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ABSTRACT
The dMSXF is an improved crossover method of MSXF
which is a promising method of JSP, and it shows high avail-
ability in TSP. Both of these crossover methods introduce
a neighborhood structure and distance in each permutation
problem and perform multi-step searches in the interpola-
tion domain focusing on inheritance of parents’ characteris-
tic. They cannot work effectively when parents stand close
each other since they search in interpolation domain. There-
fore in the case of the MSXF, the MSMF, which is the multi-
step search in the extrapolation domain, is combined as the
supplementary search to improve its search performance.
On the other hand, the search mechanism for acquisition
of characteristics, such as MSMF, is not applied to dMSXF.
In this paper, we introduce a deterministic MSMF mech-
anism as complementary multi-step extrapolation search.
We apply dMSXF+dMSMF to TSP and JSP, which have
structural difference between their landscapes. Through the
experiments it was shown that the deterministic multi-step
search in interpolation/extrapolation domain performed ef-
fectively in combinatorial problems.

Categories and Subject Descriptors
[Genetic Algorithms]

Keywords
genetic algorithm, combinatorial optimization, local search

1. INTRODUCTION
Genetic Algorithms (GA) are among the most effective

approximation algorithms for optimization problems. GAs
are applicable to a wide range of problems and have found
many applications in combinatorial problems, such as the
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Traveling Salesman problem (TSP) and various scheduling
problems.

A GA actualizes an effectual search using genetic opera-
tors for inheritance and acquisition of characteristics. These
two classes of search, focusing on inheritance or acquisition,
are called, respectively, the interpolation search and the ex-
trapolation search by introducing a distance measure be-
tween solutions definitions of which are given in the next
section [1]. In the general framework of GA, crossover plays
a role in the former exploiting parents’ characteristics, while
the latter corresponds to mutations that explore outside the
distribution of the population.

When we apply GA to a particular problem, especially for
permutation problems, it is important to design a crossover
method with emphasis on the heredity of favorable char-
acteristics of parents. Various types of crossover have been
proposed in consideration of problem-specific structures and
features [2, 3, 4, 5, 6]. Deterministic Multi-step Crossover
Fusion (dMSXF) [7] is a promising interpolation-directed
crossover method based on neighborhood search. dMSXF is
an improved version of Multi-step Crossover Fusion (MSMF)
[8], which introduces a problem-specific neighborhood struc-
ture and a distance measure, and performs a multi-step
neighborhood search between parents by a deterministic rule.
This method can generate a wide variety of offspring be-
tween parents; however, a search mechanism for exploring
the external domain is required because it does not work ef-
fectively when parents’ characteristics are extremely similar
to each other.

In this paper, we propose deterministic Multi-step Mu-
tation Fusion (dMSMF) as a complementary search of dM-
SXF for exploring the extrapolation domain. Our method,
dMSMF, performs a multi-step neighborhood search and it
starts from the neighborhood of the parents and advances
its search in the direction separate from them when par-
ents are close to each other. Unlike a random mutation to
be applied to perturb the population, it generates offspring
in an efficient manner to gradually increase acquisition of
characteristics that do not appear in the parents by multi-
step search. We examined the effectiveness of our method
in two problems, TSP and JSP that is among the most diffi-
cult scheduling problem. dMSXF has been reported to show
good search ability in TSP [7]. Here, we first show the effec-
tiveness of incorporation of dMSMF into dMSXF on TSP,
and then dMSXF and dMSXF+ dMSMF were applied to
JSP. These two problems are different with regard to the



landscape; TSP has a big valley structure [9], while JSP
is considered to have a complex multimodal landscape [10].
These experiments on two typical problems demonstrated
the effectiveness of the deterministic multi-step search qual-
itatively in interpolation and extrapolation domains on com-
binatorial problems.

2. DETERMINISTIC MULTI-STEP
CROSSOVER FUSION

2.1 Deterministic Multi-step Crossover Fusion
dMSXF and its original method MSXF that are multi-

step searches based on a neighborhood search are proposed
since incorporation of neighborhood searches into GAs is
essential to adjust structural details of solutions in combi-
natorial problems [11]. Both these crossovers implements
multi-step neighborhood searches from a parent p1 in the
direction approaching the other parent p2. The previous
method MSXF shows good search ability on JSP; however,
it requires Metropolis criterion consisting of the tempera-
ture parameter T in the neighborhood search process. The
parameter T has intensified impact on the performance of
MSXF, moreover it is difficult to set due to dependence on
the scale of fitness. dMSXF [7] is the improved crossover,
which can be constructed using a neighborhood structure
and a distance measure and searches in a deterministic man-
ner using both quality of solutions and the distance measure.

The procedure of dMSXF is as follows and its search as-
pect is illustrated in Fig. 1. Here, d(s1, s2) denotes the
distance between solutions s1 and s2. The set of offspring
generated by parents p1, p2 is indicated by C(p1, p2).

—————————————————————————–
Procedure of dMSXF

0. Let p1, p2 be parents and set their offspring C(p1, p2) = ϕ.

1. k=1. Set the initial search point x1 = p1 and add x1 into
C(p1, p2).

2. /Step k/ Prepare N(xk) composed of µ neighbors generated
from the current solution xk. ∀yi ∈ N(xk) must satisfy
d(yi, p2) < d(xk, p2).

3. Select the best solution y from N(xk)．Let the next search
point xk+1 be y and add xk+1 into C(p1, p2).

4. Set k = k + 1 and go to 2. until k = kmax or xk equals p2.
—————————————————————————–

Figure 1: Aspects of dMSXF: dMSXF selects the
best candidate A for a transition target

At step 2 of the procedure of dMSXF, every neighborhood
candidate yi (1 ≤ i ≤ µ) generated from xk must be closer to
p2 than xk. In addition, dMSXF necessarily moves its tran-
sition toward p2 even if all solutions in N(xk) are inferior to

the current solution xk. dMSXF requires two parameters,
kmax and µ. kmax is the number of steps of neighborhood
search and µ is the number of generated solutions at each
step of the neighborhood search. In the procedure of dM-
SXF, at most kmax * µ solutions would be generated, and
C(p1, p2) is comprised of the best neighbor solutions, i.e.,
{x1, x2, · · · , xkmax}. The generation-alternation model of
p1, p2 and C(p1, p2) used is described in section 3.2.

2.2 Aspects of dMSXF from the perspective of
extrapolation/interpolation domain

The entire solution space can be divided into two domains
- the interpolation domain and the extrapolation domain -
under the definition of a distance measure in discrete space
[1]. Once these domains are defined, we can comprehend
where dMSXF searches. Given a distance measure d, the in-
terpolation domain Din and the extrapolation domain Dex

are defined as follows, where S denotes the entire solution
space, and their aspects are illustrated in Fig. 2. In ad-
dition, this discussion can be seen not only in GAs but in
Path-relinking (PR) [12], which is often adopted as an op-
erator of Scatter Search [13, 14].

Din = {s ∈ S | d(s, p1) ≤ d(p1, p2) and d(s, p2) ≤ d(p1, p2)}
Dex = {s ∈ S | d(s, p1) > d(p1, p2) or d(s, p2) > d(p1, p2)}

Figure 2: Interpolation and extrapolation domains

dMSXF searches inside Din in Fig. 2, and to search glob-
ally, an exploration mechanism for Dex is required to en-
hance its efficacy, especially for complicated problems. One
choice as an extrapolation search is a random mutation
method to be adopted to perturb the population by gen-
erating offspring randomly. However, it cannot work due to
the broad distribution of offspring against the population
in the later stages of the search. On the other hand, our
method proposed in the next section was designed based
on a stochastic local search on a well-defined extrapolation
domain, which targets the acquisition of lost or lacking char-
acteristics in the population.

3. PROPOSAL OF DETERMINISTIC
MULTI-STEP MUTATION FUSION

3.1 Deterministic Multi-step Mutation Fusion
In this study, we propose a complementary search method

to dMSXF, deterministic Multi-step Mutation Fusion (dMSMF).
dMSMF is defined in a problem-independent manner based
on a neighborhood search. In contrast to the search with ap-
proaching direction of dMSXF, dMSMF advances the search
in the direction that separates from the parents’ neighbor-
hood using the deterministic rule as follows:



—————————————————————————–
Procedure of dMSMF

0. Let p1, p2 be parents and set their offspring C(p1, p2) = ϕ.

1. l=1. Set the initial search point x1 = p1.

2. /Step l/ Prepare N(xl) composed of λ neighbors generated
from the current solution xl. ∀yi ∈ N(xl) must satisfy
both d(yi, p1) > d(xl, p1) and d(yi, p2) > d(xl, p2).

3. Select the best solution y from N(xl)．Let the next search
point xl+1 be y and add xl+1 into C(p1, p2).

4. Set l = l + 1 and go to 2. until l = lmax.
—————————————————————————–

At the step 2 of dMSMF, every neighborhood candidate
yi (1 ≤ i ≤ λ) generated from xl is restricted to satisfy both
d(yi, p1) > d(xl, p1) and d(yi, p2) > d(xl, p2). Even if all
solutions in N(xl) are inferior to the current solution xl, the
transition to a solution in N(xl) is necessarily accepted.

The search aspect is illustrated in Fig. 3. In this proce-
dure, at most lmax * λ solutions would be generated.

Figure 3: Aspects of dMSMF : dMSMF selects the
best candidate C

In applying MSXF to JSP, Multi-step Mutation Fusion
(MSMF) has been introduced as a complementary search
of MSXF [8]. Our method can be considered an improve-
ment of MSMF, which does not require the Metropolis cri-
terion. In accordance with the generation-alternation model
described in section 3.2, the parent p1 is replaced with the
best solution in C(p1, p2) after termination of the proce-
dure above. dMSMF does not include x1 (=p1) in C(p1, p2),
while dMSXF does. Therefore, dMSMF is forced to replace
p1 with other obtained solutions. This is because dMSMF
must alleviate the bias of the population.

A problem-specific neighborhood structure and distance
measure should be defined to apply both dMSMF and dM-
SXF to each problem. In addition, it is necessary to design
a method to generate neighborhood solutions to satisfy the
conditions required by step 2 in each method.

Hereafter, we represent the interpolation-directed multi-
step search dMSXF as Inter-MSX, while dMSXF that searches
the extrapolation domain is denoted by Extra-MSM.

3.2 Procedure of GA with multi-step search in
interpolation and extrapolation domain

We outline an application of both Inter-MSX and Extra-
MSM to GA as follows. This model bases on the generation-
alternation model that showed effectiveness in the original
paper of Inter-MSX (dMSXF) [7].

—————————————————————————–
Flow of GA

1. Generate the initial population composed of Npop random so-
lutions, individuals, {x1, x2, · · · , xNpop}.

2. Reset indexes {1, 2, · · · , Npop} to each individual randomly.

3. Select Npop pairs of parents (xi, xi+1) (1 ≤ i ≤ Npop) where
xNpop+1 = x1.

4. For each pair (xi, xi+1), if d(xi, xi+1) is smaller than prede-
fined value dm, apply Inter-MSX, otherwise apply Extra-
MSM to it.

5. For each pair (xi, xi+1), select the best individual c from off-
spring C(xi, xi+1) generated by parents (xi, xi+1) and re-
place the parent xi with c.

6. Go to 2 until some terminal criterion is satisfied, e.g., genera-
tions and/or the number of evaluations.

—————————————————————————–

The effectiveness of Extra-MSM is supposed to depend
on features of the problem, such as aspects of the land-
scape. Here, we examined the effectiveness of incorporation
of Extra-MSM into Inter-MSX in TSP and JSP; the former
is one of the problems that satisfy the big valley hypothesis
[9], while the landscape of the latter is globally multimodal
and conforms to the UV structure hypothesis [10]. It is
thought to be easy for GA to find the global optimum in
problems conforming to the big valley hypothesis. On the
other hand, problems corresponding to the UV structure
hypothesis have a number of influential local optimal solu-
tions by which populations of GA tend to be trapped. The
application and experiments of both methods for TSP are
described in sections 4 and 5, and those for JSP are shown
in sections 6 and 7.

4. APPLICATION OF INTER-MSX AND
EXTRA-MSM FOR TSP

In this section, we describe how to apply Inter-MSX and
Extra-MSM to TSP.

4.1 Neighborhood and Distance
Inter-MSX has already been applied to TSP, in which the

distance measure is defined as the number of different edges
between parents, and the neighborhood structure based on
the AB-cycle generated during the procedure of EAX is
adopted [7]. EAX is a state-of-the-art crossover specialized
for TSP, and its element, AB-cycle, can be considered as a
building block that adequately perceives the characteristics
of TSP. The AB-cycle is defined as a closed loop on the set
of edges composed of tours of both p1 and p2, which can be
generated by alternately tracing the edges of p1 and p2.

Inter-MSX has been shown to perform very well in TSP
using the above definitions. Therefore, we developed Extra-
MSM based on the design of Inter-MSX.

4.2 Inter-MSX in TSP
We describe step 2 of previously reported Inter-MSX [7].

Inter-MSX generates neighborhood candidates N(xk) of the
transitional solution xk as follows, and an example of this
procedure is shown in Fig. 4.

—————————————————————————–
Formation of neighborhood candidates of xk

0. Let p2 be one of parents and set the neighborhood candidates
N(xk) = ϕ.

1. Pick one of AB-cycles between xk and p2.

2. Generate an intermediate individual x′
k by applying the AB-

cycle to xk in the XOR manner, i.e. by removing edges of
xk included in the AB-cycles from xk, and adding edges of
p2 in the AB-cycles to xk. Here, x′

k is consisting of subtours
and it is not a complete solution yet.



3. Modify x′
k to a valid tour by merging its sub-tours, and add

it into N(xk) as a neighbor of xk.

4. Go to 1 until |N(xk)|=µ is satisfied.
—————————————————————————–

The generation method of x′
k is equivalent to the proce-

dure of EAX between xk and p2 with one of the AB-cycles.
A neighborhood x′

k that possesses more edges of p2 than
xk, i.e., d(x′

k, p2) < d(xk, p2), is necessarily generated by
applying one AB-cycle.

Figure 4: An example of generating a neighborhood:
(a) xk and (b) parent 2 are given, an AB-cycle (c) of
(a) and (b) is generated. An intermediate solution
(d) is created by mixing (a) and (c) with XOR man-
ner. A valid solution (e) is generated by modifying
(d).

The design of the complementary search method, Extra-
MSM, is introduced in the next section. For TSP, which is
thought to have a big valley structure, the global optimal so-
lution can be obtained easily by continuing combining char-
acteristics observed in the population from the initial gener-
ation. Hence, Inter-MSX, which is an interpolation-directed
search, has a greater possibility of finding the global opti-
mum in accordance with increases in the population size.
In contrast, this is difficult for a small population against
instances of benchmarks due to lack of favorable character-
istics in the initial population. Thus, Extra-MSM should be
designed to cover lacking edges and lost edges in the popu-
lation.

4.3 Design of Extra-MSM in TSP
When we design a method for generation of neighbor so-

lutions in the extrapolation domain of the parents, ”a vari-
ational scale” should be considered. Here, we express the
distance of solutions s1 and s2 as a variational scale, where
s2 denotes a solution generated by applying neighborhood
search. For example, the variational scale by one step in
Inter-MSX is d(p1, p2)/kmax. Operations, such as 2-change,
of which the variational scale is too small1 against the neigh-
borhood search of Inter-MSX, are not appropriate as one
step of Extra-MSM because it is difficult to generate solu-
tions outside the interpolation domain. Here, we adopted
a simple method to maintain the variational scale. In this
procedure, the variational scale by one step in Extra-MSM
is approximately d(p1, p3)/lmax.

—————————————————————————–
Design of Extra-MSM

0. Let p1, p2 be parents.

1The variational scale of 2-change is 2.

1. Prepare a random tour, solution, as a new individual and let
this solution be p3. Apply 2-opt method to p3.

2. Apply lmax steps of the neighborhood search of Inter-MSX
from p1 to p3. Here, neighbor candidates N(xl) of the
transitional solution xl consist of solutions satisfying both
d(yi, p1) > d(xl, p1) and d(yi, p2) > d(xl, p2).

—————————————————————————–

Offspring between p1 and p2, C(p1, p2), consist of x2, x3,
· · · , xlmax obtained by the above procedure. For each pair
of parents for Extra-MSM, p3 is newly generated to search
in the extrapolation domain.

5. SEARCH PERFORMANCE OF
INTER-MSX+EXTRA-MSM IN TSP

The effects of incorporation of Extra-MSM into Inter-
MSX in TSP were examined using the medium-scale bench-
marks from TSPLIB2. To confirm the superior ability in the
search in the well-defined extrapolation domain, we com-
pared Extra-MSM with a mutation method denoted by Inter-
MSX+Extra-MSM and Inter-MSX+Mutation, respectively.
Both Inter-MSX and Extra-MSM require the number of
steps in the neighborhood search, kmax and lmax, and the
number of neighbor candidates, µ and λ, as parameters.
Here, as Extra-MSM substantially implements Inter-MSX
outside the parents, we set kmax=lmax and µ = λ. In addi-
tion, we used kmax=5 and µ=8, as recommended previously
[7]. For each pair, p1 and p2, for reproduction of offspring,
Extra-MSM was applied instead of Inter-MSX when the dis-
tance between the parents was smaller than Ncity * a where
Ncity denotes the total number of cities of the instance. We
set a=0.05 for instances, in which Ncity was below vm1748,
and a=0.02 was used for other instances.

For Inter-MSX+Mutation, we adopted Extra-MSM with
lmax=1 as a mutation method with the exception that neigh-
borhood candidates were generated regardless of interpola-
tion/extrapolation domain. This is because normal muta-
tion methods, such as 2-change, are anticipated to be unpro-
ductive operations due to the diminutive variational scale.
The mutation generated lmax * λ offspring, and replaced the
parent p1 with the best solution of the offspring.

Table 1 shows the number of trials that obtained the opti-
mum (#opt), the average number of evaluations to acquire
the optimum (#eval), and the average error (%) from 30
trials. Here, we set the population size to 200 for pcb3038
and fl3795, and 100 for others. In addition, these three
methods were terminated after 200 generations of GA for
pr2392, 300 generations for fl3795, and 100 generations for
other instances.

As shown in Table 1, both Extra-MSM and the mutation
method showed a high possibility of finding the optimum so-
lution, which indicates that incorporation of extrapolation
factors leads to improvement of search performance in TSP.
Moreover, Extra-MSM enhanced the performance of Inter-
MSX compared with the mutation method, which generates
offspring randomly. In comparison of #eval, to obtain the
optimum, the method more highly focusing on the extrapo-
lation domain requires more evaluations. These observations
indicate that the search performance improves, while the
convergence speed is reduced by the extrapolation search.

2TSPLIB: http://www.iwr.uni-heidelberg.de/groups/
comopt/software/TSPLIB95/



Table 1: Performance of Inter-MSX + Extra-MSM on benchmarks of TSP

Inter-MSX Inter-MSX+Mutation Inter-MSX+Extra-MSM
Instance #opt (#eval) err(%) #opt (#eval) err(%) #opt (#eval) err(%)

pr439 26 (3.5x104) 0.002 30 (3.7x104) 0.0 30 (3.8x104) 0.0
att532 7 (0.8x105) 0.034 11 (1.5x105) 0.027 13 (1.8x105) 0.023
rat575 10 (0.8x105) 0.015 17 (1.2x105) 0.009 23 (1.6x105) 0.004
rat783 18 (8.8x104) 0.012 25 (9.2x104) 0.008 28 (9.7x104) 0.005
pr1002 15 (1.2x105) 0.019 23 (1.6x105) 0.012 25 (1.9x105) 0.006
pcb1173 11 (1.4x105) 0.007 12 (1.9x105) 0.005 19 (2.2x105) 0.004
vm1748 2 (1.8x105) 0.054 7 (3.1x105) 0.047 10 (4.0x105) 0.046
pr2392 14 (2.2x105) 0.010 16 (2.7x105) 0.008 24 (3.0x105) 0.002
pcb3038 1 (7.6x105) 0.007 3 (8.3x105) 0.006 4 (9.8x105) 0.006
fl3795 14 (1.8x106) 0.022 16 (1.9x106) 0.017 18 (1.9x106) 0.017

The number of trials out of 30 that reached the optimum, average
number of evaluations needed, and average error

Table 2: Influence of population size in Inter-MSX + Extra-MSM

Npop = 50 Npop = 100 Npop = 200 Npop = 300
Instance Int-MSX +Ext-MSM Int-MSX +Ext-MSM Int-MSX +Ext-MSM Int-MSX +Ext-MSM

rat575 1 9 10 23 19 30 27 30
rat783 0 22 18 28 29 30 30 30
pr1002 2 14 15 25 29 30 30 30

The number of trials out of 30 that reached the optimum

Next, we discuss the influence of population size, Npop, to
highlight the impact of Extra-MSM. Table 2 shows a com-
parison between Inter-MSX and Inter-MSX+Extra-MSM un-
der Npop=50, 100, 200, and 300.

As shown in Table 2, when Npop is set sufficient for the
scale of the instances, Inter-MSX+Extra-MSM performs the
search equally well as Inter-MSX. Moreover, Inter-MSX+Extra-
MSM shows superior performance to Inter-MSX when Npop

is small.
From these results, we conclude that combination of inter-

polation/extrapolation multi-step search is effective in TSP,
which has a big valley structure.

6. APPLICATION OF INTER-MSX AND
EXTRA-MSM FOR JSP

In this section, we discuss the effectiveness of both Inter-
MSX and Inter-MSX+Extra-MSM in JSP, which is a glob-
ally multimodal problem for which there would be a strong
requirement for extrapolation searches.

6.1 Neighborhood and Distance
We cover the active schedule as the search space and adopt

the active CB neighborhood [8] that has been used in MSXF
and EDX [1]. The active CB neighborhood is composed
of the solutions generated by shifting an operation inside a
critical block, which are parts of the critical path, to either
the head or the end of the block on a solution. In addition,
these solutions of the active CB neighborhood are corrected
to be active schedules using the GT algorithm proposed else-
where [15]. We then adopt the I2 distance [1] based on the
absolute positions of operations belonging in each machine
due to its high affinity with the active CB neighborhood.

With M machines and N jobs, I2 distance on job i of
the schedule sa and sb, I2i(sa, sb), and I2 distance of these

schedules, I2(sa, sb) are defined as equations (1) and (2), re-
spectively. In these equations, o(p, q) denotes the operation
to be processed by the machine q and belonging to the job
p. The set of operations belonging to job i is represented
by Ji(= {o(i, k)|k = 1, · · · , M}). L(o) denotes the absolute
position of operation o. An example for this distance metric
can be found in [1].

I2i(sa, sb) = ΣM
k=1|L(oa(i, k)) − L(ob(i, k))| (1)

I2(sa, sb) = ΣN
k=1I2k(sa, sb) (2)

6.2 Design of Inter-MSX
Here, a generation method of neighborhood solutions at

step 2 in the procedure described in the section 2.1 is de-
signed. At step 2 of Inter-MSX, every neighborhood candi-
date yi (1 ≤ i ≤ µ) generated from xk is restricted to satisfy
d(yi, p2) < d(xk, p2). To satisfy the condition, Inter-MSX
generates the intermediate solution x′

k and active CB neigh-
bors of x′

k as follows, and an example of this procedure is
shown in Fig. 5.

—————————————————————————–
Formation of neighborhood candidates of xk

1. Select a job Ji randomly, but with a bias in favor of Ji with a
large I2i distance.

2. Copy the operations belonging to Ji chosen at step 1 from
parent p2 into the intermediate solution x′

k, preserving their
loci.

3. Copy the operations of all jobs except for Ji, from xk into x′
k,

preserving their orders.

4. Generate (µ-1) active CB neighborhoods of x′
k.

—————————————————————————–

These offspring, x′
k and neighborhoods of x′

k, construct
N(xk). This procedure generates the intermediate solution



Table 3: Performance of Inter-MSX on benchmarks of JSP

JOX Inter-MSX
Instance kmax = 4 kmax = 6 kmax = 8 kmax = 10

ft10 30 (1.4x105) 28 (1.2x105) 30 (1.1x105) 30 (1.0x105) 30 (0.9x105)
ft20 12 (1.6x105) 10 (3.1x105) 16 (4.5x105) 19 (4.9x105) 24 (5.8x105)
abz5 1 (1.8x105) 19 (1.5x105) 21 (1.2x105) 23 (0.9x105) 27 (1.0x105)

The number of trials out of 30 that reached the optimum, average
number of evaluations needed, and average error

Figure 5: An example of generating neighborhoods:
(a) xk and (b) parent 2 are given, intermediate so-
lution x′

k (c) is created from xk by inheriting J1 of
parent 2, and a CB neighborhood (d) is generated
from x′

k.

x′
k in consideration of technological sequence of machines

to be processed on each job, since the swap between two
operations on a certain machine, which is adopted in PR
[12], is difficult to generate feasible solutions due to strong
dependency among machines.

At each step k (1 ≤ k ≤ kmax), Inter-MSX selects the
best solution y among x′

k and (µ-1) neighborhoods of x′
k

and moves its transition from xk to y.

6.3 Design of Extra-MSM
We designed Extra-MSM for multimodal problems, the

function of which should search across valleys of local op-
tima.

Here, formation of neighborhood candidates of xl at step 2
of Extra-MSM mentioned in the section 2.1 is described. Ev-
ery neighborhood candidate yi (1 ≤ i ≤ λ) generated from
xl must satisfy both d(yi, p1) > d(xl, p1) and d(yi, p2) >
d(xl, p2). Extra-MSM first generates the mutated solution
x′

l to advance its search in the direction to obtain candidates
that have larger I2 distance. It then generates (λ-1) active
CB neighbors of x′

l. N(xl) composed of x′
l and neighbor-

hoods of x′
l is generated as follows:

—————————————————————————–
Formation of neighborhood candidates of xl

1. Set the mutated solution x′
l = xl and select a job Ji randomly.

2. On the mutated solution x′
l, shift all operations belonging to

Ji leftward or rightward randomly.

3. Generate (λ-1) active CB neighborhoods of x′
l.

—————————————————————————–

At each step l (1 ≤ l ≤ lmax) in Extra-MSM, the best
solution y among x′

l and (λ-1) neighborhoods of x′
l is selected

as the next solution xl+1.

7. SEARCH PERFORMANCE OF
INTER-MSX+EXTRA-MSM IN JSP

7.1 Performance of Inter-MSX in JSP
We examined the performance of Inter-MSX on JSP using

the benchmarks ft10, ft20, and abz5. ft10 and abz5 have 10
jobs and 10 machines and ft20 has 20 jobs and 5 machines.
The population size was 100 and the termination was set to
200 generations. Here, we set µ=5 and kmax=4, 6, 8, 10.
In the experiments described in this paper, the LR method
[8] was used for evaluation of individuals. In addition, we
generated µ active CB neighbor solutions of the individuals
on evaluation and replaced them with the best solution of
the neighborhoods to improve the performance.

Table 3 shows the number of trials that obtained the op-
timum and the average number of evaluations to acquire
the optimum. These results are from 30 trials. To compare
Inter-MSX with another interpolation-directed crossover, we
show the results of inter machine JOX [5], which is one of
promising crossovers on JSP. In the comparative method,
the job-based shift change [5] was applied as the mutation,
and CCM [5] was adopted for the generation alternation
model focusing on inheritance of parents’ characteristics.
The population size was the same as that of Inter-MSX and
each pair at the crossover generated 20 offspring.

Table 3 shows the superiority of Inter-MSX to JOX in
terms of successful trials and its performance becomes good
in accordance with increases in kmax. Inter-MSX performed
well without relying on setting of the parameter µ in prepar-
ative experiments. Inter-MSX was shown to be effective on
TSP, which has a big valley structure. In addition, it showed
good ability on JSP, which is one of the problems with a
global multimodal landscape. The above results confirm the
assertion in [7] that the multi-step search with definition of
both a distance measure and a neighborhood structure en-
ables efficient searches in combinatorial problems.

7.2 Performance of Inter-MSX+Extra-MSM

7.2.1 Efficacy of extrapolation multi-step search
We examined the search performance of incorporating Extra-

MSM with Inter-MSX. To highlight the effectiveness of the
multi-step search in the extrapolation domain, we compared
Inter-MSX+Extra-MSM with Inter-MSX+Mutation.

The benchmarks ft10, ft20, and abz5 are applied for this
examination. We set kmax=lmax=5 for ft10 and abz5, and
kmax=lmax=10 for ft20. The values of the parameters of
GA were the same as in section 7.1. To each pair, p1 and p2,
for reproduction, Extra-MSM was applied instead of Inter-
MSX in two cases as follows: 1) I2 distance between parents
is smaller than Nop * 0.1 where Nop denotes the total number
of operations of the intended instance, 2) The fitnesses of p1



Table 4: Performance of Inter-MSX+Extra-MSM on benchmarks of JSP

Inter-MSX Inter-MSX+Mutation Inter-MSX+Extra-MSM
Instance #opt err(%) #opt err(%) #opt err(%)

ft10 29 (1.4x105) 0.022 29 (1.2x105) 0.025 30 (1.2x105) 0.0
ft20 24 (5.8x105) 0.19 25 (4.8x105) 0.11 30 (5.3x105) 0.0
abz5 19 (1.4x105) 0.16 22 (2.1x105) 0.12 30 (1.8x105) 0.0

The number of trials out of 30 that reached the optimum, average
number of evaluations needed, and average error

and p2 are the same.
Table 4 shows the number of trials that obtained the op-

timum, the average number of evaluations to acquire the
optimum, and the average error (%) from 30 trials. In this
examination, for Inter-MSX+Mutation, the job-based shift
change [5] was adopted as the mutation method. It gener-
ated the same number of offspring as Extra-MSM, i.e., lmax

* λ, and replaced the parent p1 with the best solution of the
offspring.

From Table 4, we can see that both Extra-MSM and the
mutation, i.e., extrapolation factors, improve search perfor-
mance of Inter-MSX, as in the case of TSP. In addition,
incorporation of Extra-MSM is more effective than apply-
ing the mutation that generates solutions with no consid-
eration of the interpolation domain and the extrapolation
domain. These results indicate the importance of precise
search mechanism in the well-defined extrapolation domain.

7.2.2 Analysis of Extra-MSM
Inter-MSX obtains the optimum with higher probability

at small instances than other interpolation-directed crossover
algorithms. However, JSP has a complex landscape consist-
ing of a number of influential local optimal solutions and
GA has the possibility of lapsing into a local optimum on
large instances. It is difficult to find the global optimum
standing in another valley once GA with an interpolation-
directed crossover progresses its search into the valley of a
local optimum.

We use the instance abz5 supposed to possess serious UV
structure and the behavior of GA with initial populations
biased toward an influential local optimum as shown in Fig.
6 is elucidated. Here, we use the local optimum of which
fitness is 1236 and the distance from the global optimum
is d = 114. It denotes lopt(1236) and the global optimum
denotes gopt.

Table 5 shows the convergence tendency of GA with Inter-
MSX using initial populations composed of individuals sat-
isfying, respectively, the distance d < 100, d < 120, and d <
130 from gopt. It also shows the results of Inter-MSX+Extra-
MSM with the initial population restricted to d < 100.
These results are from 50 runs. The values of the parameters
of GA are the same as in sections 7.1.

Table 5: Convergence tendency of GA
lopt(1236) gopt another lopt

d < 100 (Inter-MSM) 48 1 1
d < 120 (Inter-MSM) 38 6 6
d < 130 (Inter-MSM) 29 12 9
d < 100 (Inter-MSX

+Extra-MSM) 21 28 1
The number of trials out of 50 that reached each solution

As shown in Table 5, Inter-MSX with the population re-

Figure 6: Generation of biased population: Each
initial solution generated with a few applications of
mutation from lopt(1236)

stricted to the domain d < 100 that does not include the
global optimal solution is difficult to find. The populations
initialized in the domain d < 120 and d < 130 covering the
global optimal solution but with convergence to lopt(1236)

can find the optimal solution or another local optimum sev-
eral times. It is quite difficult for interpolation-directed
Inter-MSX to obtain gopt although lopt(1236) is not some
distance from gopt once the population begins to converge
toward a local optimum. In contrast, it is highly possible
to find gopt by incorporating Extra-MSM even if the initial
population does not cover gopt. These results indicate that
the extrapolation-directed search is also essential for prob-
lems with complex landscapes.

7.2.3 Performance in 10 tough problems
We examined the search performance of Inter-MSX+Extra-

MSM on 10 tough problems as relatively large instances.
The results confirmed the superiority of our method in com-
parison with other multi-step search methods.

Here, we set the population size to 400, µ=λ=20, kmax=20，
and lmax=10. GA is terminated when 1) no progress of best
fitness is found within 200 generations or 2) the total num-
ber of evaluations is 5.0x107. The conditions of applying
Extra-MSM instead of Inter-MSX were same as in the sec-
tion 7.1.

Table 6 compares Inter-MSX+Extra-MSM and Inter-MSX.
These results are the best fitness in 10 trials or the num-
ber of trials finding the optimum, and average fitness and
worst fitness. To compare our method with other promis-
ing methods, we draw the results of MSXF+MSMF [8] and
JOX+EDX [1] that are crossovers consisting of interpola-
tion and/or extrapolation multi-step searches. The number
of evaluations used, 5.0x107, is the termination criterion of
JOX+EDX. We confined the comparison to the best fitness
because other indicators of performance, such as the number
of evaluations to acquire the optimum, were not described
previously [1] and [8].

From Table 6, we can see that Inter-MSX performs well



Table 6: Performance of Inter-MSX+Extra-MSM on 10 tough problems
Inter-MSX+Extra-MSM Inter-MSX

MSXF
+MSMF

JOX
+EDX

*opt/UB best(#opt) avg wst best(#opt) avg wst best(#opt) best(#opt)

abz7 *656 658 665.3 668 664 666.6 669 678 670

abz8 665 668 670.4 675 670 672.1 676 686 683

abz9 679 679 685.9 689 686 687 689 697 686

la21 *1046 1047 1051.6 1053 1052 1052.4 1055 1046(9/30) 1046(1/10)

la24 *935 935(5/10) 936.5 938 935(1/10) 939.2 941 935(4/30) 935(4/10)

la25 *977 977(7/10) 978.1 984 977(1/10) 980.8 984 977(9/30) 977(4/10)

la27 *1235 1235(5/10) 1237.8 1242 1235(1/10) 1242.6 1250 1235(1/30) 1236

la29 *1152 1154 1164 1167 1163 1166.6 1168 1166 1167

la38 *1196 1196(10/10) 1196 1196 1196(2/10) 1200.7 1206 1196(21/30) 1196(1/10)

la40 *1222 1224 1227 1234 1225 1230 1240 1224 1224

The best fitness, number of trials out of 10 that reached the optimum, average, and worst fitness

in terms of accuracy of solutions. Moreover, application
of Extra-MSM considerably improves search performance
and shows superiority to both MSXF and EDX, both of
which perform more effectively than other approximation
algorithms, such as PR [12], SA [16] and TS [17].

8. CONCLUSIONS
The deterministic Multi-step Crossover Fusion (dMSXF),

denoted here as Inter-MSX, is a promising crossover method
that can be constructed by introducing a problem-specific
neighborhood structure and a distance measure. This method
performs a neighborhood search using the deterministic rule
composed of only a distance measure in a problem-independent
manner. However, Inter-MSX does not work effectively when
parents are close to each other as it searches in the interpo-
lation domain focusing on inheritance of parent characteris-
tics. In this paper, we proposed the deterministic Multi-step
Mutation Fusion (dMSMF), also denoted as Extra-MSM,
as a complementary search of Inter-MSX. Extra-MSM per-
forms a multi-step search in the extrapolation domain to ac-
quire characteristics that do not appear in the parents. We
designed Inter-MSX and Extra-MSM for both TSP and JSP.
We first demonstrated the effectiveness of incorporation of
Extra-MSM in TSP, which is a big valley structure prob-
lem. Next, we investigated the efficacy of Inter-MSX and
Extra-MSM in JSP, which is another problem class with
a complicated multimodal landscape. The results demon-
strated the superiority of our method to other methods.
From these results, we qualitatively confirmed that the de-
terministic multi-step search in interpolation and extrapo-
lation domains is effective in combinatorial problems. In
future studies, statistical analyses of Inter-MSX and Extra-
MSM are required, and we should determine the efficiencies
of these methods in a quantitative manner.
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