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Abstract 

Evolutionary structural optimization (ESO) is based on the concept of slowly removing 
inefficient materials from a structure so that the residual structure evolves toward the 
optimum. As ESO is not an optimization algorithm that constructs structures using an 
objective function, the design obtained does not necessarily to satisfy the requirements of 
the designers. In addition, when there are constraints (such as displacement and stress) it 
is difficult for ESO to guarantee the constraints during iteration. Genetic Algorithms 
(GA) represents a powerful global stochastic search method that has been applied to a 
variety of engineering design problems. GA can also be used to solve problems with 
various constraints. Based on observations with ESO we propose a stress-based crossover 
operator for structural topology optimization problems on constrained displacement and 
constrained stress. Experiments indicate that this crossover operator can significantly 
reduce the “checkerboard” pattern that often arises on application if GA to structural 
topology optimization. For constrained problems, various violation penalty functions are 
often adopted to drive the search direct toward the optimal   topology. In this study as we 
dragged back the violated individuals gradually we attempted to maintain the diversity of 
the population, which is important for GA. Application to the 2D-cantilever problem 
showed that the proposed crossover can search various applicable and beautiful 
topologies more quickly than two-point crossover GA.  
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Introduction 

Structural topology optimization involves searching for an optimal material layout in 
engineering. Formal methods addressing this problem include the homogenization 
method [1] in which each element in a grid contains composite material of continuously 
variable density [0,1] and orientation. Xie and Steven [2] proposed the evolutionary 
structural optimization (ESO) method that follows the concept of gradual removal of 
inefficient material from a structure. As an extension of the ESO method, bi-directional 
ESO (BESO) allows efficient materials to be added in addition to removal of inefficient 
materials to remedy the elements deleted in previous processes [3]. For structural 
topology optimization, homogenous and density methods suffer from the problem that a 
solution may converge on a local minimum. Evaluation optimization algorithms,  such 
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as genetic algorithms, simulated annealing (SA), evolution strategy (ES), and the tabu 
search algorithm, have been widely used for various optimization problems [4]. 
Evaluation approaches to continuum topology optimization problems have been 
developed in recent decades. Although ESO is not a search algorithm and cannot be 
applied to constrained problems, it can obtain a beautiful connected topology that is 
important for practical applications. GA is a powerful global stochastic search method 
and has been applied to a variety of engineering design problems. GA can also be used 
for problems with various constraints. The binary genotype and the stochastic search 
often produce the “checkerboard” problem, which makes the results difficult to realize. 
Based on observations with ESO, we propose a stress-based crossover operator (SX) for 
structural topology optimization problems in constrained displacement and constrained 
stress. 

The effectiveness of this approach was verified by application to a 2-dimensional 
cantilever problem. Comparison with two-point crossover GA (SGA) showed that SX has 
following advantages: 1) acceleration of the convergence speed. 2) topology with less 
checkerboard problem. 3) searching out various practical topologies.  

This paper starts with a description of the optimization problem formulation. This is 
followed by a brief review of ESO. Next, we present an introduction of GA applied to 
structural topology where our proposed stress-based crossover is described in detail. 
Finally, the optimization results of SX and SGA and ESO are presented and discussed. 

Problem Description and Fitness Assignment 

The 2-dimensional cantilever problem shown in Figure 1 was used to study the 
effectiveness of evolutionary algorithms proposed in this paper. For problem, the left 
edge is clamped with a concentrated loading (10GN) applied at the mid-point of the right 
side. The problem can be described as shown in formula (1). The objective function is to 
minimize the weight of the plate with the constraints, stress and displacement. The values 
of the constraints used in this paper are shown in Table 1.  and  are the 
constrained equivalent stress and constrained displacement, respectively. 
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Table 1 Constraint Conditions 

Constraints                   Value 

limStress                     5.5e10 

limDisp                         10.0  
Figure 1. 2D-Cantilever Plate 



 

ESO  

ESO has been effectively addressed by Xie and Steven[1993]. There are two important 
parameters in ESO: rejection rate (rrRate) and evaluation rate (erRate). Initially, the 
rrRate and erRate are assigned small values. For one individual, the elements of which 
stress fits the formula (2) will be deleted in every generation. Here,  is the 
stress of element-k of individual p

][. kStresspi
i. If there is no element deleted at the current rrRate, 

the rrRate is adjusted according to formula (3): 

                                     ...0;/][. max nirrRateStresskStresspi =<                                     (2) 

erRaterrRaterrRate +=                                                   (3) 

There are no good methods to decide which value is best for ESO, except the 
performance of many experiments. However most researchers adopt small values. In our 
study, the values used were 0.005 and 0.001 for the initial rrRate and erRate, respectively. 
The topology with a weight of 140, which is named ESO, is shown in Figure 3.. 

GA Operators and Procedures 

Genetic algorithms are highly effective search algorithms based on the principles of 
genetics and natural selection [4]. GA represents a class of global search algorithms. 
There are three significant operators for GA-selection, crossover and mutation. Crossover 
is the predominant operator in GA, which drives the global search direction. Many 
different crossover operators have been devised to date. A mutation operator is seen as a 
“background” operator responsible for re-introducing mistakenly lost gene values, 
preventing genetic drift, and providing a small element of random convergence [5]. 
However for structural topology optimization, binary encoded mechanisms often cause 
the “checkerboard” problem. Based on observations with ESO algorithm, we propose a 
stress-based crossover operator, the aim of which is to combine the global search ability 
of GA and applicable geometry of the results of ESO. 

In this section, firstly we introduce the encoded method for structural optimization and 
then describe our stress-based crossover (SX) operator in detail. 

Chromosome Representation  

The straightforward and natural method is the bit-string or bit-array representation. Kane 
& Schoenauer discussed these two representations as well as the operators [6]. Recently, 
more advanced forms of representations for continuum topology optimization design 
problems have been proposed, including Voronoi-based representations [7], which are 
based on the concepts of Voronoi diagrams studied in computational geometry. In 
addition, Hamda[8] considered a continuum TOD as an evolutionary multi-objective 
optimization problem. Kim and Week introduce a variable chromosome length genetic 
algorithm in topology optimization [9]. 



 

In this study, the bit-string representation was adopted as the population chromosome 
representation to define the distribution of material and voids in a two-dimensional 
topology design domain, in which ‘1’ represents material and ‘0’ void.  

Crossover Operator 

 Binary encoded GA for structural topology 
optimization often result in the formation of non-
analyzable (disconnected) structures and 
checkerboard patterns, as shown in Figure 2. 
Additional strategies must be used to bias the 
formation of connected structures during the GA 
iterations to improve performance. Therefore, 
based on observations with ESO, we propose a 
stress-based crossover operator called SX from 
here. The procedures of this operator are as follows. First, the nomenclatures used in this 
operator are explained. 

Figure 2. Checkerboard Problem 

size. population  theisn ,generation of population  theis 1)( t ...n}} { | it{pP(t) i ∈=
length. chromosome is N,  1 where(t), chromosome of gene one is )( ...N}{ kp.code[k]tp ii ∈

.k  gene of stress   theis )( .stress[k]tpi

).1( individual child ofk  gene  theofpower   theis ][).1( ++ tpkpowertp ii  

1. For each individual )...1(),( nitpi = , randomly select one individual . )(),( ijtp j ≠
2. Calculate the power of every gene of the child individual using formula (4): 

              Nk kstresstp.stress[k]tpkpowertp jii K1, ][).()(][).1( =+=+                      (4) 

3. Sort the genes of the child individual according to . Then, divide the 
genes into two groups, U1 and U0, according to the power of every gene 
according to formula (5). The size of U1 is equal to the material number of . 
The size of U0 is equal to the (N-weight).  
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Fitness Function and Constraint Handling Strategy 

After a chromosome is mapped into the design domain and finite element analysis is 
performed, the fitness of each individual will be calculated. For problems with constraints, 
during the evaluation some individuals may be outside the design domain. In our study, 
the fitness function is defined according to formula (6), where the smaller of the fitness 
values the better of this individual is. In the fitness function s1 and s2 are the coefficients. 
Stressmax is the maximal stress of the current individual. Dispmax is the displacement of 
the current individual. In this paper, the displacement of the loading point in the loading 
direction is substituted for the maximal displacement of current individual. Generally for 
reasonable individuals the ratio of Stressmax/Stresslim and Dispmax/Displim are less than 1 



 

so the fitness function focuses on the weight. Once the individual violates the constraints, 
the proportion of the effect of stress or displacement in the fitness function will increase. 
In other word, once the individuals are outside the design domain the violated individuals 
are assigned a bigger fitness values. 
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However For continuous structural topology optimization problem, it is common that the 
individuals may be outside the design domain in GA. Some researchers wish to find 
mechanisms to drag back individuals that are outside the design domain. For GA, once 
the diversity of population decreases the evaluation will slow down. In this study, as we 
applied a mechanism on violated individuals to draw them back into the design domain, 
we attempted to maintain the diversity of the population. We used the logical “OR” 
operator on the violated individuals. Along with increasing of the material in individual, 
the individual is dragged back gradually. 

Results Comparison and Discussion 

This section summarizes and discusses the comparative results obtained under various 
conditions. Initially, all the tests are performed on the 20×20 regular mesh with the same 
material properties. For all examples, the GA parameters are shown in Table 2. A number 
of experiments were performed to verify the efficiency of our proposed operator. 

Table 2. Parameters of GA 

Population    Chromosome    Elites   Crossover    Mutation      Tournament             Max. 
Size               Length                              Rate            Rate                Size          Generation 
100                400                      1            1               0.01             2                             500

Geometry Comparison 

To investigate the efficiency of our proposed crossover operator, we provide a 
comparison of SX with SGA and ESO with regard to geometry topology and the 
evaluation procedure.  

The last topologies of SGA and SX are shown in Figure 3. Among the topologies, SGA 
was the best topology of simple GA with a two-point crossover; ESO is the result of ESO 
with weight 140; The results of SX are as shown from SX-a to SX-h. The properties of 
these topologies are shown in Table 3. Comparison of the geometry topologies indicated 
that in 500 generation SX searches out much more beautiful geometry topologies than 
SGA. On the other hand, the weights of the topologies of SX are lighter than that of SGA. 
From the comparison of ESO with SX-a and SX-b with regard to the similarity of 



 

geometry topologies, weight, stress and 
displacement of SX are much smaller than those of 
ESO. Among all the results for SX, SX-b is the 
most efficient topology. 

Figure 3. The Best topologies

Table 3.  Properties of Topologies 
Index Weight    StressMax. Displacement 

SGA   176    4.9849e+10    9.8943 

ESO   140    5.2773e+10    31.964 

SX-a   134    3.7139e+10    9.0793 

SX-b   124    4.3031e+10    9.9788 

SX-c   138    4.4914e+10    9.8073 

SX-d   135    4.2462e+10    9.9228 

SX-e   130    4.1569e+10    9.9869 

SX-f   140    5.1004e+10    9.9978 

SX-g   132    4.5491e+10    9.9830 

SX-h   142    4.1573e+10    9.5997 

Evaluation Procedure Comparison  

To further study the efficiency of SX, we compared SX with SGA with regard to weight 
and fitness shown in Figure 4. The evaluation speeds of SX on weight and fitness were 
faster than those of SGA. 

 

Figure 4. Evaluation Procedure 

Conclusions and Future Work 

A high performance stress-based crossover operator-SX of GA for structural topology 
optimization was proposed to combine the merits of ESO with regard to connected 
geometry and those of GA with regard to global search ability. Experiments and 
comparisons of SX with SGA on a 2-D cantilever problem showed that our proposed 



 

crossover operator is more efficient than the two-point crossover with regard to numerical 
results, geometry topologies, and evaluation curves. 

Many points regarding SX require further study. First to increase speed and obtain a 
much wider search space, it is necessary to determine how best to decide the material 
number of child individuals. Second, athough SX can obtain more beautiful geometry 
topology than SGA, the “void” problem like in Figure 3 SX-b remains. Third, for 
constrained problems, during evoluation of GA some of the individuals may be outside 
the design domian, and further discussion of how best to deal with this problem is 
required. Finally, for GA, which individual will pass to the next generation is based on 
the fitness value only. Especially for structural topology optimization, binary-encoded 
GA can obtain some individuals of same weight, same stress and same displacement but 
different geometry topologies. Under these conditions, it is difficult to decide which is 
the best by the fitness function shown in this paper. Thus further research is required to 
determian how to define a fintess function that can include all the necessary and 
important information.   
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