xb) =
1, and locus is l∗ , which satisfies mxal∗ = mxbl∗ = 0 and cxal∗ 	= cxbl∗ . In this
case, select one that has better fitness from xa and xb, and let its value of l∗ in
its maskstring be ’1’. At the same time, the other is deleted from the database.
For example, in Fig. 4, the individual x1 and the updated individual x2 can
be merged with the condition 1 then let mx22 be ’1’ and hx2 be ’4’. x1 is then
deleted.

Condition 2. xa and xb are given individuals. When these individuals satisfy
the following conditions, they are in condition 2: d(xa, xb) = 0 and no locus
exists that satisfies mxal = 1, mxbl = 0(1 ≤ l ≤ L). In this case, xa is deleted
from the database because of Xa ⊂ Xb. For example, in Fig. 4, the individual
x3 and the individual x4 can be merged meeting condition 2. Therefore, x3 is
deleted.

Condition 3. xa and xb are given individuals. When Xa ∩ Xb 	= φ and |Xa| ≥
|Xb|, they are in condition 3 shown Fig. 5. In this case, Xa is expanded until
it can include Xb, and then they are merged using condition 2. X ′

a indicates
the region that is required to expand until it can include Xb. X ′

a ∩ ¬Xb must be
searched to merge using condition 2. We introduce parameter A, which indicates
the ratio of |Xa∩Xb| of |X ′

a∩¬Xb|, i.e., |Xa∩Xb|/|X ′
a∩¬Xb|, because we obtain

a better solution under the available limited computing resources. This merge is
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Fig. 5. Merge using Condition 3

not applied when A is larger than a certain value. To decide an appropriate A,
the size of the search space and the number of available computing resources or
cost must be considered. In the present study, we set A to 8.

3 Implementation of Mega Process GA on Distributed
Computing Environments

3.1 Distributed Processing at Local Search

Parallelization is applicable to GA by using a master-slave model at evaluations
or crossovers. However, when the population becomes larger, the diversity of
the solutions also increases. As a consequence of this, huge computing resources
cannot be used effectively. Our proposed local search is applied to use massive
processors, i.e., Mega Processors.

At the local search phase in our proposed method, application of a local
search to individual x corresponds to searching the individual x′ of which the
maskstring is the same as that of x. It also satisfies d(x, x′) = 1, i.e., the set of
individuals that have arbitrary values at loci of the chromosome standing at ’1’
in the maskstring of x′ and the same values as those of x at other loci should be
searched. In the example shown in Fig. 4, for application of the local search to
X2={* 1 0 1 * 1 } at locus 3 it is necessary to search X ′

2={* 1 1 1 * 1 }(* = 0
or 1).

By using the opposite operation against condition 1 of the merger, paral-
lelization can be applied easily to evaluation of a set of individuals represented
with a maskstring. Fig. 6 shows an example in which a set of individuals is split
to some segmental sets of individuals.

To execute the local search in distributed computing environments, these
parts of the set are allotted to computation nodes. Each node evaluates assigned
individuals independently, which requires no communication among nodes.

3.2 Implementation on Grid MP

We examine the performance of the proposed method in a distributed computing
environment, built using the commercially available middleware Grid MP from
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*1

split

best inidividual

* * 1 * 0 *

*1 0 0 1 * 0 *

*1 0 1 1 * 0 *

*1 1 0 1 * 0 *

*1 1 1 1 * 0 *

11 1 1 1 1 0 1

Fig. 6. Example of Splitting Individuals

United Devices Inc.[17]. Grid MP is one of the toolkits of Grid computing and
is currently used to power several large-scale distributed computing projects.
In the Grid MP platform, the underutilized resources of many computers are
aggregated and used as a virtual computer system. The distributed computing
environment constructed by Grid MP consists of an MP Server and Devices. The
MP Server is a server that carries out user or Device authentication, monitoring
and scheduling of jobs, dispatching jobs to Devices, etc. Devices are computation
nodes that execute the jobs assigned by the MP Server.

In the Grid MP platform, application developers prepare their Program Mod-
ule executables, which are components of applications and consist of precompiled
executables and MDFs (Module Definition Files), and upload them to the File
Service of the MP Server. Data Packages, which are sets of reference data during
executions and PMFs (Package Manifest Files), have to also be registered as a
Data Set. MDFs indicate names of the executable, arguments, and the file in
which the results are written. PMFs show the compression format and the file
name of the data. A Job object comprising of several Workunits is created once
a user submits a Job. A Workunit is the minimum unit of a Job that one Device
has to execute and defines the Program Module executable and the Data to be
used. A Device during the polling state is assigned one Workunit. Fig. 7 shows
the standard Job execution form of Grid MP.

To implement ourproposed local search ondistributed computing environments
as shown in Fig. 6, the Program Module, which reads a data file in which individuals
to be searched are written and searches these individuals, must be prepared.

3.3 Overhead of Grid MP

We performed our proposed method in the heterogeneous distributed comput-
ing environment composed of machines belonging to RIKEN Genomic Sciences
Center (GSC)3 and Intelligent Design Systems Laboratory (ISDL) of Doshisha
University4. We used Grid MP platform version 4.0-3106. The specification of
machines used for the experiments is shown in Table 1. The User Machine in
Table 1 indicates the machine of a user who submits a job to the MP Server.

3 RIKEN GSC : http://big.gsc.riken.jp/
4 ISDL of Doshisha Univ. : http://mikilab.doshisha.ac.jp/
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Fig. 7. Aspect of Performance of Job Execution form of Grid MP

Table 1. Specification of Machines Used for the Experiment

Affiliation Machine name #Nodes Processor Memory
User Machine - - harrier 1 mobile Pentium 1.8GHz 1GB
MP Server naiad 1 Xeon 2.8GHz x 2 2GB

Doshisha forte01-15 15 PentiumIII 600MHz 128MB
Devices ISDL libra/tiger 2 Xeon 2.8GHz x 2 1GB

RIKEN GSC le01-23 23 Celeron 1.3GHz 896MB

There is overhead due to the distinctive characteristics of the distributed
computing environment, such as communication environment and latency of the
middleware architecture dispatch mechanism. The latency is caused by some
processes on the MP Server and the Devices, e.g., creation of a Job object and a
schedule of Workunits and downloads of Workunits from the File Service of the
MP Server.

We examined elapsed times of execution of the Job, the Workunit of which
was only assigned and required no calculation in Devices. The number of Worku-
nits included in the Job was set to 32, 64, 128, and 256. Polling interval was set
to 30 seconds and 1 minute. 30 seconds is the minimum feasible interval. Fig. 8
shows the average value of Job creation time and its execution time. The results
shown are from 10 trials.
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(a) Polling Interval: 30sec (b) Polling Interval: 1min

Fig. 8. Elapsed Times of Empty Job

A Workunit is allotted to a Device, which has sent idle state of CPU to the
MP Server several times. As a consequence of this, execution time is expected
to depend on polling interval. However Fig. 8 illustrates that this interval has
no effect much on elapsed times. It indicates that the execution time is taken
up by preliminary processes such as preparing Workunits for their assignments
rather than by Devices queuing.

From Fig. 8 the period time of Job creation increases exponentially as increas-
ing in Workunits, in contrast execution time will not increase. This is because
once the Device completes its assigned Workunit and sends result to the MP
Server, it obtains a Workunit again if incomplete Workunits stay still in the File
Service. Therefore the latency of dispatching is hidden seemingly.

4 Numerical Experiments

To discuss the effectiveness of our proposed method in both infinite and limited
computation, it was applied to the one max problem and 3-deceptive problem[18].
The former is the most primitive benchmark problem of bitstrings, and its fit-
ness is a summation of the number of ’1’ included in a chromosome. The latter
is one of trap functions described as equation (5):

F3−deceptive =
N∑
i=1

fi (5)

fi =




0.9, ui = 0
0.8, ui = 1
0.7, ui = 2
1.0, ui = 3

The effectiveness of our method is discussed by solving these problems with
limited computation. The following equations (6), (7), (8), and (9) are the con-
tinuous test functions:
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FRastrigin =
n∑
i=1

(
x2i − 10 cos(2πxi) + 10

)
(6)

xi ∈ [−5.12, 5.12)

FSchwefel =
n∑
i=1

−xi sin
(√

|xi|
)

(7)

xi ∈ [−5.12, 5.12)

FRidge =
n∑
i=1

( i∑
j=1

xj

)2
(8)

xi ∈ [−64, 64)

FGriewank = 1 +
n∑
i=1

x2i
4000

−
n∏
i=1

(
cos

( xi√
i

))
(9)

xi ∈ [−512, 512)

In addition, we applied our proposed method to prediction of protein ter-
tiary structures. Proteins in nature have structures with the lowest potential
energy. Therefore, their structures can be predicted by energy minimization.
To treat prediction protein tertiary structures as optimization problems, energy
functions that define the structures of proteins are used as objective functions, a
design variable of which is the dihedral angle among the atoms that make up the
proteins[19]. We compared our method to conventional GA for this problem and
examined the performance of the proposed method in the distributed computing
environment built using Grid MP.

4.1 Performance of the Proposed Method in Infinite Computation
Cost

We applied the proposed method to the one max problem and 3-deceptive prob-
lem with a string length of L=30 without limiting computing resources. This
search was terminated when all the combinations had been searched. An exhaus-
tive search needs 230 solutions. The ER model[20] was used as the alternation in
each generation. We applied a GA with uniform crossover and each couple, or
parents, generated 20 children by crossover. The mutation rate was 0.03(=1/L)
and population size was 20. The capacity of the database, NDB , was 5 in this
experiment.

Fig. 9 shows the transition of the fitness and the ratio of the searched region
on solving the one max problem. In Fig. 9(b), when the ratio of the searched
region attained 1.0, all the area had been searched.

The performance of the proposed method was similar to that of the con-
ventional GA. This was because the proposed method searched using mainly
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(a) History of fitness (b) History of the Searched Region
Rate

Fig. 9. Performance of GA using the Local Search Mechanism in the One Max Problem

Fig. 10. Performance of GA using the Local Search Mechanism in the 3-deceptive
Problem

schemes of GA. It is certain that the solution obtained by an exhaustive search
is the optimum, although the optimal solution is obtained in the earliest part
of the search. Moreover, these mechanisms enable us to show the quantitative
ratio of the searched region during the search as in Fig. 9(b).

Fig. 10 shows the transition of the fitness in the 3-deceptive problem. Both
the conventional GA and our proposed method fell into local optima in the
early stages of the search. In the 3-deceptive problem, it is difficult for GAs
to obtain the optimal solution because populations tend to be trapped by local
optima. Similar to a conventional GA, our proposed method obtains convergence.
Nevertheless, it can obtain the optimum as increases in computing costs yield
increases in the searched regions. As a consequence of this, the optimal solution
can be found by continuing the search.
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(a) Number of Successes (b) Number of Evaluations

Fig. 11. Performance of GA using the Local Search Mechanism with Continuous Func-
tions

4.2 Performance of the Proposed Method with Limited
Computation Cost

To perform the exhaustive search, many evaluations of individuals are required.
Our proposed method can perform an exhaustive search. It is expected that
the proposed method has a high possibility of finding the optimum solution in
the early stages of searches because it mainly uses schemes of GA. Therefore,
we then examined whether our method can obtain the optimum under limiting
evaluations.

We applied the proposed method to four test continuous functions to compare
it with conventional GA. In each function, an optimum solution was attempted
by the proposed method. Each function had 10 dimensions and the number of
evaluations was limited to 2.5x105. The ER model was used as the alternation
in each generation. We applied a GA with uniform crossover and each couple,
or parents, generated 20 children by crossover. We set the mutation rate to
0.01(=1/L) and the population size to 200. The capacity of the database, NDB ,
was set to 3, 5, 7, and 9 in this experiment.

Fig. 11 describes the number of trials that obtained the optimum and the
average number of evaluations needed to acquire the optimum. The results shown
are from 50 trials.

Fig. 11(a) illustrates that the proposed method and the conventional GA
obtained the optimal solution in all trials at Rastrigin function, Schwefel func-
tion, and Ridge function. The proposed method derived the optimal solutions
several times at Griewank function. In addition, Fig. 11(b) indicates that our
method could obtain the optimum with fewer evaluations than a conventional
GA although our proposed method required many evaluations at the local search
phase. These results indicated that our method also retained superior perfor-
mance with limited computing costs. We focused attention on the effects of
parameter NDB on the performance of our method. The numbers of successful
trials of NDB = 3 and 9 were greater than those of NDB = 5 and 7, whereas
the result of the number of evaluations was contrary in the Ridge function. In
contrast, the number of successful trials of NDB = 9 was better than those of
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NDB = 3, 5 and 7. As a result, there is no setting that can acquire a more op-
timal solution with fewer evaluations but the proposed method can search free
from the setting of parameter NDB .

4.3 Performance of the Proposed Method in Protein Tertiary
Structure Energy Minimization Problems

To discuss the performance of our method in real complex problems, we applied
the method to protein tertiary structure energy minimization problems. In this
experiment, we used OPLS-AA/L[21, 22], which is one of the potential energy
functions within the framework of classical mechanics consisting of certain energy
terms with force-field parameters, and examined our method on a small protein
named Met-enkephalin composed of 5 amino residues and 23 dihedral angles.

Applying this minimization problem to GA, the range of value of each dihe-
dral angle was [-π, π). An angle is expressed strings of 6 bits, i.e., it is divided
into 26 equal intervals. dMSXF[23] was used as the crossover and the alternation
in each generation. In all crossovers, the number of transitions, kmax, was set to
10 and the number of generating neighbor individuals of the respective step, µ,
was 10. Therefore, each couple, or parents, generated 100 children. We set the
population size to 40, 60, and 80. The capacity of the database, NDB , was set
to 5 in this experiment. The number of evaluations was limited to 1.2x105.

Table 2 shows the best, the average, the median and the worst value of
obtained energies. Our method retains the performance of a conventional GA in

Table 2. The Performance of Proposed Method on Met-enkephalin

Population GA+LS GA
Size best med∗ avg∗∗ worst best med avg worst
40 -282.6 -281.3 -281.4 -281.1 -283.0 -281.3 -281.5 -281.2
60 -282.2 -281.3 -281.4 -281.2 -282.0 -281.3 -281.4 -281.2
80 -283.2 -281.2 -281.2 -280.9 -282.1 -281.2 -281.2 -281.0

*:median, **:average

a complex problem, i.q., benchmark problems, such as the one max problem. The
latest reported minimum energy of this protein is approximately -287.5 obtained
by the method PSA/GAc[24]. This examination has not matured yet and needs
sophistication of the parameters to obtain better solutions.

We performed this experiment in a heterogeneous distributed computing en-
vironment shown in Table 1. To implement our method in this environment,
operations of the GA are executed on the User Machine. At the local search
phase, expanding the searched region is executed in parallel using 40 Devices,
forte01-15, libra, tiger, and le01-23. Fig. 12 illustrates the environment used for
the experiments.

From Fig. 8, at least approximately 400 seconds exist as overhead. The local
search is then executed on distributed environment when the size of the individ-
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Fig. 12. Computing Environment for Computational Experiments

Fig. 13. Elapsed Times of Local Search on energy minimization of Met-enkephalin

uals that should be searched surpasses a certain value. In the energy minimiza-
tion problem of Met-enkephalin, it is clear at pilot study that evaluations of 218

individuals take approximately 500 seconds using the User Machine. Thereby
evaluations in excess of 219 should be executed in this distributed environment.

We examined the elapsed time of the Job, which evaluated a set of individuals
represented with a maskstring. In this experiment, 219, 220, and 221 evaluations
were split to 32, 64, and 128 Workunits. In each setting of number of Workunits,
the total of evaluations was divided equally to Workunits, e.g., the number of
evaluations that each Workunit had was 214 where the number of Workunits was
set to 64 and total of evaluations was 220.

Fig. 13 shows the total execution times of energy minimization problem of
Met-enkephalin using Grid MP. The results are the averages of 10 trials.

It illustrates that our proposed method can execute faster on Grid MP than
only using the User Machine. In addition the execution time does not depend on
setting of Workunits essentially. Focusing at the result of 32 Workunits, execution
time is slightly much than 64 and 128 Workunits with 219 calculations. Grid MP
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(a) 220 calculations (b) 221 calculations

Fig. 14. Contribution of Devices

has the redundancy for its high performance and fault-tolerance. Some Devices
execute the same Workunit at a time and the fastest finished result is adopted
when total of Workunits is less than number of Devices. As a result, the waste
of calculations arises if no fault exists. In addition high spec machines will have
finished calculating and sending their results before low spec machines even if low
spec machines obtain Workunits earlier than high spec machines. Thus low spec
machines, which are assigned Workunits that high spec machines also execute,
cannot contribute their computation resources in the environment which has
excessive Devices against Workunits unless high spec machines lose connections
to the MP Server by some problems during executing Workunits.

Fig. 14 shows that the rate of Devices that are adopted their results, i.e., the
rate of contribution of Devices, with 220 and 221 calculations.

The contribution was much the same in all experiments except for the re-
sult 32 Workunits with 221 calculations. Few trials exist that forte01-15 could
contribute superficially in the experiment of 32 Workunits with 221 calculations.
In this implementation, one Workunit poses 216 calculations to a Device where
the number of Workunits is set to 32 and total of evaluations is 221. 216 calcu-
lations are so heavy that forte01-15 cannot finish the executable even if delays
of assignment of Workunits exist.

The number of Workunits has to be set bigger than the number of Devices.
The overhead increases in response to increasing in Workunits. Thus appropriate
number of Workunits should be set to yield high performance of proposed method
in a heterogeneous distributed environment with considering contributions of
Devices.

5 Conclusions and Future Work

GAs are suitable algorithms for parallel processing. However, increases in the
number of individuals and/or computing resources do not yield improvements
of performance in most methods because the diversity of the solution is also
increased. Our proposed method, Tabu · Local Search mechanism for Mega Pro-
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cess GA, can expand the searched region linearly as the available computing
resources increases. Furthermore, the exhaustive search is guaranteed under in-
finite computations, while the exhaustive search is not guaranteed with conven-
tional GAs. The proposed method was tested on the one max problem without
limiting computing resources. The results confirmed that the solution obtained
with this method is optimum by exhaustive search, although the optimal solution
is obtained in the earliest part of the search. In addition, we applied the pro-
posed method to four test continuous functions to derive the optimum solutions
for comparison with conventional GA. These results indicated that the proposed
method also retains superior performance with limited computing costs.

In addition we performed the proposed method in one of the instances of the
energy minimization problems of protein tertiary structures in a heterogeneous
distributed computing environment composed of 40 computation nodes belong-
ing to RIKEN GSC and ISDL of Doshisha University, which was built up with
Grid MP. We examined the execution time that included the overhead in this
environment and discussed the appropriate setting of number of Workunits with
considering overheads and contribution of computation nodes.

In future work, we will apply our proposed method to a large-scaled comput-
ing Grid and examine its effectiveness. Moreover, we will apply restarts in the
non-searched region when the population of the GA obtains convergences as the
proposed method can distinguish the non-searched region from the whole search
space.
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