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Abstract. To design crossover operators with high search ability in real-
coded Genetic Algorithms, it will be efficient to utilize both information
regarding the parent distribution and the landscape of the objective func-
tion. Here, we propose a new offspring generation method using Delaunay
triangulation. The proposed method can concentrate offspring in regions
with a satisfactory evaluation value, inheriting the parent distribution.
Through numerical examples, the proposed method was shown to be ca-
pable of deriving the optimum with a smaller population size and lower
number of evaluations than Simplex Crossover, which uses only informa-
tion of the parent distribution.

1 Introduction

Genetic Algorithms (GAs) are optimization methods that simulate the hered-
ity and evolution of living organisms. Real-Coded GA (RCGA), which uses real
number vector representation of chromosomes, is utilized for global optimiza-
tion of nonlinear functions. In RCGAs, offspring can be generated by dealing
directly with the parent distribution in design space. Various crossover opera-
tors have been proposed in RCGAs some of which have also been shown to have
efficient search ability[1–5]. A well-known set of guidelines for design of these
crossover operators is the functional specialization hypothesis[6]. In this hypoth-
esis, it is important that a crossover operator generates offspring with the same
distribution as the parents. Then, a generation alternation model changes the
distribution and evolves the population. Based on this hypothesis, it is commonly
believed that crossover operators with high search ability can be designed easily
in RCGAs. In addition, the offspring generation that correctly inherits the par-
ent distribution is an important design guideline in Probabilistic Model-Building
GA (PMBGA)[7, 8].

On the other hand, some of offspring generation methods with higher search
ability in real-coded PMBGAs estimate the parent distribution using the joint
normal kernels distribution or the histogram distribution[9–11]. These meth-
ods implicitly construct the probabilistic model similar to the landscape of the
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objective function. Therefore, in RCGAs as in real-coded PMBGAs, crossover
operators with higher search ability can be designed by utilizing not only the
parent distribution but also the landscape of the objective function. In Simplex
Crossover (SPX)[4, 5], which is one of the crossover operators for RCGAs, off-
spring generation range is first defined from the parent distribution. Then, large
numbers of offspring are generated uniformly within the defined range. In the
offspring generation of SPX, it is possible that the search ability will be increased
by concentrating offspring in regions with a satisfactory evaluation value within
the defined region.

From these backgrounds, in this paper, to concentrate offspring in regions
with a satisfactory evaluation value, we propose a new offspring generation
method using the Delaunay triangulation. The next section first presents an out-
line of the Delaunay triangulation. Then, we discuss the details of SPX, which
forms the foundation of the proposed method. Finally, we describe the proposed
offspring generation method in detail. In the numerical examples in this paper,
the effectiveness of the proposed method is discussed by comparison with the
search ability of SPX.

2 Voronoi Diagram and Delaunay Triangulation

2.1 Voronoi Diagram

The Voronoi diagram[12] decides how to divide the space between the region of
each point and its boundary as in Equation 1, when a point set P = {p1,p2,p3, ...,
pm} is given in an n-dimensional space. In Equation 1, d(pi,pj) expresses the
distance function between pi and pj . Generally, the Euclid distance is used as
the distance function.

V (pi) = {p|p ∈ Rn, d(p,pi) < d(p,pj), j 6= i} (1)

Fig. 1 shows an example of the Voronoi diagram with 8 points in a 2-
dimensional space. Each point that generates the Voronoi diagram is called a
Voronoi generator, and each region divided by Voronoi generators is known as a
Voronoi region. The region V (pi) that includes the point pi shows that, at any
arbitrary location in the regions, the point pi is the closest point in the point
set.

2.2 Delaunay Triangulation

The Delaunay triangulation can be created by connecting neighboring Voronoi
generators in a Voronoi diagram. Fig. 2 shows an example of the Delaunay
triangulation created from the Voronoi diagram shown in Fig. 1. Each triangle
that consists of (n + 1) Voronoi generators in an n-dimensional space is called a
Delaunay triangle. One of the typical applications that can create the Voronoi
diagram and the Delaunay triangulation is Qhull[13, 14]. In this study, Qhull was
used for creating the Delaunay triangulation.
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Fig. 1. Voronoi diagram Fig. 2. Delaunay triangulation

3 Simplex Crossover

Simplex Crossover (SPX) is a typical crossover based on the functional special-
ization hypothesis. In an n-dimensional design space, SPX generates offspring
as follows:

1. Select (n + 1) parents P 0,P 1, . . . ,P n from the population by random sam-
pling.

2. Calculate their center of mass G as

G =
1

n + 1

n∑
i=0

P i (2)

3. Calculate xk and Ck, respectively, as

xk = G + ε(P k − G) (k = 0, . . . , n) (3)

Ck =

{
0 (k = 0)
rk−1 − xk + Ck−1 (k = 1, . . . , n)

(4)

rk = (u(0, 1))
1

k+1 (k = 0, . . . , n − 1) (5)

where ε is the expansion rate, a control parameter of SPX and u(0, 1) is
uniform random number ∈ [0,1].

4. Generate offspring C as
C = xn + Cn (6)

Fig. 3 shows the offspring generation range in SPX. Generally, SPX generates
large numbers of offspring, which are distributed uniformly on the gray range
in Fig. 3. Then, a generation alternation model chooses a few better offspring
and substitutes them into the population. ε is the expansion rate and a positive
parameter of SPX. The expansion rate has a marked effect on the search of SPX.
However, SPX also recommends the value εspx =

√
n + 2, which is based on the

functional specialization hypothesis[5].
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Fig. 3. Offspring generation range in SPX

4 Offspring Generation Method using Delaunay
Triangulation

SPX and other crossover operators based on the functional specialization hy-
pothesis generate offspring with the same distribution as the parents. On the
other hand, crossover operators with higher search ability can be designed by
utilizing not only the parent distribution but also the landscape of the objec-
tive function. Therefore, in this paper, a new offspring generation method using
the Delaunay triangulation is proposed. The proposed method enables the gen-
eration and concentration of offspring in regions with a satisfactory evaluation
value, inheriting the parent distribution.

4.1 Procedure of Offspring Generation using Delaunay
Triangulation

Fig. 4 shows an overview of the proposed method. In an n-dimensional design
space, the proposed method generates Noff offspring from (n + 1) parents as
follows:

1. Select (n + 1) parents P 0,P 1, . . . ,P n from the population by random sam-
pling.

2. Using SPX, first (Noff × Rspx) offspring are generated.
3. Repeat the following items Ndelaunay times.
4. Create the Delaunay triangulation from the offspring coordinates.
5. Evaluate offspring and calculate the evaluation value of each Delaunay trian-

gle. In this item, offspring evaluated in the past should not be re-evaluated.
The evaluation value of a triangle is the summation of the evaluation value
of the offspring, which form its triangle.

6. Select (Noff × (1−Rspx)/Ndelaunay) Delaunay triangles in decreasing order
of evaluation value of triangles and generate offspring on the center of mass
of each triangle.

The important parameters of the proposed method are the expansion rate ε
of SPX that defines the offspring generation range, the Rspx that determines the
number of first offspring generated by SPX, and the Ndelaunay that determines
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Fig. 4. Offspring generation procedure in the proposed method

the number of iterations of offspring generation using the Delaunay triangula-
tion. The number of evaluations for each generation alternation in the proposed
method is Noff , which is the same number in the offspring generation of the
original SPX.

4.2 Offspring Distributions

Fig. 5 shows the offspring distributions when 500 offspring (Noff = 500) are
generated from 3 parents (n + 1) in 2-dimensional design space (n = 2) of 3
test functions. The expansion rate ε is 1.0. Then, offspring are generated within
the 3 parents. In addition, Rspx is defined as 0.5 and Ndelaunay is also defined
as 2. Therefore, the first 250 offspring (Noff × Rspx) are generated by SPX
and the last 250 offspring are generated by 2 Delaunay triangulations. Each
triangulation generates 125 offspring (Noff ×(1−Rspx)/Ndelaunay). The number
of generators that is the same as the number of generated offspring is 250 in the
first triangulation and 375 in the second triangulation.

As shown in Fig. 5, the distributions of all offspring are different according
to the landscape of each objective function. However, the distributions of the
first 250 offspring generated by SPX are uniform and the same regardless of the
landscape of each objective function. On the other hand, the last 250 offspring
generated by the Delaunay triangulations are concentrated in regions with a
satisfactory evaluation value. In particular, the last 125 offspring generated by
the second Delaunay triangulation are concentrated more in regions with better
evaluation value. Therefore, Ndelaunay can control the concentration level of
offspring.
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Fig. 5. Distributions of offspring generated by the proposed method

5 Numerical Examples

As described in Subsection 4.1, the three parameters, ε, Rspx, and Ndelaunay,
have marked effects on offspring generation in the proposed method. In these
parameters, the expansion rate ε that is used for generating offspring in SPX
is the most important because it defines the offspring generation range. As ex-
plained in Section 3, SPX recommends the value εspx =

√
n + 2, which is based

on the functional specialization hypothesis. However, εspx designates that off-
spring are generated using a uniform distribution. Therefore, εspx is not effective
in the proposed method. In the numerical examples described in this paper, we
first discuss the most appropriate expansion rate, ε, in the proposed method.
Then, the effectiveness of the proposed method is clarified through comparison
of its search ability with that of SPX.

5.1 Target Problems

In these numerical examples, Sphere, Rosenbrock, Ill-Scaled Rosenbrock, and
Ridge functions shown in Equation 7-10 are used as single-peak test functions.
Of these functions, the Rosenbrock, Ill-Scaled Rosenbrock, and Ridge functions
have correlations among design variables. The Ill-Scaled Rosenbrock function
also has a non-uniform scale on the coordinate system. On the other hand,
Rastrigin, Griewank, and Schwefel functions shown in Equation 11-13 are used
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as multi-peak test functions. In addition, the Rotated Rastrigin function, which is
obtained by rotating each coordinate axis of the Rastrigin function by (π/3), and
the Rastrigin-2.0 function, which is obtained by translating each coordinate axis
with 2.0, are also used. Of these functions, the Rotated Rastrigin and Griewank
functions have correlations among design variables. In the Schwefel function,
local optima exist separately on the edge of the design space. Therefore, to
maintain the diversity of the population, a larger population size is generally
required as compared with other functions. In all functions, the region with an
evaluation value of less than 1.0 × 10−6 is considered optimal.

FSphere(x) =
Pn

i=1

`

xi

´2
(−5.12 ≤ xi ≤ 5.12) (7)

FRosenbrock(x) =
Pn

i=2

`

100(x1 − x2
i )

2 + (1 − xi)
2
´

(−2.048 ≤ xi ≤ 2.048) (8)
FIll−Scaled−Rosenbrock(x) =

Pn
i=2

`

100(x1 − (ixi)
2)2 + (1 − ixi)

2
´

(−2.048/i ≤ xi ≤ 2.048/i) (9)

FRidge(x) =
Pn

i=1

`

Pi
j=1 xj

´2
(−64 ≤ xi ≤ 64) (10)

FRastrigin(x) = 10n +
Pn

i=1

`

x2
i − 10 cos(2πxi)

´

(−5.12 ≤ xi ≤ 5.12) (11)

FGriewank(x) = 1 +
Pn

i=1

x2
i

4000
−

Qn
i=1

“

cos
`

xi√
i

´

”

(−512 ≤ xi ≤ 512) (12)

FSchwefel(x) = 418.9828873n +
Pn

i=1 xi sin
“

p

|xi|
”

(−512 ≤ xi ≤ 512) (13)

5.2 Experimental Methodology

The generation alternation model in these numerical examples is the Minimal Gen-
eration Gap (MGG)[15]. The MGG model has desirable convergence properties for
maintaining the diversity of the population, and shows better performance than other
conventional models. However, MGG was designed with the number of parents set to
2. Therefore, we extended MGG as follows:

1. In an n-dimensional design space, select (n + 1) parents from the population by
random sampling.

2. Generate Noff offspring by applying the proposed method or SPX.
3. Select 2 parents from the (n+1) parents by random sampling without replacement.
4. Substitute the best individual and another randomly selected individual with rank-

based roulette-wheel selection among the 2 parents selected in Item 3 and the
offspring into the population.

No mutation method is applied. The initial population is generated randomly within
the domain of definition with a uniform distribution. However, no explicit treatment of
the domain of definition is considered during the GA search in all test functions except
the Schwefel function, in which there are better regions than optimum outside the
domain of definition. Therefore, in the offspring generation using SPX in the Schwefel
function, when an offspring is generated outside the domain of definition, it is re-
generated until it is located inside the domain of definition.

5.3 Discussion of the Expansion Rate

In this example, we discuss the appropriate expansion rate in the proposed method.
Experimental conditions are defined as follows:
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Table 1. Number of times that the optimum was achieved (single-peak functions)

Expansion Rate εspx × 1.0 εspx × 1.5 εspx × 2.0 εspx × 2.5

Number of Dimensions 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

Sphere 20 20 19 18 20 20 20 20 20 20 20 20 20 20 20 20

Rosenbrock 11 0 0 0 20 20 20 3 20 20 20 20 20 20 20 20

Ill-Scaled Rosenbrock 13 1 0 0 20 20 20 4 20 20 20 20 20 20 20 20

Ridge 20 20 16 1 20 20 20 20 20 20 20 20 20 20 20 20

Table 2. Number of times that the optimum was achieved (multi-peak functions)

Expansion Rate εspx × 1.0 εspx × 1.5 εspx × 2.0 εspx × 2.5

Number of Dimensions 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

Rastrigin 20 19 18 19 20 20 20 19 20 20 20 20 20 20 20 20

Rotated Rastrigin 20 19 18 19 20 20 20 20 20 20 20 20 20 20 20 20

Rastrigin-2.0 20 6 1 0 20 20 14 16 20 20 20 20 20 20 20 20

Griewank 17 7 8 5 20 16 17 19 20 19 20 20 20 0 20 20

Schwefel 5 2 0 0 15 5 2 2 19 15 18 17 18 19 3 0

– Number of dimensions (n): 2, 4, 6, 8
– Population size:

n × 10 ( all single-peak functions and the Schwefel function ),
n × 25 ( all multi-peak functions except the Schwefel function )

– Number of offspring (Noff ): n × 10
– Number of trials: 20. Maximum number of evaluations: 2.0 × 106

– Parameters of the proposed method: Rspx = 0.5, Ndelaunay = 2

Tables 1 and 2 show the number of times that the optimum was achieved in the
proposed method when the expansion rate ε is defined as εspx × 1.0 to εspx × 2.5. The
εspx =

√
n + 2 is the recommended value of SPX. Table 1 shows that the proposed

method whose ε is defined as greater than εspx × 2.0 can perform an effective search
in single-peak functions. In addition, the proposed method can derive the optimum
regardless of the correlations among design variables and the scale of the coordinate
system. Table 2 also shows that the proposed method whose ε is defined as greater
than εspx × 2.0 can perform effective searches in multi-peak functions. However, in the
higher-dimensional Schwefel function and the 4-dimensional Griewank function, the
proposed method whose ε is defined as εspx × 2.5 cannot derive the optimum, because
the population cannot converge on the optimum or a certain local optimum. Therefore,
the most appropriate expansion rate is εspx × 2.0 in the proposed method.

5.4 Comparison of the Searching Abilities between the Offspring
Generation Method using Delaunay Triangulation and SPX

Through the comparison of searching abilities between the proposed method and SPX,
we discuss the effectiveness of the proposed method. The number of dimensions (n) is



Offspring Generation Method using Delaunay Triangulation 9

Fig. 6. Average number of evaluations when the optimum was achieved in the proposed
method and SPX

8 and other experimental conditions are same as the previous ones. However, to derive
the same number of times that the optimum is achieved with the proposed method in
SPX, the population size of SPX is defined as 120 (n × 15) in single-peak functions,
200 (n× 25) in multi-peak functions except the Schwefel function and 880 (n× 110) in
the Schwefel function. These sizes are larger than the population sizes of the proposed
method. With regard to the expansion rate, εspx =

√
n + 2 is applied in SPX and

εspx × 2 is applied in the proposed method. In this example, the average number of
evaluations when the optimum is achieved is compared.

Fig. 6 shows the average number of evaluations when the optimum was achieved in
both methods. The number of times that the optimum was achieved in both methods
was 17 in the Schwefel function and 20 in other functions. As shown in Fig. 6, in all
test functions, the proposed method can derive the optimum with a lower number of
evaluations than SPX. Especially, with the exception of the Schwefel function, the pro-
posed method requires only about the one-third or one-quarter number of evaluations
in multi-peak functions.

These results indicated that the proposed method has the following features. First,
the proposed method can derive the optimum with a smaller population size than
SPX. This feature is due to concentration of offspring in regions with a satisfactory
evaluation value in the proposed method. In addition, as the proposed method requires
a smaller population size than SPX, the optimum can be derived with a lower number
of evaluations by converging the population earlier than SPX, combining local optima
in the design space.

6 Conclusions and Future Work

The crossover operators based on the functional specialization hypothesis generally use
only the information of the parent distribution and generate offspring with the same
distribution as the parents. On the other hand, we feel that crossover operators with
better search ability can be designed by utilizing not only the parent distribution but
also the landscape of the objective function. Therefore, we proposed a new offspring
generation method using the Delaunay triangulation. In the proposed method, the
Delaunay triangulation is used with SPX. Then, the proposed method enables offspring
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to be concentrated in regions with a satisfactory evaluation value, inheriting the parent
distribution. Comparison of search ability between the proposed method and SPX
indicated that the proposed method can derive the optimum with smaller population
size and lower number of evaluations than SPX.

In future work, we will apply the proposed method to higher-dimensional functions.
As Qhull uses a large amount of memory, the proposed method cannot create the
Delaunay triangulation with about 100 generators in more than 10-dimensional design
space. Therefore, some processes that remove unneeded generators before the Delaunay
triangulation creation will be added to the proposed method.
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