
An Improvement of Database with Local Search Mechanisms for Genetic
Algorithms in Large-Scale Computing Environments

Yoshiko Hanada
Graduate School of Engineering,

Doshisha University
610-0321 Kyoto, Japan

hanada@mikilab.doshisha.ac.jp

Tomoyuki Hiroyasu
Department of Engineering,

Doshisha University
610-0321 Kyoto, Japan
tomo@is.doshisha.ac.jp

Mitsunori Miki
Department of Engineering,

Doshisha University
610-0321 Kyoto, Japan

mmiki@mail.doshisha.ac.jp

Abstract- Recently, GA that uses large-scale computer
systems comprised of massive processors has become
feasible because of the emergence of super PC clusters
and Grid computation environments. Mechanisms to
use massive computation resources laconically and to
search effectively are necessary if large-scale computer
systems are available. In this study, a new GA-specific
database with the local search mechanism to assure the
scalability of search performances against the number
of computing resources is proposed. Our database pos-
sesses information of searched space, and in addition,
the local search for non-searched spaces is applied us-
ing individuals stored in the database. To embed our
database in a GA enables us to comprehend the quan-
titative rate of a searched region during searches. Ap-
plying this local search, the searched space can be ex-
panded linearly in accordance with the increase in com-
puting resources and the exhaustive search is guaran-
teed under infinite computations. The features of the
introduced GA are discussed with reference to several
types of experiments. This method was applied to prim-
itive functions and test functions of continuous optimiza-
tion problems. Through such experiments, it was shown
that our method ensures an effective exhaustive search
and has almost the same performance as a conventional
GA.

1 Introduction

Genetic Algorithms (GAs) are among the most effec-
tive approximation algorithms for optimization problems.
Various mechanisms for improving GAs have been dis-
cussed. Minimal Generation Gap (MGG)[1] was pro-
posed as a generation alternation model. Methods using
Linkage Identification[2, 3], Real-coded GA[4], and Dis-
tributed GA[5] are other GAs with strong search capabili-
ties. Restart mechanisms have also been applied to enhance
the performance of GAs[6, 7, 8, 9]. However, application of
a GA to solve optimization problems has the drawback that
these algorithms incur large computing costs. One solution
to this problem is to perform GAs in parallel. GAs are well
suited to parallel processing environments due to their abil-
ity to search with multiple points and their tolerance for ex-
tinction of search points, and consequently GAs have found
applications in large-scale computing[10, 11, 12, 13]. In re-
cent decades, the remarkable improvements in computing
capabilities have rendered some of the drawbacks regard-

ing the computing costs of GAs unimportant. Furthermore,
parallel processing is used to yield increases in performance
of GAs. Due to the recent emergence of super PC clus-
ters and Grid computation environments, such as PC Grid
comprised of desktop machines for home use or offices, the
number of computational calculation resources is increas-
ing. Thus, large computing projects in fields related to evo-
lutionary computing have become feasible. However, the
application of GAs on large-scale computer systems com-
posed of massive processors, i.e., Mega Processors, has
the drawback that these algorithms lack scalability in their
performance improvement in accordance with increases in
available computing resources. Therefore, huge computing
resources cannot be used effectively. This is caused by over-
lapping searches as described in the next section.

In this study, we introduce a GA-specific database that
possesses information regarding the space that has been
searched already to avoid overlapping searches and make
effective use of computing resources in consideration of
scalability of search performance when GAs use large com-
puter resources. The targets of our research are: 1) to de-
sign a database to store searched individuals, 2) to introduce
the Tabu · search mechanism including the searched region
and restart strategies in the non-searched region using the
database, and 3) to apply our method in large-scale com-
puting systems. In this paper, we discuss 1) and 2). In our
previous work, we proposed the expression of the searched
region using schemata and a local search mechanism as a
compression method to store large regions searched by sev-
eral individuals. We then showed that the searched space
could be expanded as the number of computing resources
increased, enhancing accuracy and reliability by applying
the database with the local search mechanism to a GA, and
it was clear that the proposed method also showed superior
performance with limited computing costs[14]. Neverthe-
less, in this work, there was the drawback that computing
costs increased exponentially in accordance with genera-
tions. In this paper, we proposed a new database and local
search based on our previous work.

2 Drawback of GAs in large-scale computing
systems

Although they are well suited for parallel processing GAs
lack scalability of improvement in their performance in ac-
cordance with increases in available computing resources
when large amounts of computer resources are available.

The most common method used for conventional GAs with
regard to increased resource use is to increase the population
size. However, increasing the number of individuals cannot
yield increases in performance of GAs because enlarging
the population also increases the diversity of the solutions,
i.e., the convergence speed becomes slow, and consequently
the optimum solution is not derived rapidly when GAs use
large amounts of computing resources. Another way to
make use of huge computing resources is parallelization of
multiple populations where GAs are run on each node in-
dependently. GAs are superior algorithms that can obtain
satisfactory solutions in the early stages of the search with
small computing costs. However, searches overlap within
a population and among several populations due to conver-
gence. In addition, multiple trials applying restart strategies
may converge to the same solution.

Fig. 1 shows the increases in the searched region against
increases in number of trials of the GA in the 2-dimensional
Rastrigin function. In this figure, the abscissa indicates the
number of trials or computation nodes, the left ordinate is
the rate of searched regions, and right ordinate is the total
number of evaluations. In this experiment, a single variable
was expressed as strings of 10 bits, and thus the scale of the
whole search space was 220(=1.05 x 106).

The ER model[15] was used as the alternation in each
generation. We applied a GA with uniform crossover and
each couple, or parents, generated 20 children by crossover.
The mutation rate was 0.05 (=1/L, where L is the chromo-
some length) and the population size was 10. The termina-
tion of each generation was set to 20 and 2010 evaluations
were achieved. Thus, approximately 1.0x106 evaluations
could be performed using 500 nodes, which was worth the
exhaustive search.

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300 350 400 450 500

Scale of whole search space

Number of trials / nodes

Number of evaluations

Rate of searched region

N
u
m

b
e
r
o
f
e
va

lu
a
tio

n
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
a
te

 o
f
se

a
rc

h
e
d
 r
e
g
io

n

6(x10)

Figure 1: Increases in searched region against the number
of evaluations

Fig. 1 illustrates that the rate of the region searched
did not increase in comparison with increases in number
of evaluations. In addition, only 20% had been searched
although nearly exhaustive searches had been performed.
This resulted in a waste of calculations.

Another way is to divide the whole search space into a
number of segments, and the GA then runs on each seg-
ment independently. The segment number is increased in
accordance with increases in available computing resources.
Therefore, the possibility of overlapping increases due to
segmentalization of the search space.

Due to these drawbacks, GAs cannot be utilized effec-
tively on large-scale computer systems composed of mas-
sive processors because of the overlapping of searches.

3 Database Structure for Storing Individuals

In this study, we introduce a GA-specific database that car-
ries information regarding the regions that have already
been searched to avoid search overlap. When a database
stores all the individual information, it takes a large time
to check an individual that has already been searched due
to the vast amounts of data. All search regions should
be stored as highly compressed expressions and checking
of individuals stored in the database should not be time-
consuming. In this section, we describe the expression of
the searched region.

3.1 Expression of Searched Regions

We used binary-coded individuals, and an individual or set
of individuals is represented by 2-dimensional coordinates
using the mapping method proposed by Collins, which con-
verts the multidimensional search space to a 2-dimensional
plane[16]. In this mapping method, an individual is treated
as the coordinates (x, y), where the integer x is coded by
Gray-coding from the string composed of genes of 2k-th
loci extracted from the chromosome, and integer y is coded
from the string of extracted (2k+1)-th loci. Each individ-
ual has a one to one correspondence with a set of coor-
dinates. Hence, the 2-dimensional plane can express the
whole space. An example of representation of an individual
by this mapping is shown in Fig. 2.

(5 ,6)

Individual 2-dimensional
coordinate

1 1 0 1 1 1

2k-th loci : 1 1 1 (gray code) = 5

(2k+1)-th loci : 1 0 1 (gray code) = 6

1 6532 4locus:

Figure 2: Example of coding an individual to 2-dimensional
coordinates

This method is based on Gray-coding and the Hamming
distances between neighbors are always 1 at each point.
Thus, proximity on the 2-dimensional plane can locally cor-
respond to the proximity between binary strings, and conse-
quently structurally similar individuals can be treated as a
contiguous region. Therefore, this method is appropriate to
store all searched individuals in a small database.

In our proposed database, the set of individuals that have
contiguous coordinates on the 2-dimensional plane are rep-
resented by a rectangle and are stored by two diagonal ver-
texes (xmin, ymin), (xmax, ymax) of the rectangle. In addi-
tion, the best individual in the searched region is stored.

Fig. 3 illustrates the whole search space of a problem
consisting of 6 bits represented as a 2-dimensional plane
and examples for a set of individuals represented as rect-
angles. Fig. 4 shows the database that possesses searched
regions shown in Fig. 3. In this figure, a rectangle is repre-

sented with (xmin, ymin)-(xmax, ymax), which are diagonal
vertexes.

000000 010000000001 010001000101 010101000100 010100

100000 110000100001 110001100101 110101100100 110100

001000 011000001001 011001001101 011101001100 011100

101000 111000101001 111001101101 111101101100 111100

000010 010010000011 010011000111 010111000110 010110

001010 011010001011 011011001111 011111001110 011110

101010 111010101011 111011101111 111111101110 111110

1

1

0

0

2

2

3

3

4

4

5

5

6

6

7

7

(1 ,7)

(3 ,3)

(4 ,6)

(2 ,0)

(4 ,1)

Best

Best

y

x

100010 110010100011 110011100111 110111100110 110110

Figure 3: An Example of a 6-bit Problem Space created by
the Mapping

Searched region

data1

data2

data3

Size of
searched regionBest individual

(2,0)-(4,1)

(3,3)-(4,6) 8 (4x2)

 6 (2x3)

 1 (1x1)

11111 0

0 0 0 111

1 0 0 0 0 1(1,7)-(1,7)

Figure 4: Database representing searched regions illustrated
in Fig. 3

This notation enables us to comprehend the quantitative
rate of the searched region by calculating the square mea-
sure of the rectangle.

4 Operations in the Database

Our proposed database possesses searched individuals in
the GA search using the expression described in the pre-
vious section. In addition, using individuals stored in the
database, a local search for the space that has not been
searched is applied to use idle computing resources of enor-
mous computing environments effectively.

4.1 Local Search

In our proposal local search, rectangles stored in the
database as searched regions are expanded vertically and
horizontally on a 2-dimensional plane. The rectangle (xmin,
ymin)-(xmax, ymax) is expanded as follows:

Rightward expansion. Set of individuals i=(xmax + 1, y)
where ymin ≤ y ≤ ymax should be searched and xmax is
then updated to xmax + 1.

Leftward expansion. Set of individuals i=(xmin − 1, y)
where ymin ≤ y ≤ ymax should be searched and xmin is
then updated to xmin − 1.

Upward expansion. Set of individuals i=(x, ymax + 1)
where xmin ≤ x ≤ xmax should be searched and ymax is
then updated to ymax + 1.

Downward expansion. Set of individuals i=(x, ymin − 1)
where xmin ≤ x ≤ xmax should be searched and ymin is
then updated to ymin − 1.

In one step in our proposed local search, each rectangle
is expanded vertically and horizontally by 1. Fig. 5 shows
an example for one step of the local search. In this figure,
the area framed by the heavy line is the set of individuals
that are required to search additionally.

000000 010000000001 010001000101 010101000100 010100

100000 110000100001 110001100101 110101100100 110100

001000 011000001001 011001001101 011101001100 011100

101000 111000101001 111001101101 111101101100 111100

000010 010010000011 010011000111 010111000110 010110

001010 011010001011 011011001111 011111001110 011110

101010 111010101011 111011101111 111111101110 111110

1

1

0

0

2

2

3

3

4

4

5

5

6

6

7

7

(1 ,7)

(0 ,6)

(3 ,3)

(4 ,6)

(5 ,7)

(2 ,0)(1 ,0)

(4 ,2)

(4 ,1)

Best

Best

y

x

100010 110010100011 110011100111 110111100110 110110

Figure 5: Example of a Local Search

The directions of longitudinal expansion and lateral ex-
pansion are determined by fitness of the best individuals on
the edges of the rectangle. The direction of lateral expan-
sion is determined as Fig. 6, where the best individual on
the right edge is represented as ia=(xmax, y∗), the best indi-
vidual on the left edge is represented as ib=(xmin, y∗∗) and
the fitness of individual i is denoted F(i). The direction of
longitudinal expansion is also determined in a similar way.

if F (ib) < F (ia): Expand rightward

otherwise: Select righitward or leftward randomely

else if F (ia) < F (ib): Expand leftward

Figure 6: Direction of Expansion

The characteristics of the mapping method, which con-
verts a multidimensional space to a 2-dimensional plane,
should be considered during determination of the direc-
tion of expansion as the performance of this local search
is dependent on the mapping method used. In the map-
ping method used in the present study, proximity on the
2-dimensional plane can correspond locally to closeness be-
tween binary strings, but this is not true globally. In expan-
sion of a rectangle, the neighborhoods of the individuals on
the edge would be searched. Therefore, it is appropriate
that the best individuals on the edges are used to intensively
search individuals in the direction in which good solutions
were found.

Parallelization is applicable to this local search by al-
lotting each rectangle to computation nodes. There are
no strong dependencies and little communication among
searches. This is expected to yield high throughput compu-
tation. Moreover, the searched space increases linearly with

increasing computing resources and an exhaustive search is
guaranteed with infinite computations.

Our previous local search had the drawback that com-
puting costs increased exponentially in accordance with the
number of steps. The local search proposed here does not
overweigh the search of GA as the required computing costs
only increase linearly. In addition, this local search is suit-
able for the merge operation described in the next section to
avoid overlapping of searched in the local search process in
the database.

4.2 Merge Operation in the Database

Following the local search, a merge of individuals stored
in the database is performed to avoid overlapping searches
in the process of the local search. When there is overlap
among some searched regions, they are merged to one re-
gion as follows.

When the region Ia=(xa
min, ya

min)-(xa
max, ya

max) and
Ib=(xb

min, yb
min)-(xb

max, yb
max) satisfy Ia ∩ Ib �=

φ, Ib is expanded until it can include Ia, and Ia

is then deleted. In this merge operation, Ib be-
comes I ′b = (min(xa

min, xb
min), min(ya

min, yb
min)) −

(max(xa
max, xb

max), max(ya
max, yb

max)) by searching I ′b ∩
¬(Ib ∪ Ia), where min(x1, x2) = x1, max(x1, x2) = x2 if
x1 < x2. Fig. 7 shows an example for this merge.

110001100101 110101100100 110100

011001001101 011101001100 011100

111001101101 111101101100 111100

010011000111 010111000110 010110

011011001111 011111001110 011110

111011101111 111111101110 111110

2

3

3

4

4

5

5

6

6

7

y

x

110011100111 110111100110 110110

I b

I b'

': I b I a I b

I a

Figure 7: Example of a Merge

In this study, the merge operation was applied following
one local search step because we examined our method on
one local machine. When our method is implemented on
large-scale computing systems, it will be necessary to syn-
chronize the nodes that have regions that must be merged
partially if there are combinations to be merged.

5 Numerical experiment

The proposed database was built into a GA, and its effec-
tiveness was examined. Here, the searched region is ex-
pressed as proposed, and its influence on the search solution
will be discussed. There are various usages for the database
proposed in this research with GA, but in this experiment,
a local search was conducted alternately with a GA using
individuals stored in the database. To obtain a good solu-

tion at as early a stage as possible, the search was advanced
based on the GA. The proposed method is outlined in Fig.
8.

Figure 8: The Flow of a GA with the Proposed Database

First, the population in the GA is initialized. The num-
ber of individuals in the database at initial generation is
0. Next, genetic operations, such as crossover, mutation,
and selection, are conducted in the population of GA, and
the best individual of the population is preserved in the
database. However, if this individual is already preserved
in the searched region of the database, it will not be pre-
served again. Next, a local search operation is applied to all
individuals in the database. When an individual with better
fitness than the individual of interest is found, the copy of
the individual will replace the worst individual in the GA
population.

The database was built into the GA as described above,
and its search performance was examined. The 1-max prob-
lem, which is a primitive bit test problem, the 3-deceptive
problem (1) [17], which is a trap function, Rastringin func-
tion (2), Schwafel function (3), Ridge function (4), and
Griewank function (5), which are continuous function test
problems, were used as test problems. In the 1-max prob-
lem, the number of 1s in the chromosome is the fitness. The
1-max problem is a typical bit testing problem for GA, and
the results indicated the effectiveness of the implementa-
tion of the proposed method. For the 3-deceptive problem,
a search is difficult using a GA; however, the results indi-
cated that by having the database it was possible to find an
optimal solution. The effectiveness of the proposed method
was also demonstrated through the testing of four kinds of
continuous functions.

F3−deceptive =
N∑

i=1

fi (1)

fi =

0.9, ui = 0
0.8, ui = 1
0.7, ui = 2
1.0, ui = 3

FRastrigin =
n∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

(2)

xi ∈ [−5.12, 5.12)

FSchwefel =
n∑

i=1

−xi sin
(√

|xi|
)

(3)

xi ∈ [−5.12, 5.12)

FRidge =
n∑

i=1

(i∑
j=1

xj

)2

(4)

xi ∈ [−64, 64)

FGriewank = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

(
cos

(xi√
i

))
(5)

xi ∈ [−512, 512)

5.1 Features of search of the proposed method

As the search method discussed in this research is the GA,
the possibility of finding an optimal solution at a relatively
early stage is high. By combining it with the proposed
database, the searched region is indicated in addition to the
conventional features, and even when the search is difficult
using a GA, it is possible to find an optimal solution by in-
creasing the number of calculations. In this section, a 20-bit
1max problem and a 30-bit 3-deceptive problem were used
to examine the characteristics of the search conducted by a
GA with a database that has the local search mechanisms
built in, without limiting the calculation cost. The sizes of
all search regions were 220 for the former and 230 for the lat-
ter. The search was finished when all solutions were eval-
uated. The ER model was used as the alternation in each
generation. We applied a GA with uniform crossover and
each couple, or parents, generated 20 children by crossover.
The mutation rate was 1/L (L: chromosome length) and the
population size was 20.

The fitness in the 1-max problem is shown in Fig. 9, in
which the solid black line shows the results obtained using
the proposed method (GA + LS) and the broken gray line
shows the results of a conventional GA. The history of ra-
tio of the searched region in the proposed method and the
transition of the number of evaluation calculations in local
search are shown in Fig. 10, in which a ratio of the search
region of 1.0 indicates that all searches are complete. These
results are from one trial.

As the search in the proposed method is conducted based
on a GA, it has search performance equivalent to that of a
conventional GA. In this problem, the optimal solution was
obtained at the beginning of the search, and completion of
all searches was performed to ensure that the obtained so-
lution was optimal. In addition, by building a database into
the GA, it was possible to confirm how much of the search
was conducted in all of the search space to obtain the solu-
tion. Focusing on the required calculation amount for the

14

16

18

20

F
itn

e
s
s

10

Generations

optimum

0 20 30 40

Figure 9: History of fitness in the 1-Max Problem

600

Generations
0 200 800 1000

2000

0

500

1500

1000

400
0.0

0.2

0.4

0.6

0.8

1.0

R
a
te

 o
f
se

a
rc

h
e
d
 r
e
g
io

n Scale of whole search space

Rate of s
earch

ed re
gion

Number o
f e

valuatio
n in

 lo
cal search

N
u
m

b
e
r
o
f
e
va

lu
a
tio

n
s

in
 l
o
c
a
l
s
e
a
rc

h

Figure 10: History of the Searched Region Rate and Num-
ber of Evaluations in the 1-Max Problem

local search at each generation for Fig. 10, it increased lin-
early despite being disturbed in several places due to merg-
ing, and the total searched region increased quadratically.

The transition of the fitness in the 3-deceptive function is
shown in Fig. 11. The 3-deceptive problem is designed such
that the population in the GA is likely to converge to a local
optimum, and it is a difficult problem in which to obtain a
global optimal solution using a GA. As shown in Fig. 11,
the proposed method converged to the local optimum at the
beginning of the search, as seen in a conventional GA, but it
obtained the optimal solution by continuing the search. This
was because the searched region expanded with amount of
calculation resources or cost put towards the search, and the
proposed method is guaranteed to obtain the optimal solu-
tion if an enormous amount of search and infinite calcula-
tion are used.

10.0

8.0

8.5

9.0

9.5

100

F
itn

e
s
s

0 200 300 400

Generations

optimum

Figure 11: History of fitness in the 3-deceptive Problem

5.2 Influence of search by building the database into the
GA

In this method, a large amount of evaluation calculation is
necessary in the local search. When calculation resources
and/or cost are limited, the GA cannot conduct a sufficient
search and the performance is reduced in comparison to the
conventional GA. Here, the search ability when the number
of evaluation calculations is limited was examined. Four
continuous functions were used to compare the search abil-
ities of the GA and the proposed method. Both use ten-
dimensional problems. The size of the population was set
to 100, and the maximum number of evaluation calculations
was limited to 3x105, 5x105, 1x106, and 2x106. The ER
model was used for the generation alternation model in GA.
The uniform crossover was used. The number of generated
children in one crossover was set to 20, and the mutation
rate was set to 1/L. The results of 300 trials comparing
the number at which the optimal solution was obtained are
shown in Fig. 12.

0.5 1.0 2.0
(x10)6

0.3

#Evaluations

#
S

u
c
e
s
s
e
s

0.0

0.2

0.4

0.6

0.8

1.0

(a) Rastrigin

0.5 1.0 2.0
(x10)6

0.3

#Evaluations

#
S

u
c
e
s
s
e
s

0.0

0.2

0.4

0.6

0.8

1.0

(b) Schwefel

: GA + LS

: GA

0.5 1.0 2.0
(x10)6

0.3

#Evaluations

#
S

u
c
e
s
s
e
s

0.0

0.2

0.4

0.6

0.8

1.0

(c) Griewank

0.5 1.0 2.0
(x10)6

0.3

#Evaluations

#
S

u
c
e
s
s
e
s

0.0

0.2

0.4

0.6

0.8

1.0

(d) Ridge

Figure 12: Number of trials at which the method obtained
the optimum solution

The results shown in Fig. 12 indicate that, depending
on the problem, when the calculation frequency is too small
a sufficient search cannot be performed using our method
and the performance is decreased. In our method, some
amount of calculation is necessary to maintain the search
performance of GA, and by increasing the number of eval-
uation calculations, the performance will improve and the
search ability of GA can be almost maintained; however, de-
creased performance was seen in the Griewank function as
compared to the conventional GA. In the proposed method,
an intensive local search is conducted near the good solu-
tion, and when a better solution is obtained, it is copied to
the population. This allows the population of the GA to
evolve rapidly, and a good solution is expected in the early
stages of the search, but the conversion is also seen earlier.

This is the reason for the performance seen in the Griewank
function.

One of the scales used to measure the convergence of a
population is entropy[18]. Based on the frequency of the al-
lelic gene in the loci, it is defined as a scale to measure gen-
eration efficiency through crossover and mutation, as shown
in equation (6), where pij is the frequency of the allelic gene
j at the locus i. L denotes the length of the chromosome
and M denotes the number of allelic genes. The smaller
the value of H , the gene in each locus is biased, and this
indicates that the diversity of the entire population is being
lost.

Entropy H �
L∑

i=1

(−
M∑
i=j

pij log pij) (6)

Transitions of the entropy of the proposed method
(GA+LS) and GA in the Griewank function are shown in
Fig. 13, which indicates the ratio to the entropy of initial
population.

100 120 140

Generations
0 20 60 8040

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p
y
 R

a
te

Figure 13: History of Entropy

Fig. 13 shows that the convergence of the proposed
method is faster than the GA. In the proposed method, even
when the search ability of the GA population is lost by con-
vergence, it is possible to continue the local search, and
the accuracy and quality of the solution will improve. To
conduct an efficient search of the promising area with a
small number of search points using a GA, it is necessary
to recover the search ability to efficiently generate solutions
through crossover or mutation.

6 Examination of Expansion of Searched Re-
gion by Applying Restart

One characteristic of the proposed method is that the
searched and non-searched regions are completely sepa-
rate. As repetition of the search can be avoided easily
by initialization of the population in the non-searched re-
gion when the population in the GA converges, a restart
strategy is suitable for our method. In addition, when the
computational cost is limited, the solutions obtained by re-
ducing the size of the population and by conducting mul-
tiple searches by restarting have been reported to be bet-
ter than the solution obtained by a single search in one
large population[19]. Therefore, restarting was applied to
strengthen the search performance of the proposed method

and expansion of searched region under applying restart was
examined.

When restarting is applied, the tabu list that stores the
searched regions obtained from the previous searches is in-
troduced in addition to the database. When the population
is initialized, the searched region stored in the database is
moved to the tabu list, and the database is emptied. Af-
ter restarting, the good solution obtained using the GA is
freshly saved in the database, and local search is conducted.
No local search is conducted in the regions stored in the tabu
list, and when the evaluation calculation is conducted in the
GA, if the evaluated individual is in the list, repetition of the
search by multiple trials and convergence to the same solu-
tion are prohibited by returning a bad value as an evaluation
value.

As described above, the past search was used as the tabu
list, and the search performance of the proposed method
with the application of restarting was examined. Here,
we will describe the improvement of search performance,
and the observation that it is possible to save and expand
searched regions even after restarting is applied. Restarting
is applied when the population is converged. In this exper-
iment, whether it had converged was decided based on the
entropy described in the previous section, and restarting is
applied when the ratio to the entropy of the initial popula-
tion becomes smaller than the preset value. Although var-
ious studies have examined the timing of the restart, such
as dynamic or static scheduling, this is out of scope of the
present study and we will discuss this in our future work.
The ratio of entropy when restarting is applied was set at
multiple values of 0.01, 0.03, 0.05, 0.08, and 0.09 in this
experiment. The parameters of GA were the same as in the
previous section, and the ten-dimensional Griewank func-
tion was used as the testing problem.

The number of times the optimal solution was obtained is
shown in Fig. 14. The transition of the ratio of the searched
region, when entropy in which restarting was applied was
set at 0.03, as shown in Fig. 15.

#
S

u
c
e
s
s
e
s

0.0

0.2

0.4

0.6

0.8

1.0

No restart 0.030.01 0.05 0.07 0.09

Entropy

Figure 14: Number of trials where the method obtained the
optimum solution

Although the performance differs depending on the tim-
ing, as shown in Fig. 14, by applying the restart, search
ability constantly above a certain level can be given to the
GA, and the search performance can be improved. In addi-
tion, even when the restart is applied as shown in Fig. 15,
the searched region can be certainly increased and will be

100 5004003002000

Generations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(x10)-24

R
a
te

 o
f
se

a
rc

h
e
d
 r
e
g
io

n

Restart

Restart

Restart

Mininum Entropy = 0.03

Restart

Figure 15: History of Searched region rate

expanded in accordance with the number of restart because
the search is prohibited from overlapping by the tabu list. A
large-scale experiment will be required to examine the ef-
fects of reference to the tabu list, because it is necessary to
accumulate an enormous quantity of data in the list. This
examination will be conducted in our future studies.

7 Conclusions

In this study, we proposed a GA-specific database with a
local search mechanism to facilitate scalability of search
performance in huge computing environments, and as an
approach to achieve search capability at limited computa-
tional cost. In the database that stores the searched region
to avoid repetition of the search, local searches are con-
ducted concentrating on the non-searched region to expand
the searched region. The size of the searched region can be
understood quantitatively by applying the database to a GA.
When the calculation resources or the computational cost
is increased, the searched region is enhanced, resulting in
increases in accuracy and reliability. A complete search is
guaranteed when infinite calculations are performed using a
huge computational resource. Our previous local search had
the drawback that computing costs increased exponentially
in accordance with the number of steps. We showed that the
local search proposed here does not overweigh the search of
GA as the required computing costs only increase linearly.

We built the proposed database into a GA, and applied
the proposed method to a primitive bit testing problem and
a continuous optimization problem. The results indicated
that when calculation cost is unlimited, the searched region
can be determined, and the solution obtained by all searches
is guaranteed to be an optimal solution. Even in problems
in which that GA falls easily into the local optimum, the
optimal solution can be obtained by advancing the search
by a local search. In addition, even when the calculation
cost is limited, the results obtained were almost equivalent
to those obtained by a conventional GA. Applying restart
improved the search performance, and it was shown that the
searched region could be certainly increased and would be
expanded in accordance with the number of restart because
the search was prohibited from overlapping by the tabu list.

We plan to implement the proposed method in a large
computing environment and examine its effectiveness in fu-
ture studies.

Bibliography

[1] H. Satoh, M. Yamamura and S. Kobayashi: Minimal
Generation Gap Model for GAs Considering Both Ex-
ploration and Exploitation. Proc. of IIZUKA. pp.494-
497. 1996

[2] H. Kargupta: SEARCH, polynomial complexity, and
the fast messy genetic algorithm. University of Illi-
nois at Urbana-Champaign, Urbana, IL. IlliGAL Re-
port No. 95008. 1995

[3] G. R. Harik: Linkage learning in via probabilis-
tic modeling in the ECGA. University of Illinois at
Urbana-Champaign, Urbana, IL. IlliGAL Technical
Report No. 99010. 1999

[4] I. Ono and S. Kobayashi: A Real-coded Genetic Algo-
rithm for Function Optimization Using Unimodal Nor-
mal Distribution Crossover. Proc. of 7th Int. Conf. on
Genetic Algorithms. pp.246-253. 1997

[5] Reiko Tanese: Distributed Genetic Algorithms. Proc.
3rd International Conference on Genetic Algorithms.
pp.434-439. 1989

[6] T. Jansen: On the Analysis of Dynamic Restart Strate-
gies for Evolutionary Algorithms Proc. Parallel Prob-
lem Solving from Nature - PPSN VII, 7th International
Conference. pp.33-43. 2002

[7] Alex S. Fukunaga: Restart Scheduling for Genetic
Algorithms, Lecture Notes in Computer Science,
vol.1498, pp.357-369. 1998

[8] Sean Luke: When Short Runs Beat Long Runs, Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference, pp.74-80. 2001

[9] J. Maresky et al.: Selectively Destructive Restart,
Proc. of Sixth International Conference on Genetic Al-
gorithms, pp.144-150. 1995

[10] Yusuke Tanimura: Development of Master-Worker
System for The Computational Grid. Information Pro-
cessing Society of Japan: Computing System. vol45,
No.SIG6(ACS6), pp.197-207, May 2004. in Japanese

[11] Hiroaki Imade et al.: A Grid-Oriented Genetic Algo-
rithm for Estimating Genetic Networks by S-Systems,
Proc. SICE Annual Conf. pp3317-3322, 2003

[12] Hiroaki Imade et al.: A framework of grid-oriented ge-
netic algorithms for large-scale optimization in bioin-
formatics Proc. of The Congress on Evolutionary
Computation in Canberra. vol.1, pp623-630, 2003

[13] H. Nakata et al.: Protain structure optimizaion using
Genetic Algorithm on Jojo Journal of Information Pro-
cessing Society of Japan. 2002-HPC-93, pp. 155-160,
2003. in Japanese

[14] Y. Hanada et al.: Mega Process Genetic Algorithm Us-
ing Grid MP Life Science Grid 2004 Revised Selected
and Invited Papers, Lecture Notes in Computer Sci-
ence, vol.3370, pp. 152-170, 2005

[15] D. Thierens, D. E. Goldberg: Elitist Recombination:
an integrated selection recombination GA Proceedings
of the 1st IEEE Conference on Evolutionary Compu-
tation pp.508-512. 1994

[16] Trevor D. Collins: Understanding Evolutionary Com-
puting: A Hands on Approach, KMI-TR-48 (Knowl-
edge Media Institute The Open University UK)
September 1997

[17] Martin Pelikan et al.: BOA:The Bayesian Optimiza-
tion Algorithm. IlliGAL Report No. 99003 1999

[18] N. Mori et al.: A Thermodynamical Selection Rule for
the Genetic Algorithm, Proc. IEEE ICEC 95, pp.188-
192, 1995

[19] David E. Goldberg Erick Cantú-Paz: Are Multiple
Runs of Genetic Algorithms Better than One? Proc.
Genetic and Evolutionary Computation Conference
2002, pp. 801-812, 2002.

