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Abstract—When SA is applied to continuous optimization
problems, the design of the neighborhood used in SA becomes
important. A lot of experiments are necessary to determine an
appropriate neighborhood range in each problem, because the
neighborhood range corresponds to the distance in the Euclid
space and is decided arbitrarily. We proposed a Multi-point
Simulated Annealing with Adaptive Neighborhood (MSA/AN)
for continuous optimization problems, which determines the
appropriate neighborhood range automatically. The proposed
method provides the neighborhood range from the distance
and the design valuables of two search points, and generates
candidate solutions using a probability distribution based on
this distance in neighborhood, and selects the next solutions
from them based on the energy. In addition, a new acceptance
judgment is proposed for multi-point SA based on the Metropo-
lis criterion. The proposed method shows a good performance
in solving typical test problems.

I. INTRODUCTION
Recently, there are many tasks wherein optimization such

as resource and energy conservation is considered necessary.
In conjunction with this, optimization for system has become
important. Optimization problems are problems that find the
optimum solution for maximizing or minimizing evaluation
function within the given limitation conditions, and consis-
tently crop up in real world scenarios.

Optimization problems can be divided into the following
two categories: continuous optimization problems wherein
the design variables are continuous values and combinato-
rial optimization problems wherein the design variables are
discrete values. The former category of problems usually
find the optimum solution by changing the design valuables
with a continuous value based on objective function gradient
information. Regarding the latter category of problems, on
the other hand, because finding the optimum solution be-
comes difficult due to solution space increasing explosively
as the problem becomes larger, methods such as Genetic
Algorithm (GA) and Simulated Annealing (SA) which are
heuristic methods are used[1].

SA was presented by Kirkpatrick et al, and which algo-
rithm imitates physical annealing. It is an algorithm that is
effective for optimization problems, and especially for com-
binatorial optimization problems. In SA, objective functions
that should be minimized are called energy, and it is very
useful for several types of functions which are non-liner
functions[2], [3], [4].
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Though SA is an effective method for combinatorial
optimization problems, it is also used in complex continuous
optimization problems. And recently SA is being applied to
problem solving from the viewpoint of energy minimization
of the 3-dimensional structure of protein[5]. Even though
optimization problem is continuous as described above, SA
can be said to also be effective for complex continuous
optimization problems with objective functions of many local
optima as well.

The important parameters in SA are the neighborhood and
the temperature. In combinatorial optimization problems, two
adjoining elements are switched, etc., and a neighborhood
is generated. Because the neighborhood structure can be
determined uniquely, adjustment of the temperature schedule
is extremely important.

Alternatively, when SA is applied to a continuous opti-
mization problem, the neighborhood is related to the distance
within the Euclid space, and it is possible to determine freely.
Generally, when the neighborhood range is too small it tends
to fall into local minima, and when the neighborhood is too
large local search is insufficient and the solution accuracy
becomes deficient. Due to this, when SA is applied to a
continuous optimization problem, it is difficult to determine
the appropriate neighborhood range.

In response to this, the research witch adjusts the neigh-
borhood rance according to the landscape of the objective
function adaptively has been done. Corana automated the
neighborhood range adjustment according to a landscape
using the acceptance ratio might be set to 0.5[6]. Also, the
authors conceived a new neighborhood range design that
can provide arbitrary acceptance ratios and proposed a simu-
lated annealing with advanced adaptive neighborhood range
(SA/AAN)[7], [8]. Because these methods adjust neighbor-
hood range automatically, the tuning of these methods for
every problem is unnecessary. However, these methods do
require acceptance rate setting. In most problems a positive
result with a value of 0.2 is obtained, but whether or not this
value is constant for all problems is not clear.

Thus, even when using an adaptive method, a minimal
parameter is necessary for automatic adjustment of the neigh-
borhood range. The cause of this lies in the conventional
method generates neighborhood range which determines the
range within a certain distance from the current state, and
creating the next state within that range interior. Due to this,
when using the conventional method generates neighborhood
range, the necessity of adjusting the neighborhood range
occurs in every problem.

This research proposes the adaptive neighborhood range
Multi-point Simulated Annealing with Adaptive Neighbor-



hood (MSA/AN) as a method that does not require param-
eters for neighborhood generation. The proposed method
does not adjust neighborhood range via parameters, but
instead uses multiple search points and finds the range that
automatically generates the neighborhood range by using that
search point information.

Also, the proposed method is applied to typical mathemat-
ics functions minimizing problems, and the effectiveness is
verified.

II. MULTI- POINT STIMULATED ANNEALING WITH
ADAPTIVE NEIGHBORHOOD (MSA/AN)

A. Multi- Point Stimulated Annealing with Adaptive Neigh-
borhood (MSA/AN) concept

The neighborhood range definition is shown in Fig. 1. The
contour in Fig. 1 shows the objective function contour and
shows the generation of the next state from the current state
within design space interior. The left figure (a) shows the
conventional definition method, and the right figure (b) shows
the proposed definition method.

Because the neighborhood range is related to the distance
within Euclid space, in conventional SA the appropriate
distance range interior centering on the current search point
is determined as the neighborhood range, and the next state
is generated within that neighborhood range. Due to this,
the neighborhood range parameter is necessary. Also, the
appropriate neighborhood range is dependant on the problem,
and many preliminary experiments are necessary for finding
this. In contrast, the preliminary experiment load is reduced
when using an adaptive neighborhood mechanism, but new
parameters become necessary[8].

In order to overcome this problem, we propose herein a
new method using a multi-point search SA as a process for
making parameters unnecessary. We call this method Multi-
point Simulated Annealing with Adaptive Neighborhood:
MSA/AN.

The basic concept of this method is as follows. In sum-
mary, the method uses multiple search points, and then
creates a probability distribution and generates the neigh-
borhood range structure based on the location information
of those search points. Then, following the generated neigh-
borhood construction, the next state N point is generated.
This eliminates the necessity for the neighborhood range
parameter, and the appropriate neighborhood range can be
considered automatically obtainable.

Also, in this method, when search points are scattered
within the design space interior, the next state is generated
in a wide range. And when the search points are clustered
together, the next state is generated in a range near the search
points.

B. Multi- Point Stimulated Annealing with Adaptive Neigh-
borhood (MSA/AN) algorithm

By generating the neighborhood range based on search
point location information, MSA/AN generates and adjusts
the neighborhood range automatically. The MSA/AN algo-
rithm is shown in Fig. 2. The process of MSA/AN is stated

Current StateNest State

Arbitrary distance

Neighborhood

(a) Conventional Neighbor-
hood Range

Distance between 2 points

(b) Proposal Method Neigh-
borhood Range

Fig. 1. Neighborhood Range Definition

below. However, the selection points are considered to be 2
or 3 points.

1) Multiple starting points are generated.
2) From the search points, 2 or 3 points are selected

randomly.
3) Based on the 2 or 3 search points selected, a probability

distribution neighborhood structure is generated.
4) Next state candidates are generated following the

neighborhood structure.
(Next state candidates are generated N points.)

5) Next state is selected from the next state candidates.
(Based on a probability distribution, the next state is
created within the neighborhood range, but in order
to consider the landscape of objective function, mul-
tiple next state candidates are created and 2 states is
selected. One is best state and another is a randomly
selected state.)

6) Acceptance judging
7) Transition
8) Cooling on a fixed cycle

C. About Acceptance Judging

Whether or not a transition to the next state is accepted
based on the difference ∆E (= E’- E) for energy E’ of the
next state x’ and energy E of the current state x, as well as
the temperature parameter T. In the standard SA, Metropolis
standard[4] of (1) is applied. Temperature T is a parameter
that exerts a crucial influence on the probability of transition
to the direction of energy increase. When the temperature is
high, the probability of transition to the direction of energy
increase is high. Conversely, when the temperature is low,
there is a tendency of a probability for transition towards
the direction of energy decrease. However, regardless of the
temperature, the probability of transition to the direction of
energy increase never becomes 0.

{
1 i f ∆E < 0
exp

(−∆E
T

)
otherwise

(1)

In the case of MSA/AN, because 2 search points are
generated as the next state from 2 search points, there are
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Fig. 2. MSA/AN algorithm

2 kinds of energy that should be compared to the next state
energy. This results in the necessity of a new acceptance
criterion from the conventional Metropolis criterion. Figure
3 shows a conceptual diagram of the proposed acceptance
criterion. The vertical axis of Fig. 3 is the energy value, and
the horizontal axis is pattern. The vertical axis E1 and E2 is
the energy value of the current 2 search points. The higher
energy value is E1. The 2 search points generated as a next
state execute acceptance judging one by one via the following
acceptance criterion. The energy value of the search points
which execute the judging is E, and the difference between
E1E2 and E is ∆E1 and ∆E2.

Acceptance criteria are classified into the following 3
patterns as shown in Fig. 3.

1) The energy value E has a lower energy value than E1
and E2.

2) E has an energy value that is lower than E1 but higher
than E2.

3) E has an energy value that is higher than both E1 and
E2.

In the case of pattern 1, it can be considered that new
search point has been generated in an improvement direction
more than the current 2 search points. This search point is
accepted at acceptance probability 1.
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Fig. 3. MSA/AN Acceptance Judging

In the case of pattern 2, because in thinking from E1
new search point is generated in an improvement direction,
though transfer at acceptance probability 1 is valid, in
thinking from the energy E2 of the other current search point
new search point is generated in an uphill transition. Due
to this, the algebra average of the improvement direction
acceptance probability 1 and the uphill transition acceptance
probability found via Metropolis criteria is made the accep-
tance probability.

In the case of pattern 3, because new search point is
generated in uphill transitions more than the current search
points, the algebra average of the uphill transition acceptance
probabilities of E1 and E2 is made the acceptance probabil-
ity.

Equation (2) shows the probability equation used in ac-
ceptance judging that sums up pattern 1 to pattern 3.




1 i f ∆E1 < 0,∆E2 < 0{
1 + exp

(
−∆E2

T

)}
/2 i f ∆E1 < 0,∆E2 > 0{

exp
(
−∆E1

T

)
+ exp

(
−∆E2

T

)}
/2 otherewise

(∆E1 = E −E1)
(∆E2 = E −E2)

(2)

III. PROPOSAL METHOD EFFECTIVENESS VERIFICATION

A. Optimization problems

To examine the search performance of the proposed
method, 4 standard test functions are used. Those are the
Rastrigin function[12] shown in (3), the Sphere function[13]
shown in (4), the Rosenbrock function[12] shown in (5) and
the Rotated Rastrigin function is obtained by rotating the
Rastrigin function about the origin by 45 degrees.

The optimum solutions are located at the origin for the
Rastrigin, Shere and Rotated Rastrigin functions, and the
function values are 0, and the optimum solution is located
at(1,...,1) for the Rosenbrock function, and its function value
is also 0.



fRast(�x) = (N ×10)+

[
N

∑
i=1

(
x2

i −10 cos(2πxi)
)]

domain : −5.12 < xi ≤ 5.12,

optimum solution : (x1,xN) = (0, ...,0),
optimum value : f = 0 (3)

fSphere(�x) =
N

∑
i=1

x2
i

domain : −5.12 < xi ≤ 5.12,

optimum solution : (x1,xN) = (0, ...,0),
optimum value : f = 0 (4)

fRosen(�x) =
N

∑
i=1

[
100(x1 − x2

i )
2 +(xi −1)2]

domain : −2.048 < xi ≤ 2.048,

optimum solution : (x1,xN) = (1, ...,1),
optimum value : f = 0 (5)

B. Parameter Setting

In the numerical experiment, uniform distribution and
normal distribution are used as probability distributions for
MSA/AN neighborhood range structure. In the case of uni-
form distribution, the method called BLX-α[11], used in
Genetic Algorithm (GA) research, exists as a method for
generating 2 next state candidates from 2 search points. That
method is used herein.

Conversely, in the case wherein normal distribution is
used for neighborhood range structure, the method called
UNDX[10], which is a Genetic Algorithm intersection
method, exists as a method for generating 2 next state
candidates from 3 search points. Though there are many
methods proposed for creating a normal distribution, because
UNDX is a method of high performance, it is used herein.

It is thought that UNDX is effective in problems wherein
dependency exists between design variables, and BLX-α is
effective in problems wherein no dependency exists between
design variables.

In order to indicate the effectiveness of the MSA/AN pro-
posed in this paper, as a comparison method, PSA (Parallel
SA), UNDX and BLX-α are used. PSA is method of SA,
which is the most common method and its performance is
high. UNDX and BLX-α are methods of GA, which is a
heuristic method just as SA is. these mehods are typical,
and show extremely high performance.

2-dimensions, 5-dimensions, 10-dimensions, and 20 di-
mensions of the Rastrigin function, Sphere function, Rosen-
brock function, and Rotated Rastrigin function are used for
test functions.

The patterns used for 4 test functions are indicated in Table
I, II, and III.

The number of times of cooling for MSA/AN was set to
32, and the PSA parallel process number was also set at
32. Regarding PSA, 32 parallel processors are used, and the

total annealing step was set to the same as MSA/AN and
GA (UNDX and BLX-α) by setting the cooling cycle to
1/32 times.

Refer to reference text[8] for the detailed parameter setting
method pertaining to MSA/AN and PSA, and to reference
text[10], [11] for the detailed parameter setting method
pertaining to GA (UNDX and BLX-α). Rand48 was used for
random numbers. These random numbers are created by a 48
bit linear pseudorandom number generation function created
by Martin Birgmeier et al. Refer to reference text[14] for the
details of these random numbers.

TABLE I
PARAMETERS(MSA/AN)

Function Rastrigin Sphere Rosenbrock
RotatedRastrigin

Max temp. 200 1 1
Min temp. 50 0.00001 0.00001
Markov Length 2500 1000 2500
Dimension 2, 5, 10, 20

TABLE II
PARAMETERS(PSA)

Function Rastrigin Sphere Rosenbrock
RotatedRastrigin

Max temp. 200 1 1
Min temp. 50 0.00001 0.00001
Markov Length 2500/32 1000/32 2500/32
Dimension 2, 5, 10, 20
Neighborhood range 1 1 0.5
Number of processors 32

TABLE III
PARAMETERS(GA(UNDX), GA(BLX-α ))

Function Rastrigin Sphere Rosenbrock
RotatedRastrigin

Generation 2500 1000 2500
Number of Crossover 300 50 50
Dimension 2, 5, 10, 20

IV. RESULTS AND DISCUSSION

A. MSA/AN Performance
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Fig. 6. Performance Comparison by Method (Rosenbrock)

Minimum energy value obtained using the Rastrigin func-
tion is indicated in Fig. 4, the result from using the Sphere
function is indicated in Fig. 5, the result from using the
Rosenbrock function is indicated in Fig. 6, and the minimum
energy value obtained using the Rotated Rastrigin function
is indicated in Fig. 7. These results are the median values
of 30 trials. The reason for using median values is that
multiple local minimums exist, and when the difference of
their function values is great, comparing to a median value is
sturdier as a parameter of location estimator than comparing
to an average value. Energy value is indicated on the vertical
axis and dimension number is indicated on the horizontal
axis.

Also, the probability distribution type used in the proposed
MSA/AN method is shown in parenthesis. By comparing
PSA and MSA/AN, it is clear from Fig. 4, 5, 6 and 7 that
the proposed method(MSA/AN) is shows an extremely high
performance from every dimension.

Next, the case wherein UNDX distribution is used in
MSA/AN is compared to the result of UNDX as a GA
method. The results show that the Rastrigin function, Sphere
function, Rosenbrock function, and Rotated Rastrigin func-
tion, along with MSA/AN(UNDX) have better results than
GA(UNDX).

Also, comparing the case in which BLX-α distribution
is used in MSA/AN (MSA/AN(BLX-α)), and the results of
BLX-α as a GA method, it is clear that in all functions
MSA/AN(BLX-α) shows results that are the same as or
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better than GA(BLX-α).
These results signify that MSA/AN shows results that are

better than the typical high performance PSA. And because
the results are better than GA using UNDX or BLX-α, it
can be thought that this is an effective method.

B. MSA/AN Effectiveness

Herein we shall consider the effectiveness of
MSA/AN(UNDX) by comparing the energy history
(search history) of the MSA/AN(UNDX) that displayed
good results on Fig. 4, 5, 6 and 7 and that of GA(UNDX).
A 20 dimensional Rastrigin function, Sphere function,
Rosenbrock function, and Rotated Rastrigin function are
used in the objective problem. The energy history obtained
by applying the Rastrigin function is shown on Fig. 8(b),
the results from applying the Sphere function are shown on
Fig. 9(b), the results from applying the Rosenbrock function
are shown on Fig. 10(b), and the results from applying
the Rotated Rastrigin are shown on Fig. 11(b). Also, the
respective contours are shown on Fig. 8(a), 9(a), 10(a),
and 11(a). These results are the histories for 1 trial. The
horizontal axis shows the annealing step number, and the
vertical axis displays the energy value.

In Fig. 8(b), 9(b), 10(b), and 11(b), no difference is seen
in the methods in the first stage. However, in the middle
stage difference begins to occur between the methods, and
it is clear that MSA/AN(UNDX) is obtaining the optimum
solution faster than GA(UNDX). The reason for this can be
thought to be the temperature that is SA characteristic, is
involved.

GA(UNDX) generates child individuals and executes
roulette selection based on rank from the generated child in-
dividuals. Then, it proceeds with the search by returning the
selected child individual to the population. With this method,
when the selection method is determined, the probability that
the energy of the selected child individual will become worse
than the parental individual (probability that allows uphill)
is fixed.

On the other hand, MSA/AN(UNDX) generates a next
state, executes acceptance judging based on temperature, and
proceeds with the search while allowing uphill transition.
Because a high temperature exists in the first stage, the
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Fig. 8. Rastrigin function convergence curve
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Fig. 9. Sphere function convergence curve
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Fig. 10. Rosenbrock function convergence curve

probability of uphill transition is high. And at the end of
the stage the low temperature results in a low probability
of uphill transition. So the uphill transition fluctuates along
with the search process.

Due to this, when a local minimum drop occurs in the first
half of the stage, because MSA/AN(UNDX) allows uphill
transition much more than GA(UNDX), it can be thought
that escape from the local minimum is easily executed. On
the other hand, regarding the last half of the stage, because
MSA/AN(UNDX) does not easily allow an uphill transition,
unnecessary uphill does not occur, and as a result it can be
considered that an adequate local search is facilitated and
accuracy improves.
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V. CONCLUSION

When simulated annealing is applied to a continuous
optimized problem, neighborhood range adjustment is nec-
essary and indispensable. This research proposed a Multi-
point Simulated Annealing with Adaptive Neighborhood
(MSA/AN) possessing a new neighborhood range generation
mechanism that makes unnecessary parameters which are
necessary for neighborhood adjustment within conventional
adaptive neighborhood range mechanisms. The proposed
method is found to be very effective for solving continuous
optimization problems by SA.
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