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ABSTRACT
Distributed Probabilistic Model-building Genetic Algo-
rithms (DPMBGAs) are a new type of Genetic Algorithm.
In the DPMBGA, when the offspring are generated, Princi-
pal Component Analysis (PCA) considers the correlations
among the design variables. Moreover, this model applies
the island model to maintain population diversity. The ef-
fectiveness of DPMBGA has been demonstrated through
optimization of continuous functions. This paper describes
the effectiveness of the parameters in the DPMBGA. Ex-
periments indicated that these parameters are important
factor for maintenance of the diversity of the population.

KEY WORDS
Optimization, Genetic Algorithms and Evolutionary Com-
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1 Introduction

Genetic Algorithms (GA) are stochastic search algo-
rithms based on the mechanics of genetics and natural
selection[1]. In GA, the searching point in the search space
is considered as an individual in a living population. GA
can find an optimal solution after a number of repeats of
the operations: selection, crossover, and mutation. In GA,
the key issues for effective searching are how to maintain
the diversity of the population, treat the correlations among
design variables, and to inherit the characteristics of the
parent by the child.

Distributed Probabilistic Model-building Genetic Al-
gorithms (DPMBGA)[2] are hybrid methods of Distributed
Genetic Algorithms (DGA)[3] and Probabilistic Model-
building Genetic Algorithms (PMBGA)[4]. PMBGAs
are also called Estimation of Distribution Algorithms
(EDA)[5]. The factors of distributed population maintain
the diversity of the solutions. In PMBGA, the good char-

acters of parent individuals are inherited by child individu-
als, because the latter are produced by statistical informa-
tion of the parent individuals. Moreover, in the DPMBGA,
when offspring are generated, Principal Component Analy-
sis (PCA) considers the correlations among the design vari-
ables. Therefore, it is thought that DPMBGA has greater
search ability. However, there are several parameters in
DPMBGA, and the derived solution depends strongly on
these parameters. Therefore, the present study was per-
formed to examine the effectiveness of the parameters for
search ability.

2 Distributed Genetic Algorithm

The Single Population Genetic Algorithm (SPGA) has two
problems: the high calculation cost, and the possibility of
premature convergence to local optima. One of the solu-
tions to these problems is to use a Distributed Genetic Al-
gorithm (DGA).

In DGAs, the population is divided into sub-
populations (islands). The Genetic Operators are per-
formed in each sub-population. Therefore, DGA is also
called the Island model. Moreover, DGAs inlcude the oper-
ation called migration in which some individuals are trans-
ferred to other islands in every certain generation. The In-
terval of migration and Rate of individuals by migration are
called Migration Interval and Migration Rate, respectively.
DGAs have been reported to be able to find better solutions
than SPGAs [3]. In the present study, a DGA was applied
to maintain the diversity of individuals.

3 Probabilistic Model-Building Genetic Al-
gorithm

The procedures of the Probabilistic Model-Building Ge-
netic Algorithm (PMBGA) are as follows. First, some in-
dividuals with higher fitness values are selected from the



population. Then, new search points are generated from the
probability distribution of the selected individuals. These
new points are substituted with individuals in the main pop-
ulation. This operation is repeated until terminal condition
is satisfied.

An overview of PMBGA is shown in Fig. 1.
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Figure 1. PMBGA

4 Distributed Probabilistic Model-Building
Genetic Algorithm

4.1 Flow of DPMBGA

DPMBGAs are a type of DGA and the main population is
divided into a number of sub-populations. Operations of
PMBGA are performed in each island, and individuals in
the islands are transferred to other islands in every certain
generation.

An overview of DPMBGA is shown in Fig. 2.
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Figure 2. DPMBGA

In the DPMBGA, the following procedures are per-
formed at the generation t.

1. Some individuals are transferred to other island by mi-
gration method.

2. The elite individual is reserved.

3. The individuals with good values of fitness are sam-
pled.

4. The above individuals are transferred by the PCA into
the new space.

5. New individuals are generated into the new space.

6. New individuals are transferred into the original
space.

7. New individuals are substituted for old individuals.

8. The mutation operation is applied.

9. When the reserved elite individuals are eliminated,
they are recovered.

10. The new individuals are evaluated.

Each operation is explained in detail in the following
sections.

4.2 Migration Methods

In the Migration operation, There are several methods to
migrate individuals In the present study, the following two
migration methods were used.

• Net Topology
The most general migration strategy is that of unre-
stricted migration (complete net topology). Here, in-
dividuals may migrate from any island to another. For
each island, a pool of potential immigrants is con-
structed from the other island. The individual mi-
grants are then uniformly at random determined from
this pool.

• Ring Topology
The target island of migration is constructed the ring
randomly at each migration chance. The individuals
for migration are selected random in each island. The
migrated individuals are substituted with individuals
that have the worst evaluation values in the island.

4.3 Extraction of sampling individuals

The individuals with higher evaluation values from each is-
land are selected by sampling rate, and are called sampling
individuals. Sampling individuals exist in each island. New
child individuals are created from the statistics of sampling
individuals.

4.4 Reduction of correlations among design
variables

The data of sampling individuals are transformed by Princi-
pal Component Analysis (PCA). The sampling individuals
of PCA are different from sampling individuals. The best



individuals generated until the present generation in each
island are the targets of PCA individuals, T (t), which is
called the archive of the best individuals (Fig. 3).

The covariance matrix, S, which is a real symmetric
matrix, is calculated using this archive. S is derived as fol-
lows where NT is number of sampling individuals.

S =
1

NT − 1
T T T (1)
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Figure 3. PCA with the archive of the best individuals

The eigenvector is then calculated from the covari-
ance matrix. This eigenvector is used to reduce the correla-
tions among design variables of extracted individuals. An
overview of this operation is shown in Fig. 4.
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Figure 4. Reduction operation of correlation among design
variables with PCA

4.5 Generation of new individuals

New child individuals equivalent to the number of individ-
uals in each island are generated. According to the distri-
bution of individuals with reduced correlation, each indi-
vidual is created independently by the normal distribution.
The normal distribution is multiplied by Amp, and the gen-
erated child individuals are expanded.

4.6 Mutation

In the Mutation operation, the values of design variables
are changed randomly by the mutation rate. In the present
study, the following two mutation methods were used.

• Uniform mutation
New values of design variables are generated by uni-
form random numbers within the feasible area.

• Boundary mutation
New values of design variables are generated on the
boundary within the feasible area. In a Real-Coded
GA, a mutation method is required that creates indi-
viduals on the boundary, because there is a low prob-
ability of creating such individuals.

5 Numerical Experiment

The searching ability of the proposed method was exam-
ined through optimization of the numerical test functions.

5.1 Test Function

This study used the following four test functions: Rast-
rigin, Schwefel, Rosenbrock, and Ridge functions in 20
dimensions. There are no correlations among the design
variables in the Rastrigin function or the Schwefel func-
tion, and these functions have many sub-peaks in their land-
scapes. On the other hand, there are correlations among the
design variables in the Rosenbrock function and the Ridge
function, in which there is only a single peak in the land-
scape.

FRastrigin(x) = 10n +

n∑
i=1

(
x2

i − 10 cos(2πxi)
)

(−5.12 ≤ xi < 5.12)

(2)

FSchwefel(x) =

n∑
i=1

−xi sin
(√

|xi|
)

(−512 ≤ xi < 512)

(3)

FRosenbrock(x) =

n−1∑
i=1

(
100(xi+1 − x2

i )
2 + (1 − xi)2

)

(−2.048 ≤ xi < 2.048)

(4)

FRidge(x) =

n∑
i=1

( i∑
j=1

xj

)2

(−64 ≤ xi < 64)

(5)



5.2 Parameters of DPMBGA

The initial parameters of DPMBGA in the numerical ex-
periment are shown in Table 1.

Table 1. Initial parameters of DPMBGA

Population size 512
Number of islands 32
Number of elite 1
Migration interval 5
Migration rate 0.625
Archive size for PCA 100
Sampling rate 0.25
Amp of Variance 1.5
Mutation rate 0.1/(Dim. of functions)
Maximum generation 1000

5.3 Consideration of migration methods

Migration is one of the important functions to maintain di-
versity. This research considers two migration methods.
One of migration methods is ring topology, and other is net
topology.

Table 2 shows the number of optimal solutions
reached by the two migration methods. We define the opti-
mal solution as an evaluation value of 10−10.

Table 2. Number of optimal solutions reached by Migration
methods

Ring topology Net topology
Rastrigin 19 0
Schwefel 14 4
Rosenbrock 20 20
Ridge 20 20

As shown in Fig. 2, the ring topology have higher
searching ability than the net topology in Rastrigin and
Schwefel function. On the other hand, there is no differ-
ence in Rosenbrock and Ridge function. The reason is that
Rastrigin and Schwefel is the functions which have many
sub-peaks in their landscapes. The ring topology can main-
tain the diversity, because difference space is searched in
each island. On the other hand, the net topology transfer
individual to all islands, so it cannot maintain the diversity
well. Therefore we concluded that the ring topology has
higher ability to maintain the diversity.

5.4 Consideration of amplification of distri-
bution

This research considers the amplification of distribution pa-
rameter (Amp). In DPMBGA, child individuals are created
using the statistic information of the normal distribution of
individuals in the present generation. When the parame-
ter of Amp is small, the space for creating new individuals
becomes narrow. Conversely, when Amp is large, it be-
comes wider. Therefore, Amp is one of the most important
parameters for DPMBGA. Fig. 5 shows an overview of
Amp.
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Figure 5. Overview of amplification of distribution

This research considers the number of times that the
optimal solution is derived within 20 trials when Amp is
changed from 1.0 to 3.0 at intervals of 0.1. The definition
of an optimal solution is the same as in the previous exper-
iment. Fig. 6 shows the number of times that the optimal
solution was reached along with changes in Amp. The ver-
tical line shows the number of optimal solutions discovered
and the horizontal line shows the Amp. The results of the
Rastrigin function, Schwefel function, Rosenbrock func-
tion, and Ridge function are shown in the upper left, upper
right, lower left, and lower right, respectively.

Figure 6. The number of optimal solutions reached by am-
plification of distribution



Fig. 7 shows the distribution of design variables and
transition of evaluation values of the Rastrigin function.

Figure 7. Transition of evaluation value by amplification of
distribution

As shown in Fig. 6, only DPMBGA with PCA
can find the optimal solution in Rosenbrock and Ridge
functions, which have correlations among the design vari-
ables. However, Fig. 6 confirms that this model has lower
search ability than the model without PCA in Rastrigin and
Schwefel functions that do not have correlations among the
design variables. The PCA transformation breaks the sta-
tistical information of parent individuals in problems that
have no correlations among design variables. Fig. 7 illus-
trates that the transition of evaluation value without PCA
reaches the optimal solution rapidly. However, the model
using PCA takes a great deal of time to find the optimal
solution.

5.5 Consideration of Mutation Method

In DPMBGA, individuals of the next generation are cre-
ated from statistical information of the parent individuals.
However, the mutation method can break the statistical in-
formation. Therefore, in this study, mutation methods were
verified using the Uniform mutation, the Boundary muta-
tion, and the model without mutation.

Table 3 shows the number of optimal solutions
reached by the three mutation methods. The definition of
an optimal solution is the same as in the previous experi-
ment.

Fig. 8 shows the transition of the evaluation value and
distribution of design variables in the Rastrigin function.

As shown in Table 3, all mutation methods reach the
optimal solution in the Rosenbrock function and Ridge
function, which have dependence among design variables.
However, only Uniform mutation could find the optimal so-
lution in Rastrigin and Schwefel functions that do not have
correlations among the design variables. The Uniform mu-
tation may have a mechanism to break the statistical infor-
mation of the individual.

Table 3. Number of optimal solutions reached by three Mu-
tation methods

Without Uniform Boundary
Rastrigin 0 19 0
Schwefel 0 14 0
Rosenbrock 20 20 20
Ridge 20 20 20

Figure 8. Transition of evaluation value by mutation meth-
ods

Moreover, Fig. 8 confirms that Uniform mutation
maintains the diversity of the main population. In PCA
operation, child individuals are created in the neighbor-
hood of the parent individuals. Therefore, DPMBGA must
maintain diversity in problems that do not have correlations
among design variables.

5.6 Consideration of sampling rate

In DPMBGA, individuals are selected from the main pop-
ulation according to the sampling rate and the PCA trans-
formation is performed on the individual. The child indi-
viduals are generated according to the statistical informa-
tion of the selected individuals. Therefore, if the number
of individuals is small, the population will lose diversity.
However, if the number of individuals is too high, it will
no be possible to generate a better individual because it
will use the statistical information of inferior individuals.
Therefore, an appropriate sampling rate is very important
to improve the search ability.

Table 4 shows the number of trials that derived the
optimal solution along with the sampling rate. The defi-
nition of optimum solution is the same as in the previous
experiment.

Fig. 9 shows the transition of evaluation value and
distribution of evaluation value of the Rastrigin function.

From Table 4, we can see that the best result is ob-
tained when the sampling rate is 0.25 (4 individuals). With



Table 4. Number of optimal solutions reached by sampling
rate

0.125 0.25 0.375 0.5 0.75 1.0
Rastrigin 0 19 0 0 0 0
Schwefel 0 14 0 0 0 0
Rosenbrock 0 20 20 0 0 0
Ridge 0 20 20 20 0 0

Figure 9. Transition of evaluation value by sampling indi-
viduals

a sampling rate of 0.125, statistical information is derived
only from two individuals. It is not sufficient to collect the
statistical information of parent individuals.

When the sampling rate is high, the statistical infor-
mation of inferior individuals is used. Therefore, it could
not obtain better statistical information and this procedure
will be incapable of generating better individuals.

As shown in Fig. 9, when the sampling rate is low,
the diversity converges quickly in the case of the Rastrigin
function. When the sampling rate is high, convergence can-
not be seen. Therefore, for problems that do not have corre-
lations among design variables, it is necessary to maintain
the diversity appropriately, because this will strongly affect
the search ability.

6 Conclusions

This study examined the searching ability of DPMBGA.
The PCA operation of DPMBGA can reduce the correla-
tions among design variables, while a probabilistic model
of individuals is constructed. Moreover, the Island model is
also adapted to maintain the diversity of the solutions. This
paper discussed the parameter effects: i.e., amplification of
distribution, mutation method, and sampling individuals.
The results of experiments indicated that DPMBGA using
PCA showed higher search ability in problems that have

correlations among design variables. On the other hand, it
is possible to lose the diversity of the population by PCA in
problems that do not have correlations among design vari-
ables. Therefore, we conclude that parameters to maintain
the diversity of the population are important factors to re-
solve these problems of DPMBGA.

References

[1] D.E.Goldberg. Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley
1989.

[2] Tomoyuki Hiroyasu, Mitsunori Miki, Hishashi Shi-
mosaka, Masaki Sano, Shigeyoshi Tsutsui. Distributed
Probabilistic Model-building Genetic Algorithm. In-
formation Processing Society of Japan in 2004.

[3] Reiko Tanese. Distributed Genetic Algorithms, Pro-
ceedings of the Third International Conference on Ge-
netic Algorithms.

[4] Pelikan, M., Goldberg, D.E. and Lobo, F A Survey
of Optimization by Building and Using Probabilistic
Models. Technical Report 99018 1999.

[5] Larranage, P. and Lozano, J.: Estimation of Distribu-
tion Algorithms, A New Tool for Evolutionary Com-
putation, Kluwer Academic Publishers(2001)

[6] Masatoshi Sakawa, Masahiro Tanaka. Genetic Al-
gorithms, Soft Couputing Series. Volume 1. Asakura
bookstore, Japanese Fazy Academic Society.

[7] E. Cantu-Paz, M. Meij-Olivera. Experimental results
in distributed genetic algorithms, Int. Symposium on
Applied Corporate Computing, 1994, pp. 99-108.

[8] T. C. Belding. The distributed parallel genetic algo-
rithm revisited, Proc. of the Sixth International Con-
ference on Genetic Algorithms, 1995, pp.114-121.

[9] E. Cantu-Paz. Topologies, migration rates, and multi-
population parallel genetic algorithms, in: Proc. of
the Genetic and Evolutionary Computation Conference
(GECCO-99), 1999, pp. 91-98.


