
Distributed Workflow Management System
based on Publish-Subscribe Notification

for Web Services

Hisashi Shimosaka1, Tomoyuki Hiroyasu2, and Mitsunori Miki2

1 Graduate School of Engineering, Doshisha University,
1-3 Tatara Miyakodani Kyotanabe, Kyoto, Japan,

hisashi@mikilab.doshisha.ac.jp
2 Department of Engineering, Doshisha University

tomo@is.doshisha.ac.jp,mmiki@mail.doshisha.ac.jp

Abstract. In recent years, Grid technologies have been standardized
based on Web service specifications. Of these specifications, the WS-
Resources Framework and WS-Notification have attracted a great deal
of attention. This paper focuses on scientific applications integration. We
propose and implement a new distributed workflow management system
called the “Application Igniting System.” This system is based on the
publish-subscribe notification defined by the WS-Notification specifica-
tion and realizes a flexible and loosely coupled workflow control by pro-
viding some utility services, which handle message exchange. By apply-
ing to a typical bioinformatics workflow, we concluded that the overhead
time related to message exchange is very short.

1 Introduction

With the development of Grid technologies in recent years, many scientific ap-
plications are being implemented on the wide area network. In addition, various
Grid workflow management systems have been developed to integrate these ap-
plications[1]. In the field of bioinformatics, as in other multidisciplinary fields,
these workflow management systems are applied to solve collaboration-hungry
problems[2]. On the other hand, recent Grid technologies have been standardized
based on Web service specifications[3]. Of these specifications, the WS-Resources
Framework (WSRF)[4] and WS-Notification (WSN)[5] have attracted a great
deal of attention because these specifications enable the construction of Grid-
enabled Web services. The WSRF specification enables the definition of a stateful
resource, and the WSN specification also realizes message exchanges driven by a
state transition. By applying these specifications, more Grid-oriented workflow
management can be realized. Based on this background, we propose a new dis-
tributed workflow management system, which is called “the Application Igniting
System.” This system adopts a decentralized architecture based on message ex-
change defined by the WSN specification. The architecture enables the system
functions to easily be enhanced by adding a simple service that handles message



2 Hisashi Shimosaka et al.

Fig. 1. Overview of the WS-Notification framework

exchange. Then, a more flexible and loosely-coupled workflow control can be
realized. In the simulation example, we apply the Application Igniting System
to a typical bioinformatics workflow and evaluate its basic performance.

2 WS-Resource Framework and WS-Notification

WSRF is a specification to introduce a stateful resource into a Web service. The
stateful resource consists of a set of resource properties. The WSRF specification
enables the Web service to express a state transition during service execution.
For example, in an application service, it can express the state transition of
application execution by introducing the resource property corresponding to
the application execution status, such as “Pending,” “Active,” “Finished,” or
“Failed.”

WSN is a sophisticated specification of the topic-based publish-subscribe no-
tification for Web services. Fig. 1 shows an overview of the simplest architecture
in the WSN specification. As shown in Fig. 1, the NotificationProducer that pub-
lishes notification messages defines a set of notification topics associated with
each resource property participating in the value change notification pattern in
advance. The NotificationConsumers that receive the notification messages sub-
scribe to the NotificationProducer with the item of interest. Then, whenever the
resource property is changed, the NotificationProducer publishes the notification
message that includes the details of the state information. Hence, each Notifica-
tionConsumer can execute the appropriate method according to the notification
message context.

3 Application Igniting System

In this paper, we propose a new distributed workflow management system based
on the publish-subscribe notification realized by the WSN specification. The
proposed system is implemented using the Globus Toolkit (version 4.0.1)[6] and
is called the Application Igniting System.



Distributed Workflow Management System 3

Fig. 2. Overview of the Application Igniting System

3.1 Overview of the Application Igniting System

Fig. 2 shows an overview of the Application Igniting System. In this system,
the Grid testbed administrator first prepares the Index Service provided by the
Globus Toolkit. Then, each site administrator introduces the Application Ignit-
ing Factory Service (AI Factory Service) and the Application Igniting Service (AI
Service). We provide a package to introduce both services. Each site administra-
tor also prepares the WS-GRAM (Grid Resource Allocation and Management)
Service and the RFT (Reliable File Transfer) Service provided by the Globus
Toolkit. The AI Service uses the WS-GRAM Service for job submission and
uses the RFT Service for file transfer. The application administrator registers
their own application information with one of the AI Factory Services using the
Resource Specification Language (RSL), which is a language for requesting job
submission to the WS-GRAM Service. All of the registered application informa-
tion is gathered in the Index Service and is provided to end-users. The end-user
first selects some applications and designs a workflow to solve a problem. The
designed workflow is realized by notification messages among the AI Services.

3.2 Resource Creation and Port Types

The end-user obtains the application information from the Index Service and
selects some applications of interest by requesting resource creations from the
AI Factory Services, which have information regarding each selected application.
Each AI Factory Service makes a resource-specific working directory, creates the
resource based on the registered application information, and returns the pairing
information of the AI Service introduced by the same site administrator and
the created resource to the end-user. Each of the created resources includes the
resource property corresponding to the application execution status. In addition,
the AI Service defines the Application Invocation Topic (AIT) associated with
this resource property. On the other hand, each of the utility services described
later defines the Conditional Branch Topic (CBT) associated with the different
resource property corresponding to the service execution status.



4 Hisashi Shimosaka et al.

The typical port types, which are used for workflow design and execution,
that are provided by each AI Service with a resource are as follows.

– setSubscription: Subscribe to a topic CBT specified in the input argument.
The input argument is the paring information of a utility service that defines
the topic and a resource that includes the resource property associated with
the topic.

– createTransferResource: Create a resource for receiving an input file from an
end-user or for sending an output file to an end-user or another AI Service.
This is realized by requesting resource creation to the RFT Service prepared
by the same site administrator. The input arguments are the source and
destination file information. The return value is the pairing information of
the RFT Service and the created resource. The caller accomplishes the file
transfer using the returned information.

– addTransfer: Add source file information specified in the input argument to
the list. The specified source file is an output file generated by another AI
Service. The listed output files are acquired as input files before invoking the
application.

3.3 Application Invocation Procedure

Each AI Service with a resource invokes the application using the stored appli-
cation information in the resource. The application invocation is driven by the
receipt of a notification message. Fig. 3 shows the application invocation proce-
dure in the AI Service with a resource. The end-user dictates the subscription
from the AI Service to the NotificationProducer using the setSubscription port
type in advance. In addition, the source file information is specified using the
addTransfer port type. These specified source files are the output files generated
by other AI Services with a resource. Based on these end-user requests, the AI
Service begins the application invocation by receiving the notification message
with the value “True” from the NotificationProducer. The application invoca-
tion consists of the following procedure. The AI Service first acquires each source
file specified by the end-user as the input file. This is realized using the create-
TransferResource port type provided by another AI Service with a resource,
which has the source file. After acquiring all source files, the AI Service requests
job submission to the WS-GRAM Service using the RSL information stored in
the resource. When job submission is completed successfully, the value of the
resource property corresponding to the application execution status is changed
to “Finished.” When job submission is not completed successfully, the value
is changed to “Failed.” These updates of the resource property cause another
notification message driven by the state transition.

3.4 Workflow Design and Execution

The Application Igniting System provides some utility services, which handle
message exchange and support workflow design and execution.



Distributed Workflow Management System 5

Fig. 3. Application invocation procedure

Sequential Workflow and Conditional Branch The IF Service is the most
important of the utility services to support the workflow design and execution.
The IF Service has two port types: one that can subscribe to the topic AIT spec-
ified in the input argument, while the other can subscribe to the specified topic
CBT, similarly to one of the port types provided by the AI Service. The input
argument of these port types is the pairing information of a service that defines
the topic and a resource that includes the resource property associated with the
topic. Moreover, the condition value can be included in the input argument. The
IF Service also handles the resource that includes the resource property corre-
sponding to the service execution status and defines the topic CBT associated
with the resource property. Then, if the received notification message includes
the same value as the condition value, the resource property corresponding to
the service execution status is changed to “True.” If the notification message
does not have the same value, the value is changed to “False.” These updates
of the resource property cause another notification message driven by the state
transition.

An example of sequential workflow using the IF Service is shown in Fig. 4.
The end-user creates three resources in advance and dictates that the IF Service
with a resource subscribes to the AI Service with the resource that includes the
information of application A. The condition value is set to “Finished.” In addi-
tion, the end-user dictates that the AI Service with the resource that includes the
information of application B subscribes to the IF Service. Then, when the execu-
tion of application A is completed successfully, the notification message with the
value “Finished” is delivered from the AI Service with the resource that includes
the information of application A to the IF Service. As this notification message
has the same value as the condition value of the IF Service, another notification
message with the value “True” is delivered continuously from the IF Service to
the AI Service with the resource that includes the information of application B.
Then, the AI Service with the resource that includes the information of appli-
cation B begins the application invocation. As shown above, the IF Service can
intercept the notification message and translate its value. Thus, the IF Service
assumes an important role in the Application Igniting System.



6 Hisashi Shimosaka et al.

Fig. 4. Sequential workflow

Parallel and Synchronous Workflow The notification message driven by a
state transition is delivered to all of the NotificationConsumers, which subscribe
to the same topic, defined by the same service and associated with the same
resource property. Therefore, parallel workflow execution can be realized easily
by delivering the notification message with the value “True” driven by a state
transition to more than one AI service with a resource simultaneously. In this
case, a function that can synchronize the parallel workflow execution is required.
Then, the Application Igniting System also provides the AND Service. The AND
Service has the port type to subscribe to the topic CBT specified in the input
argument and waits the notification message with the value “True.” In addi-
tion, the AND Service has the characteristic function, which can subscribe to
two NotificationProducers. The AND Service also handles the resource including
the resource property corresponding to the service execution status and defines
the topic CBT associated with the resource property. Then, upon receiving no-
tification messages from both NotificationProducers, the value of the resource
property corresponding to the service execution status is changed to “True.”
This update of the resource property causes another notification message driven
by the state transition. An example of workflow using the AND Service is shown
in Fig. 5. In this example, the end-user creates six resources in advance and
dictates the subscriptions of the inverse directions of the arrows in Fig. 5. When
the IF∗ Service with resource A updates the value of the resource property to
“True,” both applications A and B are invoked by the AI Services with a resource
in parallel. In addition, the AND service synchronizes the normal terminations
of execution of both application by waiting to receive the notification messages
with the value “True” from two IF Services with a resource. After synchronizing,
the AND Service updates the value of the resource property to “True.”

Loop Workflow To support the loop workflow, the Application Igniting System
provides the LOOP Service and the OR Service. The details of these services are
omitted in this paper due to space limitations.

Input and Output File Transfer When the end-user prepares the input files
of an application, the end-user first requests the resource creation and obtains
the pairing information of the RFT Service and the resource to send the input file
using the createTransferResource port type provided by the AI Service, which



Distributed Workflow Management System 7

Fig. 5. Parallel and synchronous workflow

has the resource that includes the information of the application. Then, file
transfer is accomplished using the pairing information. The procedure is also
the same when the end-user receives an output file of an application. On the
other hand, when an output file of application A is used as an input file of
application B, the end-user specifies the mapping information between the input
and output files to the AI Service with the resource that includes the information
of application B using the addTransfer port type.

File Format Translation To support file format translation, the Application
Igniting System provides the Editor Service, which has the same port types
and functions as the AI Service except the application management mechanism.
The Editor Service invokes the application prepared by the end-user using the
RSL file, also prepared by the end-user. The prepared application is transferred
using the createTransferResource port type of the Editor Service as in the case
of input file transfer. In addition, to register the prepared RSL file, the Editor
Service provides the setEditor port type. The prepared RSL file is specified
in the input argument of the port type. Fig. 6 shows an example of the file
format translation procedure. In this example, the output file of application A is
translated and is used as the input file of application B. The end-user creates the
application for file format translation using the application information gathered
on the Index Service in advance. In addition, the end-user prepares the RSL file
for invoking the application on the Editor Service. These are transferred to the
Editor Service using the createTransferResource and setEditor port types. Then,
the end-user specified the mapping information for file transfers such that the
output file of application A is used as the input file of the Editor Service and
the output file of the Editor Service is used as the input file of application B.
These operations are realized using the addTransfer port types of the Editor
Service and the AI Service, which has the resource that includes the information
of application B. Finally, the end-user dictates the subscriptions to invoke the
transferred application on the Editor Service before invoking the application B.
Thus, file format translation is realized.



8 Hisashi Shimosaka et al.

Fig. 6. File format translation

Fig. 7. Notification message flow

4 Bioinformatics Workflow

Here, we applied the Application Igniting System to a typical bioinformatics
workflow using the BLAST[7] and ClustalW[8] packages and evaluate its basic
performance.

4.1 Experimental Environment and Workflow

In this simulation example, a Grid environment consisting of two PC clusters was
used. The blastall and fastacmd commands were deployed on either cluster and
the clustalw command was deployed on the other. Each command was invoked
via the job scheduler and executed on any slave node in each cluster. In addition,
the end-user designed the notification message flow shown in Fig. 7 and dictated
the file transfers and file format translation shown in Fig. 8. In this workflow,
to evaluate the basic performance in parallel workflow execution, some pairs
of fastacmd and clustalw commands were prepared and these were executed in
parallel. We evaluated the basic performance with 1, 2, 4, and 8 pairs.

4.2 Workflow Execution Results

Table 1 shows the breakdown of the elapsed time when the number of pairs was
1. As shown in TABLE 1, in pre- and post-processing, the file transfers and
resource creation took a long time. In file transfers, the average transfer time of
a file or an application was 4.4 s. The long resource creation time was due to the



Distributed Workflow Management System 9

Fig. 8. Input and output file transfer and file format translation

Table 1. Breakdown of the elapsed time

Item Detail of item Time (s)

Pre
processing

12 resource creations 28.5
12 subscription dictates 4.9
5 input file transfers (each 0.3KB) 25.7
1 application transfer (0.1KB) 6.0
1 RSL file registration 0.1
3 file exchage dictates 0.4

Workflow
execution

Command execution (blastall) 1047.7
Output file acquisition (Editor,341KB) 37.5
Application execution (Editor, translation) 19.1
Output file acquisition (fastacmd,3KB) 20.9
Command execution (fastacmd) 63.2
Output file acquisition (clustalw,107KB) 22.4
Command execution (clustalw) 678.4
Message exchanges and otherwise 12.8

Post
processing

5 output file transfers (each 146KB) 17.2
12 resource destructions 4.9

security mechanism of the Globus Toolkit. On the other hand, as shown in the
breakdown of the workflow execution time, the total overhead time was 112.6
s, which was short compared with the application execution time. However, the
average acquisition time of an output file was 5.4 s. The other overhead time
was 6.4 s on average. As the average time of file format translation was 3.8 s,
the average overhead time related to message exchange was only 2.6 s, which is
very short compared with the total overhead time.

The increments in the elapsed time with 2, 4, and 8 pairs compared with the
case with a single pair are shown in Fig. 9. As shown in Fig. 9, as the numbers
increase, the increments in workflow execution make up a substantial portion of
the total increments. However, as the execution time of a pair of fastacmd and
clustalw commands was 784.9 s (TABLE 1), these increments are very short.



10 Hisashi Shimosaka et al.

Fig. 9. Increment of elapsed time

5 Conclusions

In recent years, Grid technologies have been standardized based on Web service
technologies. In this paper, we proposed and implemented a new distributed
workflow management system called the “Application Igniting System.” This
system is based on the message exchange defined by the WSN specification
and realizes a flexible and loosely coupled workflow control by providing utility
services that handle message exchange. By applying to a typical bioinformatics
workflow, we concluded that the overhead time related to message exchange is
very short.

References

1. Yu,J. et.al., A Taxonomy of Scientific Workflow Systems for Grid computing,
Special Issue on Scientific Workflows, SIGMOD Record, ACM Press, 2005.

2. Oinn,T. et.al., Taverna: a tool for the composition and enactment of bioinformatics
workflows, Bioinformatics, 20(17):3045-3054, Oxford University Press, London,
UK, 2004.

3. Foster,I. et.al., The Open Grid Services Architecture, Version 1.0, Global Grid
Forum OGSA-WG, GFD-I.030, 2005.

4. Czajkowski,K. et.al., The WS-Resource Framework, Version 1.0, 2004, [On-
line]. Available: http://www.oasis-open.org/committees/download.php/6796/

ws-wsrf.pdf
5. Graham,S. et.al., Publish-Subscribe Notification for Web services, Version 1.0,

2004, [Online]. Available: http://www.oasis-open.org/committees/download.

php/6661/WSNpubsub-1-0.pdf
6. Foster,I. et.al., Globus: A Metacomputing Infrastructure Toolkit, International

Journal of Supercomputer Applications, Vol.11, No.2, pp.115-128, 1997.
7. Altschul S.F. et.al., Basic local alignment search tool, Journal of Molecular Biology,

1990.
8. Thompson,J.D. et.al., CLUSTAL W: improving the sensitivity of progressive multi-

ple sequence alignment through sequence weighting, position-specific gap penalties
and weight matrix choice, Nucleic Acids Reseach, 1994.


