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ABSTRACT
In this paper, the effectiveness of the neighborhood
crossover of EMO algorithms is discussed through the nu-
merical experiments. The neighborhood crossover chooses
two parents which are close to each other in the objective
space. All the individuals are sorted in order of proxim-
ity in the objective space, and then neighborhood shuffle
is conducted, which randomly replaces individuals in the
population at a fixed width interval of population size. This
operation prevents crossing over repeatedly between the
same pair of individuals.The width of neighborhood shuf-
fle is the parameter of this operation and this parameter
determines the range of the population where individuals
are shuffled. Therefore, this parameter affects the qual-
ity of the solutions. We implemented the NSGA-II with
the neighborhood crossover and examined the effect of the
width of neighborhood shuffle to further investigate the ef-
fectiveness of neighborhood crossover. The results of the
numerical experiment indicated that the effect of neighbor-
hood crossover can be achieved by applying neighborhood
crossover to the search population created through copy se-
lection. In addition, the necessity of neighborhood shuffle
and an appropriate width of neighborhood shuffle were re-
viewed.
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1 Introduction

A problem with multiple criteria where the criteria are in
a trade-off relationship is called a multiobjective problem.
There are various methods of solving multiobjective prob-
lems, but the focus of this study was evolutionary multiob-
jective optimization (EMO), where a set of solutions supe-
rior to any solution called Pareto optimal solutions is ob-
tained at one time. The most important goal of EMO is

to discover the non-dominated solutions equivalent to the
Pareto optimum front, or a solution similar to that with
great diversity. Various algorithms of such approaches
have been proposed after Shaffer’s VEGA [1]. Among
them, Deb’s Elitist Non-Dominated Sorting Genetic Algo-
rithm (NSGA-II) [2] and Zizler’s Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) [3] have incorporated impor-
tant mechanisms for the MOGAs, such as preservation of
individuals with high degree of fitness and method for re-
duction of individuals based on diversity, and these have
been reported to yield excellent solutions.

Meanwhile, we have been improving these important
mechanisms by incorporating the neighborhood crossover
that crosses over by individuals which are close to each
other in the objective space, and the search ability has been
improved [4, 5]. In the neighborhood crossover, individ-
uals are sorted in the order of proximity of distance be-
tween the individuals in the objective space, and then the
neighborhood shuffle is conducted to randomly rearrange
the individuals in a fixed width of the population. The
width of neighborhood shuffle over which this neighbor-
hood shuffle is conducted is a parameter, and the proximity
between individuals changes depending on this parameter,
and it greatly influences the search performance of the so-
lution. In this study, the neighborhood crossover was built
into NSGA-II, which is a typical method, to further investi-
gate neighborhood crossover and the influence of the width
of neighborhood shuffle on neighborhood crossover. The
required condition to achieve the effects of neighborhood
crossover and appropriate width of neighborhood shuffle
were also examined.

2 Evolutionary multiobjective optimization

The Genetic Algorithm (GA) is an optimization method
modeled on the inheritance and evolution of organisms in
the natural world. As GA is a multi point search, which is



different from the conventional one point search method,
two or more Pareto optimum solutions can be obtained
through a single search.

In MOGAs that apply GA to multiobjective problems,
the search goal to obtain various Pareto optimum solutions
in the objective space with a high degree of accuracy. Im-
portant mechanisms that have been proposed to achieve this
goal are summarized below.

1. Preservation to archive
The preservation of the Pareto optimum solution to the
archive has been incorporated into many recent algo-
rithms. This operation is achieved by generating the
archive separate from the search population, and pre-
serving superior individuals of each search phase in
the archive [6, 3, 2, 7, 8].

2. Environmental selection
The selection of the solutions to be preserved in the
archive is called environmental selection. The indi-
viduals preserved in the archive are generally those
individuals with a high degree of fitness. However,
when the number of non-dominated solutions exceeds
the size of the archive, the solution are selected with
consideration of the degree of overcrowding of the in-
dividuals. The selection technique that considers the
level of overcrowding of the solutions includes meth-
ods that use sharing[9]: crowding distance is used in
NSGA-II [2], and the Archive truncation method is
used in SPEA2 [3].

3. Mating selection
Selection of the search population of the next gen-
erations from the archive is called mating selection.
In methods such as NSGA-II and SPEA2, the search
has been accelerated by generating a search popula-
tion from individuals with high degree of fitness that
are preserved in the archive.

4. Fitness degree allocation
As two or more objective functions exist in the MO-
GAs, the objective function value cannot be applied
as a degree of fitness as in single-objective GA. In
addition, the method of allocating the degree of fit-
ness with consideration of the dominated relation be-
tween individuals is proposed. Typical methods use
ranking [9], allocation of the degree of fitness based
on the number of dominated individuals [3], and non-
dominated sorting method [2].

3 Application of neighborhood crossover to
MOGAs

3.1 Crossover in MOGAs with consideration to prox-
imity

The role of crossover is generating good offsprings from
good parent individuals. In MOGAs, good individuals are

nondominated solutions and are scattered in the population.
On the other hand, a typical MOGAs method includes gen-
erally either one-point or multi-point crossover. In these
crossovers, there is a problem such that individuals in a
crossover pair are chosen at random, and the Euclid dis-
tance in the variable space between the individuals is too
large that generated offsprings have a high possibility of be-
ing dominated solutions. To prevent this, it is necessary to
consider the proximity of the individuals somehow, when
the individuals to be crossed over are chosen. By cross-
ing over individuals adjacent in the variable space, the off-
spring can be generated near the good parent individuals
and would be also a nondomitend solution, thus creating
a population with great diversity. However, there are some
cases where the Euclid distance in the variable space cannot
be defined, such as in the combinational function. Gener-
ally, in the continuous function, there is a high possibility
of individuals adjacent in the objective space also being ad-
jacent in the variable space. For the above reasons, in this
study, crossover was conducted on individuals adjacent in
the objective space rather than in the variable space. With
this background, various studies have been conducted on
neighborhood crossover, where crossover between individ-
uals in close proximity to one another is conducted [4, 5].

3.2 Algorithm of neighborhood crossover

Neighborhood crossover is a crossover between individu-
als with short Euclid distance in the objective space. The
search ability can be improved by specifically crossing over
individuals that are close to each other in the objective
space. The algorithm of the neighborhood crossover is
shown below.

1. From the best individual for one of the function val-
ues, sort the population in close order in the objective
space.

2. Neighborhood shuffle which changes individuals ran-
domly in certain width of the population size is per-
formed for the sorted population.

3. Select 2*ith and 2*i+1th individuals as parents and
crossover is performed

Neighborhood shuffle is a very important operation in
the neighborhood crossover. If neighborhood shuffle is not
conducted, crossover will be conducted with the same pair
in every generation, and thus it will be impossible to es-
cape when falling into a localized solution. Therefore, it is
important to perform neighborhood shuffle with a width of
moderate size. The width of neighborhood shuffle in which
this neighborhood shuffle is conducted is a parameter, and
is decided depending on the ratio of the neighborhood shuf-
fle width (Rnsw). Rnsw is a real number between 0 and
1.0, and the size of the width of neighborhood shuffle is
represented as the ratio to the size of the population. For
example,Rnsw 0.1 means that the neighborhood shuffle is



conducted with a width that is 10% of the population. The
proximity of the individuals changes depending on the size
of Rnsw , and the proximity increases with decreasing this
size, but this also increases the possibility that crossover
will be conducted repeatedly in the same pair. In the next
section, the influence of changes in width of neighborhood
shuffle on solution search ability is examined through a nu-
merical experiment, to investigate the effects of neighbor-
hood crossover.

4 Effectiveness of neighborhood crossover

To investigate the effect of neighborhood crossover, a nu-
merical experiment was conducted using a test function,
and using a typical MOGA method, NSGA-II, incorporat-
ing neighborhood crossover. The influence of the width of
neighborhood shuffle on neighborhood crossover was also
examined.

4.1 Experimental method

The target problems used in this experiment were: KUR
used for numerical experiment of Kursawe as a continu-
ous function [10], and knapsack problem with two objec-
tives and 750 items (KP750-2) from multiobjective knap-
sack problems used in the numerical experiments of Zitzler
(knapsack problems) as a combinational function [11].
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KUR is a problem that involves interaction between
two consecutive variables in f1(x), and is multi-convex in
f2(x). In this experiment, this problem was handled as a
problem with 100 design variables, which made the search
more difficult.
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j=1 xj · p(i,j)

s.t.
gi(x) =

∑750
j=1 xj · w(i,j) ≤ Wi

1 ≤ i ≤ k, k = 2

(2)

While the multiobjective knapsack problem is very
simple and easy to implement, the search of the problem
is very difficult. p(i,j) andw(i,j) in the above expression
represent the profit value and the weight value that accom-
pany thejth item when calculating the evaluation values of
theith item, respectively. In addition,Wi is the restriction
value (upper limit) to the sum total of the weight value in
calculating the evaluation values of theith item.

Though there are various methods to evaluate the ob-
tained non-dominated solutions, in this study, we will use
the evaluation method outlined below.

1. cover rate: Icover

2. Spread [11]

3. Ratio of Non-dominated Individuals:RNI [12]

Icover is a method of absolutely evaluating the ob-
tained non-dominated solution; it evaluates whether the so-
lution set has a uniform distribution in the Pareto optimum
solution domain in the objective space. Icover can be ob-
tained from the proportion of the number of small areaski,
where non-dominated solutions exist in objective function
I, of which Pareto optimum solution areas for each objec-
tive function are divided intoK sections. The following
is the equation to obtain Icover in the target problem ofN

objective function.

Icover=
1
N

∑N

i=1
ki

K

The above equation shows that the closer Icover is to
1.0, the more the solution is from all over the region. In
this experiment, the population size was set to the division
numberK.

Spread is calculated using the following equation.
The range of Pareto optimum solutions increases as larger
values are used.

Spread=
∑N

i=1[maxfi(x)−minfi(x)]

RNI is the method used by Tan expanded to compare
the two non-dominated solutions [12]. In RNI, the sum-
set of the solution sets X and Y obtained by two methods
is set asSU . Next, solutions non-dominated by any other
solution are selected fromSU , and the selected set of so-
lutions isSP . Finally, the proportion of the solution from
each method inSP is selected asIRNI(X,Y ). Therefore,
the closer this ratio is to the maximum value of 100%, it is
better than other methods; i.e., the obtained solutions are
closer to the real solution.

Our numerical expriments on KUR are performed
under the following parameter specifications:

Population Size : 100(KUR), 250(KP750-2)
The number of Dimension : 100(KUR))
Chromosome Length : 20*The number of Dimen-
stion(KUR), 750(KP750-2)
Crossover Probability : 1.0
Mutation Probability : 1/Chromosome Length
Stopping condition : 250 generations(KUR),
2000 generations(KP750-2)

The average value of each evaluation method is cal-
culated over 30 runs with diffrent initial populations.

In each target problem, variousRnsw are examined.
In KUR, because the size of the population is 100,Rnsw

with values of 0.0, 0.05, 0.1, 0.2, 0.25, 0.5, and 1.0 are ex-
amined. Rnsw0.0 means that neighborhood shuffle is not
executed after the sort, and asRnsw1.0 executes neighbor-
hood shuffle in width of the size of the population after the



sort, it will be the same as the original NSGA-II. In addi-
tion, in KP750-2, because the size of the population is 250,
Rnsw with values 0.0, 0.02, 0.04, 0.1, 0.2, 0.5, and 1.0 are
examined.

4.2 Examination of the effectiveness of the neighbor-
hood crossover

Icover, Spread, and RNI compared to the original NSGA-I
I through changes inRnsw in KUR, are shown in Figure.1.

Figure 1. Results of Icover, Spread, RNI for KUR

From the results of Icover in Figure.1, no significant
effect of neighborhood crossover is seen compared to the
original NSGA-II. In addition, there was no marked differ-
ence in the influence ofRnsw on neighborhood crossover.
The results of Spread indicated that the performance of
neighborhood crossover is worse than NSGA-II for any
Rnsw, and the broadness is lost. For RNI, although
Rnsw0.25 had relatively good results, no marked difference
was observed with changes in theRnsw, and thus there was
no effect of neighborhood crossover.

Similarly, the results for KP750-2 are shown in
Figure.2.

Figure 2. Results of Icover, Spread, RNI for KP750-2

No significant effect of the neighborhood crossover
is seen for KP750-2. Thus, we believe that the effect is
small just by simply introducing neighborhood crossover,
and thus certain conditions are required to achieve effec-
tiveness. The next section examines the conditions for
achieving effectiveness of the neighborhood crossover.

5 Effectiveness of copy selection on neigh-
borhood crossover

5.1 Examination of the copy selection

In chapter 4, neighborhood crossover was incorporated
into NSGA-II to investigate the effect of neighborhood
crossover using various widths of neighborhood shuffle,
comparing the results to the original NSGA-II, but no sig-
nificant differences were observed. Here, we consider the
conditions that will generate effectiveness of neighborhood
crossover. Typical methods, such as NSGA-II and SPEA2,
use tournament selection as the mating selection method
to select the search population from the archive. This is
to speed up convergence through a search using more su-
perior individuals. However, superior individuals selected
by tournament selection from the archive are selected re-
dundantly more than once. On the other hand, as the
neighborhood crossover first sorts the individuals in the
order of proximity, in the population formed by tourna-
ment selection, the possibility of the same individuals be-
ing side by side is higher, and the possibility of unnec-
essary crossovers between the same individuals is there-
fore also higher. Thus, mating selection in neighborhood
crossover, which requires a population that consists of in-
dividuals as different as possible, is believed to be more
effective using copy selection that just copies the archive
population, rather than using tournament selection. In next
section, a comparative experiment is described where the
search population of the next generations is generated with
copy selection, instead of using tournament selection, from
NSGA-II incorporating neighborhood crossover and exe-
cuting neighborhood crossover. The target problem and the
parameters are the same as in the preceding section.

5.2 Experimental results

Icover, Spread, and RNI compared to the original NSGA-I
I through changes in ratio of width of neighborhood shuf-
fle (Rnsw) in KUR are shown in Figure.3. The results of
original NSGA-II for Icover and Spread are also shown for
comparison.

Figure 3. Results of Icover, Spread, RNI for KUR when
copy selection is adapted



The results shown in Figure.3 confirm the effective-
ness of neighborhood crossover. Especially, whenRnsw

is between 0.05 and 0.2, the broadest Pareto optimum solu-
tions are obtained. WhenRnsw0.0, i.e., when the neighbor-
hood shuffle is not conducted, the search was believed to be
influenced because the frequency of crossover in the same
pair increases. In original NSGA-II, as the search popula-
tion is generated from the archive through sampling with
replacement, convergence to the Pareto optimum solution
of the search individuals becomes faster, but the population
becomes more likely to lose its diversity, and falls more
easily into localized solutions. Therefore, it is difficultto
obtain an excellent solution in a multi-convex problem, as
in KUR. However, the search ability will be improved by
maintaining diversity through copy selection and by incor-
porating neighborhood crossovers. The Pareto optimum
solutions for KUR obtained from the 30 trials usingRnsw

0.1 compared to NSGA-II are shown in Figure.4. The ef-
fectiveness of the neighborhood crossover was confirmed
visually, and the obtained non-dominated solutions can be
seen to have great diversity.

Figure 4. Solutions obtained by NSGA-Iwith NC and orig-
inal NSGA-II for KUR

Figure 5. Results of Icover, Spread, RNI for KUR when
copy selection is adapted

Similarly, the results of KP750-2 are shown in
Figure.5. KP750-2 is a problem with a very wide Pareto op-
timum front, and the design variable value of the Pareto op-
timum individuals forming the Pareto optimum front also
contains a large amount of diversity. Therefore, similar to
KUR, to search for a wide range of Pareto optimum so-
lutions, the diversity of the population is very important.
Figure.5 shows that a Pareto optimum solution set with
great diversity is obtained, and the effectiveness of neigh-
borhood crossover was confirmed.

The above results show that neighborhood crossover
is effective when the search population of next generation
is generated from the archive using copy selection.

5.3 Necessity of neighborhood shuffle

We examined various ratios of neighborhood shuffle width
in section 5.1, and found that RNI is worse usingRnsw0.0
in both target problems. WhenRnsw0.0, Icover, and
Spread increase, but as neighborhood shuffling will not be
executed, the frequency of the crossovers between the same
pairs of individuals as in the previous generation will also
increase, and the search is influenced. To confirm this,
we indicate the number of times crossovers took place in
the same pair as in the previous generation, for each target
problem Figure.6.

Figure 6. Number of times crossover was conducted by
individuals of the same pair as in the previous generation.

From Figure.6, we can see that more crossovers took
place in the same pair as in the previous generation when
the neighborhood shuffle width is smaller. In addition,
from the results shown in Figure.3 and Figure.5, proximity
decreases, and the width and diversity are lost whenRnsw

is larger than 0.5. Therefore, it is important for neighbor-
hood crossover to have an appropriate neighborhood shuf-
fle width for neighborhood shuffling.

5.4 Appropriate width of neighborhood shuffle

From the results of RNI in Figure.3 and Figure.5, we can
see that better results are obtained than the original NSGA-I
I even whenRnsw is 1.0. As there was no significant dif-
ference in the results of Spread, the convergence toward
the Pareto optimum solution is great in RNI with good re-
sults. That is, in these target problems, good results are
obtained simply by using copy selection instead of tour-
nament selection. Search ability increases when neigh-
borhood crossover is conducted after using copy selection.
Thus, a wide range and great diversity of non-dominated
solutions can be obtained. To confirm the effectiveness of
neighborhood crossover using appropriateRnsw, Figure.7
shows the RNI in comparison withRnsw1.0 for each tar-
get problem. In Figure.7, good results are obtained in all
Rnsw exceptRnsw0.0. In addition, in Figure.7, we can see
that the best ratio of neighborhood shuffle width is around
Rnsw0.2.



Figure 7. Comparison withRnsw1.0 in RNI

5.5 Characteristics of a search when neighborhood
crossover is introduced

To examine the search process of the neighborhood
crossover with an appropriate width of neighborhood shuf-
fle, the search process in KP750-2 atRnsw0.2 is shown in
Figure.8.

Figure 8. Solution search history for KP750-2

In comparison with the original NSGA-II search pro-
cess, although the speed of convergence is inferior, wide-
ranging non-dominated solutions with great diversity are
obtained from the early stages of the search. These obser-
vations indicate that it is possible to conduct a search while
maintaining the diversity of the population, and to obtain
a wide range of Pareto optimum solutions using neighbor-
hood crossover.

6 Conclusions

The influence of the width of neighborhood shuffle on solu-
tion search was examined to further investigate the neigh-
borhood crossovers that have been proposed previously.
The effect of neighborhood crossover is small even if ap-
plied to the search population generated with tournament
selection used as a mating selection method. This is be-
cause more superior individuals are redundantly selected
through tournament selection and the diversity is lost, and
because the possibility of crossover taking place between
the same individuals is high. On the other hand, when
neighborhood crossover is applied to the population gener-
ated with copy selection used as a mating selection method,
the search could be conducted while maintaining the diver-
sity of the population. In addition, it was confirmed that
the best Pareto optimal solutions are obtained when neigh-
borhood shuffling is conducted with the width of neighbor-
hood shuffle being approximately 20% of the population
size.

References

[1] J. D. Schaffer. Multiple objective optimization with vec-
tor evaluated genetic algorithms. InProceedings of the 1st
International Conference on Genetic Algorithms, pages 93–
100, Mahwah, NJ, USA, 1985. Lawrence Erlbaum Asso-
ciates, Inc.

[2] A. Pratab K. Deb, S. Agrawal and T. Meyarivan. A Fast Eli-
tist Non-Dominated Sorting Genetic Algorithm for Multi-
Objective Optimization: NSGA-II. In Marc Schoenauer,
Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lut-
ton, J. J. Merelo, and Hans-Paul Schwefel, editors,Proceed-
ings of the Parallel Problem Solving from Nature VI Confer-
ence, pages 849–858, Paris, France, 2000. Springer. Lecture
Notes in Computer Science No. 1917.

[3] M. Laumanns E. Zitzler and L. Thiele. SPEA2: Improv-
ing the Strength Pareto Evolutionary Algorithm. Technical
Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland,
2001.

[4] T. Hiroyasu M. Kim and M. Miki. Spea2+: Improving the
performance of the strength pareto evolutionary algorithm2.
Parallel Problem Solving from Nature - PPSN VIII, pages
742–751, 2004.

[5] T. Hiroyasu S. Watanabe and M. Miki. Neighborhood cul-
tivation genetic algorithm for multi-objective optimization
problems. Proceedings of the 4th Asia-Pacific Conference
on Simulated Evolution And Learning (SEAL-2002), pages
198–202, 2002.

[6] K. Deb E. Zitzler and Lothar Thiele. Comparison of multi-
objective evolutionary algorithms: Empirical results.Evo-
lutionary Computation, 8(2):173–195, 2000.

[7] T. Murata and H. Ishibuchi. Moga : Multi-objective genetic
algorithms.Proceedings of the 2nd IEEE International Con-
ference on Evolutionary Computing, pages 289–294, 1995.

[8] K. Yoshida S. Kobayashi and M. Asada. Generating a
set of pareto optimal decision trees by genetic algorithms.
Journal of the Japanese Society for Artificial Intelligence,
11(5):725–732, 1996.

[9] N. Nafpliotis J. Horn and D. E. Goldberg. A Niched Pareto
Genetic Algorithm for Multiobjective Optimization. InPro-
ceedings of the First IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational In-
telligence, volume 1, pages 82–87, Piscataway, New Jersey,
1994. IEEE Service Center.

[10] F. Kursawe. A Variant of Evolution Strategies for Vector
Optimization. In H. P. Schwefel and R. Männer, editors,
Parallel Problem Solving from Nature. 1st Workshop, PPSN
I, volume 496 ofLecture Notes in Computer Science, pages
193–197, Berlin, Germany, oct 1991. Springer-Verlag.

[11] E. Zitzler and Lothar Thiele. Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the Strength
Pareto Approach.IEEE Transactions on Evolutionary Com-
putation, 3(4):257–271, November 1999.

[12] T. H. Lee K. C. Tan and E. F. Khor. Increamenting Multi-
objective Evolutionary Algorithms: Performance Studies
and Comparisons.First International Conference on Evolu-
tionary Multi-Criterion Optimization, pages 111–125, 2001.


