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Abstract—In this paper, a parallel model of multi-objective
genetic algorithm supposing a grid environment is discussed. In
this proposed parallel model, we extended master-slave model
which has high degree of parallelism, and 2 individuals as
a crossover pair are transmitted to each slave process. Then
the number of offspring generated by crossover is changed
dynamically adapting to the performance of the each calculation
resource. This mechanism is effective for heterogeneous com-
putational resources. In addition, total communication cost can
be reduced by increasing processing load of the slave processes,
and reduction of the overhead time is expected. Moreover, we
incor porated the neighborhood crossover, in which the crossover
is performed between individuals that are close to each other
in the objective space. Therefore, 2 individuals which are close
to each other are sent to each save process. This neighborhood
crossover improvesthe search ability. Computational experiments
on heterogeneous computational resources indicated that the
proposed model was able to utilize the maximum performance
of all calculation resources and reduce the overhead time.

I. INTRODUCTION

HE computational time needed to solve real-world op-

timization problems is usualy large. Therefore, it is
very important to reduce the computational time with parallel
processing. There have been a number of studies regarding
parallel distributed implementation. For example, Deb et al [1]
proposed and discussed an approach that uses a distributed
GA. Although there have been many studies of paralel
EMO [1], [2], [3], [4], [5], [6], the degree of parallelization
is very small. On the other hand, the recent development of
large clusters and grid computing, which have unified the
calculation resources online, have made huge resources easily
available for such computational tasks. To make use of these
huge resources, it is necessary to consider the parallel model
where many processes can be performed in parallel.

In this paper, we discuss the parallel model of Multi-
objective Genetic Algorithms. In the proposed algorithm,
many processes can be performed in paralel and crossover
operation and evaluation are performed on each process.
Therefore, this algorithm can be applied on huge clusters and
the Grid. At the same time, the number of offspring generated
by crossover can be changed dynamically in this model. This
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mechanism is suitable for hetero calculation environments,
such as the Grid computational environment.

In this paper, the performance of the proposed parallel
model is compared with original master-slave model and the
feasibility of the proposed model is discussed.

Il. PARALLEL MULTI-OBJECTIVE GENETIC ALGORITHM

Similarly to single-objective optimization studies, huge
computational time is needed to solve real-world problems.
Especially, the dimension of the true Pareto-optimal front
increases when the number of objectives increases. Therefore,
a large population size is required to reach a well-distributed
Pareto-optimal front. This results in a huge computational
time. One of the solutions to reduce the computational time
is to perform EMO in paralldl.

Many studies of parallel EMO have been performed, most
of which have made use of the master-slave model or island
model [1], [2], [3], [4], [5], [6]. In the master-dlave model, one
master processor runs the GA operations and slave processors
are used for evaluation purposes only. In this model, when the
number of processors P is used, the ideal acceleration is P.
Any agorithm can be applied to this model and the obtained
solutions would be equivalent to the solutions obtained with
the original algorithms using a single processor. In the island
model, a population is divided into a number of subpopulations
and a processor is assigned per subpopulation. In this model,
different EMOs are run on different processors and some
solutions are migrated between processors after every few
generations.

A good parallel EMO implementation was presented by
Deb [1]. However, in this model, only a small degree of
parallelization is assumed because this study uses the island
model. The master-slave model is effective to increase the
degree of parallelization by at least the population size. On
the other hand, many resources are becoming available due to
the development of large clusters and grid computing, which
have unified online calculation resources. At the same time,
the resources on the Grid are not homogeneous but are hetero-
geneous. Therefore, it is also necessary to consider the parallel
model that can be applied to heterogeneous environments, such
as grid computing.

The goal of this paper is to discuss the parallel EMO where
the master-slave model is extended supposing a heterogeneous
grid environment. While proposing the parallel EMO in grid
computing, the following two aspects should be kept in mind:



« The resources in the grid environment differ in their
performance. Therefore, it is necessary to take into
consideration the parallel model corresponding to the
heterogeneous grid environment.

o Overheads, such as communication time, must be suf-
ficiently small as compared with evaluation time. As
communication time in the grid environment becomes
large as compared with the case where parallel processing
is performed on a PC cluster, it is necessary to take
into consideration the parallel model that can hide the
overhead.

As the calculation resources in the grid environment have
differences in performance, when al calculation resources
have the same number of individuals to be evaluated, the
calculation resources with inferior performance would require
more time for evaluation, and would act as a bottleneck to
progression to the next generation. Therefore, it is necessary to
distribute the tasks adapted for the calculation resources. Here,
we propose a parallel technique that improves on the master-
dave model. In our other paper, we proposed a new Crossove,
i.e., neighborhood crossover, in which the crossover operation
is performed between individuals that are close to each other
in objective space [7], [8]. Our neighborhood crossover helps
maintain the diversity of the Pareto-optimal solutions. Here,
we have combined the neighborhood crossover and conven-
tional multi-objective genetic algorithm. Moreover, the number
of offspring generated by the crossover operation is changed
dynamically adapting to the performance of the calculation
resources. In next section, we descrive our proposed model in
detail.

I1l. PARALLEL MULTI-OBJECTIVE GENETIC ALGORITHM
IN HETEROGENEOUS COMPUTATIONAL RESOURCES

A. Basic Model

This section presents an explanation of the proposed parallel
model of multi-objective GA. The proposal model extends
master-slave model, i.e., master process sends two individuals
in the current population to each slave process. After each
slave process receives two individuals, crossover is performed
severa times and the number of generated offspring changes
adapting the performance of the calculation resource.

The basic model of the proposed parallel GA is illustrated
in Fig.1. As the proposed method is based on NSGA-II, the
algorithm has the same flow, and other powerful GAs, such as
SPEA 2[9], can also be utilized. The proposed method differs
from Multi-Objective GAs such as NSGA-Il in two respects:
the neighborhood crossover and the number of generated off-
spring after the crossover. In the neighborhood crossover, two
individuals that are close each other are selected as parents.
These two individuals are sent to the calculation resource.
Then offsprings are generated in each calculation resources.
In this step, the number of generated offspring changes with
the performance of the calculation resources. Therefore, many
offspring are generated on the high performance calculation
resource and a smaller number of offspring are generated
on the low performance calculation resource. Then, the two
best offspring are chosen and returned to the archive. This

mechanism is suitable for hetero cal cul ation environments, and
a high degree of parallelization can be achieved.
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Fig. 1. Basic model of the proposed parallel EMO

B. Neighborhood Crossover

In typical multi-objective genetic algorithms, effective
crossover often cannot be performed, as the search directions
of each parent individual are different from each other. There-
fore, we proposed neighborhood crossover, which generates
offspring from two parent individuals neighboring each other
in the objective space [7]. By crossing over individuals that are
close to each other, offspring can be generated near the par-
ent individuals. Therefore, the search progresses maintaining
diversity.

Neighborhood crossover is performed as follows:

1) From the best individual for one of the function values,
the population is sorted in close order in the objective
space.

2) Neighborhood shuffle, which changes individuals ran-
domly in some range of population size, is performed for
the sorted population to prevent crossing over repeatedly
between the same pair of individuals.

3) Crossover is performed between two individuals which
are side by side.

C. Increasing the Number of Generated Offspring

In the proposed model, the number of generated offspring
is changed with the performance of the calculation resources.
In conventional GA, two offspring are usually generated after
crossover. We increase this number and select the best two
offspring according to the following procedure:

1) Slave processes recieve two individuals from the master
process, and creates empty offspring population C'.

2) Crossover is performed several times depending on
the performance of each calculation resources, and the
offspring population C' is formed.

3) The mutation operation is performed against C, and al
offspring are then evaluated.



4) The Non-Dominated Sort [10] is performed against C
to rank al offspring.

5) The two best offspring that are rank1 and most excellent
about objective function values are returned to the parent
population. If the number of rank 1 offspring is 1, the
best offspring in rank 2 is then returned to the parent
popul ation.

6) The master process recieves two offspring from all dave
processes, and the archive is then updated.

In this agorithm, when the number of offspring generated
by crossover increases, the number of evaluations per genera-
tion aso increases.

1V. COMPUTATIONAL EXPERIMENTS ON HETEROGENEOUS
COMPUTATIONAL RESOURCES

In this section, we clarify the effects of the proposed parallel
model through computational experiments on heterogeneous
computational resources.

A. Test Problem

In this study, the proposed algorithm was applied to a
following test function: KUR [11].

KUR in Kursawe can be written as follows:
KUR

min  f; =Y, (—10exp(—0.2y/x? + z7,,))
min  fo =370 (J2i|*® + 5sin(2;)?) )
st.

z;[-5,5], i=1,...,n, n =100

KUR is a problem with an interaction between two contin-
uous variables in f;(z) and a multi-convex in f2(z). In this
experiment, there were 100 design variables and it was very
difficult to find the solutions.

B. Performance Measures

To evauate the derived Pareto-optimal solutions, mainly
two factors should be measured: accuracy and diversion. The
derived Pareto-optimal solutions should be close to the real
Pareto solutions. At the same time, the derived solutions
should not concentrate on a certain point. The derived so-
lutions should also be scattered over a wide area. For this
purpose, various performance measures have been proposed
to evaluate non-dominated solution sets. In this paper, we use
the following performance measures to compare a number of
solution sets simultaneously:

1) cover rate: I.oper

2) Spread [12]

3) Hypervolume [13]

4) Ratio of Non-dominated Individuals:RNI [14]

The cover rate is a method of evaluating whether the
solution set is distributed uniformly in the objective space and
to calculate the rate of number k; of the small domain when
the domain of Pareto-optimal solutionsis divided into K parts.
The cover rate calculated for the solution set in N objective
functions is as follows. The closer to 1.0, it is estimated that

the solution can be found to all domains. In this experiment,
we set the number of divisions K to the population size.

Nk
Icover: % Zi:l f
The Spread measure is a method of evaluating whether the

solution set is obtained widely and can be calculated for the
solution set as follows:

Spread= Y"1, [max f;(z)—minf;(z)]

The Hypervolume cal cul ates the size of the dominated space
by the obtained solutions in the objective space.

The RNI is amethod for evaluation by comparing the domi-
nance of two populations obtained by two different algorithms.
In RNI, the populations obtained from the two agorithms, S
and S, are combined to make a union set S;;. Obtain the
set of non-dominated individuals Sp from Sy. The number
of individuals contained in Sp from each algorithm is used
to obtain the ratio, and the value is used as the result of the
evaluation. When the value is closer to the maximum of 100%,
the algorithm has obtained a better population.

The parameters of GA used in this experiment are shown
in TABLE |I.

TABLE |
PARAMETERS
Problem KUR
Population Size 100
Number of Dimensions 100
Chromosome Length 20 x The number of Dimension
Crossover Probability 10
Crossover Method Two Points Crossover
Mutation Probability O 1/Chromosome Length

C. Experimental environment and Procedure

In this experiment, the validity of the proposed parallel
model was verified using one master process and a total of
50 dave processes using a 4-PC Cluster comprised of PCs
that differed in performance. Calculation resources are shown
in TABLE Il. We used the Grid RPC Ninf-G (version 2.4) [15]
for submitting jobs to each PC Cluster, and Open PBS(version
1.2) was used for scheduling jobs in each PC cluster. Ninf-G
is a reference implementation of the Grid RPC system using
the Globus Toolkit [16].

The flow of execution is shown in Fig.2. First, the master
process generates an initial population, and perform Neighbor-
hood Sort which reordersin close order in objective space (and
also perform neighborhood shuffle). Then, the master process
submits two adjacent individuals to master nodes of each PC
Cluster using Ninf-G. At this time, the data transmitted are
the chromosome information of two individuals. After the
master nodes of each PC Cluster receive these data, they begin
scheduling the jobs and distribute them to slave processes.
Each dlave process repeats the operations of crossover, mu-
tation, and evaluation during a given time, and perform non-
dominated sort to choose the best two offspring that should
be returned to the master process. The data transmitted from
dave processes to the master process are chromosome infor-
mation and objective function values of the best two offspring.



CALCULATION RESOURCES

TABLE Il

number of CPU CPU | Memory (6]
Master process 1 Athlon64 3200+ 1GB | Fedora Core 4
PC Cluster A 10 Pentium4 2.8GHz 1GB Debian 3.1
PC Cluster B 15 Xeon 2.4GHz 1GB Debian 3.1
PC Cluster C 15 Pentiumll 1GHz 512MB Debian 3.1
PC Cluster D 10 | Pentiumll 600MHz 256MB Debian 3.1

These procedures are carried out on all slave processes with
synchronous communications in one generation.

In this experiment, each calculation resource increased the
number of offspring adapted for performance of the calculation
resources by repeating crossover, mutation, and evaluation
during a given time. Thereby, all the calculation resources
can terminate processing almost simultaneously after a given
time, and the delay by the calculation resource with low
performance can be prevented. It is necessary to set up afixed
time based on the calculation load of the object problem on
the performance of calculation resources.

schedule jobs by PBS

submit jobs by Ninf-G

Slave processes

Receive two Individuals

Return two Individuals

—— Master process ——

Initialization
Neighborhood Sort

Submit Individuals
Retrieve Individuals

Update Archive

iterate
ina given time

Fig. 2. Execution Flow of Proposed Algorithm on heterogeneous computa-
tional resources

The target function is KUR whose calculation load is
increased by executing useless calculations for assuming a
real problem. The evaluation time of one individual by the
calculation resources of each PC cluster for this problem was
5.82 seconds in PC Cluster A, 8.62 seconds in B, 10.17
seconds in C, and 17.06 seconds in D. Then, we set up a fixed
time of 1 minute so that the cal culation resources of PC Cluster
D, which has the poorest performance, could generate at |east
2 offspring. Therefor each slave process repeats the operations
of crossover, mutation, and evaluation during 1 minute.

We compared our proposed parallel model with the original
NSGA-II algorithm, which is paraléized with the original

master-slave model under the same environment and condi-
tions, and set 2 hours as the termination condition.

D. Experimental Results

Averageresults over three runs for the KUR test problem are
summarized in Fig. 3. Figs. 3 @) show the cover rate, b) shows
Spread, c) shows Hypervolume, and (d) shows RNI against
original NSGA-II with master-slave model. This figure shows
that the effectiveness of our proposed algorithm increased
sharply, especiadly in diversity and spread of Pareto-optimal
solutions. Therefore, our proposed parallel model is effective
on heterogeneous computational resources. Fig. 4 shows the
distribution graph of al three runs obtained by our proposed
model and the original master-slave model. Fig. 4 shows that
the solution set obtained by the proposed algorithm is good in
terms of both diversity and spread.
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Fig. 3. Results of Icover, Spread, Hypervolume, and RNI on proposed parallel
model and original master-slave model in KUR problem

E. Discussions

In the proposed model, all calculation resources can termi-
nate processing almost simultaneously after a given time so
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Fig. 4. Pareto-optimal solutions obtained by proposed parallel model and
original master slave model in KUR problem

that the idle time of all calculation resources is maintainable
to the minimum. It is also possible to reduce overheads time
such as communication time or scheduling jobs by increasing
the process in remote dave processes. To confirm these, we
indicate average CPU usage rate of a process in each PC
cluster in TABLE I1ll, and the total overhead time in TABLE
IV. TABLE Il indicates that the idle time become longer
on the high performance calculation resources, especialy on
PC cluster A, in origina master-slave model. However, all
processes have loads uniformly in the proposed model. We
also confirmed that the influence of overhead time is made
small in the poposed paralel model from TABLE IV.

TABLE 111
AVERAGE CPU USAGE RATE OF A PROCESSIN EACH PC CLUSTER

A B C D
88% | 91% | 95% | 91%
18% | 44% | 53% | 89%

Proposed parallel model
Origina master-slave model

TABLE IV
OVERHEAD TIME AND RATE IN TOTAL EXECUTION TIME
Time
Proposed parallel model 4m5s
Origina master-dave model | 4m38s

Finaly, Fig. 5 shows the search history of the proposed
model and the original master-slave model that plots solution
sets at the time of 30 minutes, 60 minutes, and 120-minutes
progress. In comparison with the original NSGA-Il search
process, wide-ranging non-dominated solutions with great
diversity are obtained from the early stages of the search.

These observations indicate that it is possible to conduct a
search while maintaining the diversity of the population, and
to obtain a wide range of Pareto optimum solutions using the
proposed model.
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Fig. 5. Search history of the proposed model and the original master-slave
model

V. CONCLUSION

In this paper, we proposed a new paralel model of EMO
supposing a hetero-grid environment and examined the accu-
racy of the algorithm through computational experiments. We
combined our neighborhood crossover with a multi-objective
genetic algorithm. We also considered increasing the number
of offspring dynamically according to the performance of the
available calculation resources. We investigated the validity of
our method using a master-save model on heterogeneous cal-
culation resources. Computational experiments on a numerical
test problem indicated that the proposed parallel algorithm was
able to utilize the maximum performance of all calculation
resources and reduce the overhead time, and also has high
search ability of pareto-optimal solutions.
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