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ABSTRACT
To design a more economical structural form, it is nec-
essary to optimize both the topology and shape of struc-
tures. To optimize topology, we propose a hybrid of Ge-
netic Algorithm (GA) and Evolutionary Structural Opti-
mization (ESO). This paper describes the considerations
in applying the proposed method to topology structural
optimization. Through numerical examples, the proposed
method showed better search ability than GA or ESO meth-
ods alone. Moreover, this hybrid method makes it possible
to design a more economical structural form.
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1 Introduction

To optimize a structural form, it is necessary to optimize
topology. Generally, topology structural optimization is
a problem of minimizing the volume under various con-
straints. The most typical method for topology struc-
tural optimization is the evolutionary structural optimiza-
tion (ESO) approach [1], in which a design domain that is
not structurally active is considered to be used inefficiently
and can be removed by various element rejection criteria
(deletion rate). ESO is a method for designing an opti-
mal structural form by deleting unnecessary parts. As it
does not require special equipment for the structural cal-
culations, it is an effective method with both extensibil-
ity and generality. Various other types of structural topol-
ogy optimization method have been developed. Among
the most well-established of these methods are those based
on the homogenization approach [2]. The homogenization
method represents the design domain as porous materials
with infinite micro-scale cells, and considers the size and
angle of the hole of the micro-structure to be a design vari-

able. Moreover, the density method [3] to which the ho-
mogenization method can be simplified assumes the ma-
terial characteristics to be proportional to the involution
function of the density. A more recent development is the
method based on the cellular automata method, by which
the mechanism of growth is expressed [4].

On the other hand, Genetic Algorithms (GA) [5] are
optimization methods that simulate the heredity and evolu-
tion of living organisms. GAs are utilized for global opti-
mization problems with two or more constraints and allow
the optimal solution to be found easily without falling into
local solutions. Therefore, GAs are applicable to topology
structural optimization, with effects that are equivalentor
better than other methods. In application of GAs to topol-
ogy structural optimization, it is necessary to consider en-
coding to an object problem, crossover methods for inher-
itance of parental characteristics, fitness calculations,and
constraints for displacement or stress.

In our approach, elements of the structure are en-
coded by representing one structure as one individual by
the chromosome. This approach involves deciding the
topology of the structure by allocating the index that shows
the presence of each individual element, and application
of the structure to topology structural optimization is sim-
ple. However, the chromosome length increases in struc-
tures with a large number of elements in this approach.
Moreover, to find an optimal solution, GAs generally re-
quire large numbers of both individuals and generations,
and convergence slows.

Therefore, we examined the considerations in apply-
ing GAs to topology structural optimization. Moreover, we
propose application of the concept of removing unneces-
sary parts of the ESO method to GAs to improve conver-
gence of a structural form. We then compare with struc-
tural forms designed by the proposed method and the ESO
method.



2 Evolutionary Structural Optimization

The ESO method proposed by Xie [1] designs the opti-
mal structural form by a simple process deleting unneces-
sary parts, while repeating normal structural analysis. This
method is effective and has both extendibility and general-
ity, because it does not require special equipment for struc-
tural optimization calculation.

To determine which parts are unnecessary, in the ESO
method, the parts where the stress value and the influence
on the whole of the structure is small are deleted. The
parts where the structure is analyzed at the generation and
the stress value is small are deleted individually based on
a given threshold (deletion rate) decided beforehand prior
to structural calculation. Therefore, the process of dele-
tion is advanced by the deletion rate for all the processes
of evolution, and is irrelevant to the structural form at each
stage. Evolution is inefficient when there are many parts
that should be deleted, while an economic structure cannot
be designed if there are few parts to be deleted. The dele-
tion rate is usually set lower than necessary. Figure 1 shows
the case in which unnecessary parts are deleted. As a result
of structural analysis, the parts where the stress value is
small are deleted only at the deletion rateα in the number
of all elements.

Figure 1. Removed elements of unnecessary parts using
ESO method

In this study, to apply GAs to topology structural op-
timization and for comparison with the ESO method, the
structural form designed with the ESO method is assumed
to be the optimal layout. Figure 2 shows the process of evo-
lution of a structural layout using the ESO method when
the boundary of the structure is fixed on the left side, and
the vertical direction concentration load is received at right-
center. Figure 2 shows a cantilever problem of receiving a
concentrated load, which is a problem faced in many stud-
ies. The number of elements of the initial layout is 400, the
deletion rate is 0.05, and the structural layout to perform
ESO in ten steps is assumed to be the optimal layout. Table
1 shows the final number of elements, maximum displace-
ment, maximum equivalent stress, and decentralization of
element equivalent stress on the optimal layout.

3 Structural optimization using GAs and
ESO

This study is performed to design a structural layout of a
minimum volume under the constraint of maximum dis-

Figure 2. Evolutionary process of a structural layout using
the ESO method

Table 1. Results of analysis of the optimal layout

Number of elements 200
Maximum displacement (×10

−8m) 6.474
Maximum equivalent stress (×10

2Pa) 3.491
Decentralization of
element equivalent stress (×10

3) 6.876

placement, and GAs are applied to topology structural opti-
mization. In this chapter, we describe the procedure for de-
signing a structural layout using GAs and the ESO method.

3.1 Procedure of the proposed method

GAs are optimization methods that simulate the heredity
and evolution of living organisms. In GAs, the population
of individuals are generated as the initial search points, and
individuals are assigned fitness values. Then, the opera-
tions (selection, crossover, and mutation) are applied re-
peatedly to individuals in the population. GAs can find
an optimal solution by selection, which selects individuals
with high fitness, crossover, which results in inheritance of
good characteristics from the parents, and mutation, which
maintains diversity by changing parts of the individuals.
Moreover, the Distributed Genetic Algorithm (DGA) is a
model in which GAs are parallelized. In DGAs, the pop-
ulation is divided into sub-populations (islands), and the
genetic operations are performed in each sub-population.
Therefore, DGA is also called the Island model. More-
over, DGA includes an operation called migration in which
some individuals are transferred to other islands every cer-
tain number of generations. The interval of migration and
rate of individuals by migration are called the migration
interval and migration rate, respectively. DGA has been
shown to be able to find better solutions than GAs [6]. In
this study, DGA was applied to maintain the diversity of
individuals. The procedure of the proposed method is as
follows.

1. Initial individuals are generated and initialized.

2. The genetic operators (selection, migration, crossover,
mutation) are applied to individuals.

3. The elements of individuals are removed: ESO
method.



4. Structural analysis (analysis of the displacement of
each node, and stress of each element).

5. Constraints are judged, and the pulling back method
is applied to the offspring.

6. Filtering.

7. Offspring are evaluated.

8. The above procedures 2-7 are repeated to the end gen-
erations.

These operations are explained in detail in the following
sections.

3.2 Coding and fitness

3.2.1 Coding

As mentioned above, in this study, elements of structure are
encoded by representing one structure as an individual by
the chromosome. Figure 3 shows the coding of determina-
tion of the topology of a structural layout by representing
the presence of each element by a bit-array (1 bit or 0 bit).
Young’s modulusE is used as an index representing the
presence of elements. In this case, the Young’s modulus
E1(= 206GPa) is allocated to solid elements where ele-
ments are present, and an extremely small Young’s modu-
lus E0(= 103MPa) is allocated in void elements where
the elements are not present. The topology of the struc-
tural layout is represented by the extreme difference be-
tween two Young’s modulus.

Figure 3. Coding by bit-array representation

3.2.2 Fitness

Under the constraint that the maximum displacement does
not exceed the allowable displacement, the fitness is formu-
lated as a problem of minimizing the volume. In the first
term of Equation 1 and Equation 2, the total of solid ele-
ments possessed by the individualx of chromosome length
n is minimized. The fitness increases in the individual with
small numbers of solid elements.

In the second term of Equation 1 and Equation 2, the
coefficientζ is multiplied by the allowable displacement
ratio of the allowable displacementδg, which is the con-
straint value of the maximum displacement, and the max-
imum displacementδmax is added to the first term. This
is because the maximum displacement is different if the
topology is different even if the number of elements is

equal. Then, between individuals with an equal number
of elements, the fitness of the individual the maximum dis-
placement has margin for the allowable displacement is im-
proved.

In the third term of Equation 2, the decentralized
value of element equivalent stressσv is scaled withγ, and
coefficientξ is multiplied. Then,γ is 1.0e + 3 to become
a scale equal to the second term. This is because the el-
ement equivalent stress is different if the topology is dif-
ferent even if the number of elements is equal, similarly to
Equation 1. Generally, when stress is concentrated, cracks
occur frequently in the structure compared with cases in
which the stress is distributed over a wider area. Therefore,
cracking becomes les likely in structures with small decen-
tralization of the element equivalent stress. As mentioned
above, in Equation 2, the number of elements is consid-
ered in the first term, and the allowable displacement ratio
is considered in the second term. In addition, the fitness of
the individual with a more economical structural can be im-
proved by the decentralization of element equivalent stress
considered in the third term. The differences in the design
of a structural layout by Equation 1 and Equation 2 are ex-
amined by simulation as described in Chapter 4.

Minimize : F =

n
∑

i=1
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(

δmax

δg

)
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xi ∈ {0, 1} Subject to : δmax < δg

Minimize : F =

n
∑
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)

+ ξ

(

σv

γ

)

(2)

xi ∈ {0, 1} Subject to : δmax < δg

3.3 Crossover that considers structural form

When GAs are applied to object problems, it is important
to consider an effective crossover method to allow inher-
itance of good characteristics of the parents by the off-
spring. When one-point (multipoint) crossover is applied
in usual GAs (Genotype) to topology structural optimiza-
tion, crossover is done without any relation to structural
form (Figure 4(a)). As a result, the characteristics of the
parents are destroyed, and it is possible that the layout may
show a checkerboard density distribution [7].

Therefore, we propose a crossover method that takes
structural form into consideration. Figure 4(b) shows the
proposed crossover method. Two offspring are generated
with the logical OR operation and the logical AND op-
eration of two chromosomes (structural layout of parent
’A’ and structural layout of parent ’B’). In the structural
layout of offspring ’A’, if parent individual ’A’ and either
’B’ element includes solid elements, the elements become
solid elements. In the structural layout of offspring ’B’,
the elements become solid elements only when both par-
ents include solid elements. One is an individual with the
small maximum displacement with large numbers of ele-
ments, and another is an individual with large maximum



displacement and a small number of elements. The pro-
posed crossover method takes structural form (solid and
void elements) into consideration.

(a) One-point crossover (b) Crossover taking structural
form into consideration

Figure 4. Comparison of structural layouts according to
crossover method

3.4 Using ESO and pulling back method

3.4.1 Improvement of search ability using
ESO

Generally, in GAs, the degree of evolution slows so that
large numbers of individuals and generations are required
to find an optimal solution. Therefore, we propose that the
degree of evolution should be increased by deleting unnec-
essary parts, as in ESO, in the evolutionary process of GA.
Moreover, as described in Chapter 2, the ESO method is
effective for topology structural optimization. Therefore, a
better search ability can be expected by applying the ESO
method to the evolutionary process of GA compared with
the single GA search.

3.4.2 Pulling back method

In applying the ESO method and the evolutionary process
of GA, the pulling back method is applied to offspring that
transgress the constraint of allowable displacement.

Figure 5 shows the pulling back method. When off-
spring ’a’ generated from parents ’A’ do not fill the con-
straint and transgress the feasible area, the design variables
of parents ’A’ are compared to those of offspring ’a’. Then,
the elements that are void elements of offspring ’a’ and are
solid elements of parents ’A’ are made into solid elements.
As a result, offspring have a larger number of solid ele-
ments than the parents, the maximum displacement of off-
spring becomes small, and the offspring are pulled back to
the feasible area. Although the pulling back method results
in the number of elements of offspring becoming greater
than that of the parents, as mentioned above, because the
fitness of an individual is decided by the number of ele-
ments, the allowable displacement ratio, and the decentral-

ization of element equivalent stress, offspring can remain
in the next generation.

Figure 5. Pulling back method

3.5 Filtering

When the number of elements of structures is of a low-
dimension, by the evolutionary process of GA, applica-
tion of the ESO method, and the pulling back method,
a checkerboard-like density distribution may appear fre-
quently in a structural layout [7]. The filtering method,
as shown in Figure 6, is indispensable to prevent this den-
sity distribution [8]. In the neighboring elements of the
object element, if surrounding elements are solid, the ob-
ject element is made into a solid element. If they are void
elements, the object element is made into a void element.
Then, the Moore neighborhood is used to decide the neigh-
borhood elements of the object element.

Figure 6. Filtering method using Moore neighborhood

4 Numerical examples

To examine its effectiveness, the proposed method is ap-
plied to the cantilever problem of two dimensions. By as-
suming Step 10 in Figure 2 to be the optimal layout, and us-
ing Equations 1 and 2, we examine the design of the struc-
tural layout with allowable displacement as a constraint and
also when decentralization of element equivalent stress is
considered. The methods for examining are GA+ESO to
which the concept of the ESO method is applied and GA to
which it is not applied.

4.1 Cantilever design optimization

Figure 7 shows the cantilever problem. In Figure 7, the
Poisson’s ratioυ is 0.3, the number of elements is 400,
the number of nodal points is 882, the Young’s modulus



E1is206GPa (solid elements), andE0 is 103MPa (void
elements). The boundary of the structure is fixed on the
left side, and the vertical direction concentration load of
(100N ) is received at right-center.

Figure 7. Cantilever problem
Table. 2 shows the parameters of the proposed

method. In Table. 2, the deletion rate of GA+ESO is
0.0025, 0.0050, 0.0075, and 0.0100, and it of GA is 0.0.
Allowable displacement value is an analysis result of the
optimal layout of Table. 1.

Table 2. Parameters of the proposed method

Population size 100
Number of islands 10
Number of elites 1
Chromosome length 400
Migration rate 0.5
Migration interval 5
Mutation rate 0.0025 (1/chromosome length)
Deletion rate GA+ESO (0.0025C0.0050,

0.0075, 0.0100),
GA (0.0)

Allowable displacement value
(×10

−8m) 6.474
Coefficientζ 1.0
Coefficientξ 1.0
Number of generations 1000

4.2 Design of structural layout with allow-
able displacement as a constraint

In the constraint of allowable displacement using Equa-
tion 1, the results of structural layout and search ability are
shown. GA+ESO and ESO methods are also compared.

Figure 8 shows the final structural layouts designed
by GA+ESO and GA. Figure 8(d) is similar to the opti-
mal layout in Figure 2. In Figure 8(e), the shape is similar
to the optimal layout in Figure 2 although the topology is
markedly different.

Figure 9 shows search abilities of GA+ESO and GA.
GA+ESO (0.0100) showed greater search ability. On the
other hand, that of GA was poorer than that of GA+ESO,
which was thought to be because GA does not include
the process of deleting unnecessary parts as in the ESO
method.

Figure 8. Final structural layout

Figure 9. Search ability

Table 3 shows the comparison between GA+ESO
(0.0100) and ESO (Optimal layout). GA+ESO was bet-
ter than ESO with regard to both the number of elements
and the maximum displacement. As a result, GA+ESO had
better fitness.

Table 3. Comparison between GA+ESO (0.0100) and ESO
(Optimal layout)

GA+ESO ESO

Number of elements 168 200
Maximum displacement (×10

−8m) 6.455 6.474
Fitness 169.0 201.0

4.3 Design of structural layout when decen-
tralization of element equivalent stress is
considered

In the constraint of allowable displacement using Equation
2, which considers decentralization of element equivalent
stress, the results of the structural layout and search ability
are shown. GA+ESO and ESO methods are also compared.

Figure 10 shows the final structural layouts designed
by GA+ESO and GA. With both methods, structural lay-
outs were markedly different from Figure 8 and the optimal
layout in Figure 2. Especially, while the optimal layout has
an axisymmetric topology around the right-center part, GA
in Figure 10(e) showed a topology in which a large number



of elements are concentrated on the lower right. This was
thought to be because the entire element equivalent stress
was distributed by concentrating the number of elements
on the lower side.

Figure 10. Final structural layout

Figure 11 shows search abilities of GA+ESO and GA.
GA+ESO (0.0050) showed better search ability than GA.

Figure 11. Search ability

Figure 12 shows decentralization of element equiva-
lent stress of GA+ESO and GA. With both methods, decen-
tralization of the element equivalent stress increased from
the first stage of the search, and converged. Moreover, that
of GA was lower than that of GA+ESO.

Figure 12. Decentralization of element equivalent stress

Table 4 shows a comparison between GA+ESO
(0.0050) and ESO (Optimal layout). GA+ESO was bet-
ter than ESO with regard to both the number of elements
and the maximum displacement. However, ESO was better
than GA+ESO with regard to decentralization of element
equivalent stress. As a result, GA+ESO had better fitness.

Table 4. Comparison between GA+ESO(0.0050) and ESO
(Optimal layout)

GA+ESO ESO

Number of elements 183 200
Maximum displacement (×10

−8m) 6.444 6.474
Decentralization of
element equivalent stress
(×10

3) 6.935 6.876
Fitness 190.9 207.9

5 Conclutions

In this paper, we proposed a hybrid of GA and ESO meth-
ods for topology structural optimization. To apply GA
and ESO to topology structural optimization, we examined
coding, fitness, effective crossover method, pulling back
method, and filtering. The results of the experiments in-
dicated that the proposed method showed improved search
ability over the GA or ESO method alone. Moreover, this
hybrid method makes it possible to design a more econom-
ical structural form than was previously available.
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