Discussion of Parallel Model of Multi-Objective Genetic
Algorithms on Heterogeneous Computational Resources

ABSTRACT

In this paper, a parallel model of Multi-objective Genetic
Algorithms supporting a hetero calculation environment is
discussed. In this parallel model, two individuals close each
other in the objective space are sent to each calculation re-
source. Then, crossover is performed several times on each
calculation resource and the number of offspring generated
is changed dynamically adapting to the performance of the
calculation resources. Here, this improved parallel model is
compared with the original master-slave model to discuss the
accuracy of the proposed model through computational ex-
periments on heterogeneous computational resources. The
results indicated that the proposed parallel model enabled
utilization of the maximum performance of all calculation
resources and has high search ability of Pareto-optimal so-
lutions.
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1. INTRODUCTION

The computational time needed to solve real-world multi-
objective optimization problems is usually large. Therefore,
it is very important to reduce the computational time with
parallel processing. There have been a number of studies re-
garding parallel distributed implementation. For example,
Deb et al. [1] proposed and discussed an approach that uses
a distributed Genetic Algorithm(GA). Although there have
been many studies of parallel evolutionary multiobjective
optimization(EMO) [1, 2, 3, 4, 5, 6], the degree of paral-
lelization is very small. On the other hand, the recent de-
velopment of large clusters and grid computing, which have
unified the calculation resources online, have made huge re-
sources readily available for such computational tasks. To
make use of these huge resources, it is necessary to consider
the parallel model where many processes can be performed
in parallel.

In this paper, we discuss the parallel model of Multi-objective
Genetic Algorithms and propose a new parallel model sup-
porting huge and heterogeneous computational resources.
In the proposed model, many processes can be performed
in parallel, and crossover operation and evaluation are per-
formed on each process. Therefore, this approach can be ap-
plied on huge clusters and the Grid. At the same time, the
number of offspring generated by crossover can be changed
dynamically in this model. This mechanism is suitable for
heterogeneous calculation environments, such as the Grid
computational environment. In this paper, the performance
of the proposed parallel model is compared with original
master-slave model and the feasibility of the proposed model
is discussed.

2. PARALLEL MULTI-OBJECTIVE GENE-
TIC ALGORITHMS

Similarly to single-objective optimization studies, huge com-
putational time is needed to solve real-world problems. Es-
pecially, the dimension of the true Pareto-optimal front in-
creases when the number of objectives increases. Therefore,
a large population size is required to reach a well-distributed
Pareto-optimal front. This results in a huge computational
time. One of the solutions to reduce the computational time
is to perform EMO in parallel.

Many studies of parallel EMO have been performed, most
of which have made use of the master-slave model or island
model [1, 2, 3, 4, 5, 6]. In the master-slave model, one mas-
ter processor runs the GA operations and slave processors
are used for evaluation purposes only. In this model, when
the number of processors P is used, the ideal acceleration
is P. Any algorithm can be applied to this model and the
obtained solutions would be equivalent to the solutions ob-
tained with the original algorithms using a single processor.
In the island model, a population is divided into a number
of subpopulations and a processor is assigned per subpopu-
lation. In this model, different EMOs are run on different
processors and some solutions are migrated between proces-
sors after every few generations.

A good parallel EMO implementation was reported previ-
ously by Deb [1]. However, in this model, only a small
degree of parallelization is assumed because this study used
the island model. The master-slave model is effective to
increase the degree of parallelization by at least the popula-
tion size. On the other hand, many resources are becoming
available due to the development of large clusters and grid



computing, which have unified online calculation resources.
However, the resources on the Grid are heterogeneous, and it
is therefore also necessary to consider a parallel model that
can be applied to heterogeneous environments, such as grid
computing. This paper discusses parallel EMO where the
master-slave model is extended supporting a heterogeneous
grid environment. The following two aspects should be kept
in mind while proposing parallel EMO in grid computing:

e The resources in the grid environment differ in their
performance. Therefore, it is necessary to take into
consideration the parallel model corresponding to the
heterogeneous grid environment.

e Overheads, such as communication times, must be suf-
ficiently small as compared with evaluation time. As
communication time in the grid environment becomes
large as compared with parallel processing performed
on a PC cluster, it is necessary to take into considera-
tion the parallel model that can hide the overhead.

As the calculation resources in the grid environment have
differences in performance, when all calculation resources
have the same number of individuals to be evaluated, the
calculation resources with inferior performance would re-
quire more time for evaluation, and would act as a bot-
tleneck to progression to the next generation. Therefore,
it is necessary to distribute the tasks adapted for the cal-
culation resources. Here, we propose a parallel technique
that improves on the master-slave model. Each slave pro-
cess not only evaluates, but also performs crossover. Then,
the number of offspring generated by the crossover opera-
tion is changed dynamically adapting to the performance of
the calculation resources. Moreover, we incorporate a new
crossover to improve the search ability. The next section
describes our proposed model in detail.

3. PARALLEL MULTI-OBJECTIVE GENE-
TIC ALGORITHM SUPPORTING HET-
EROGENEOUS COMPUTATIONAL RE-
SOURCES

3.1 Basic Model

This section presents an explanation of the proposed parallel
model of multi-objective GA. The proposed model extends
the master-slave model, i.e., the master process sends two
individuals in the current population to each slave process.
After each slave process receives two individuals, cross-over
is performed several times and the number of offspring gen-
erated changes adapting to the performance of the calcula-
tion resource. There are two problems that should be ex-
amined in this case:

1. How are the two individuals transmitted by the master
process to each slave process determined ? at random
or according to a certain rule?

2. Does the search ability improve by increasing the num-
ber of offspring generated by each slave process?
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Figure 1: Basic model of the proposed parallel EMO

The basic model of the proposed parallel GA is illustrated
in Figure.1l. As the proposed method is based on NSGA-I
I [7], the algorithm has the same flow. In this paper, the
multi-objective GA is based on NSGA-II. However, other
powerful GAs, such as SPEA 2 [8], can also be utilized. The
proposed method differs from Multi-Objective GAs, such as
NSGA-II, in two respects: neighborhood crossover and the
number of generated offspring after crossover. In the neigh-
borhood crossover, two individuals that are close each other
are selected as parents. These two individuals are sent to the
calculation resource. Then offspring are generated in each
calculation resource. In this step, the number of offspring
generated changes with the performance of the calculation
resources. In this step, many offspring are generated on the
high performance calculation resource and a smaller number
of offspring are generated on the low performance calcula-
tion resource. Then, the two best offspring are chosen and
returned to the master process. With this mechanism, a
high degree of parallelization can be achieved and the gen-
eration continues synchronously.

3.2 Neighborhood Crossover

Effective crossover often cannot be performed in typical multi-
objective genetic algorithms, as the search directions of each
parent individual are different from each other. Therefore,
we proposed neighborhood crossover, which generates off-
spring from two parent individuals neighboring each other
in the objective space [9, 10]. By crossing over individu-
als that are close to each other, offspring can be generated
near the parent individuals. Therefore, the search progresses
maintaining diversity.

Neighborhood crossover is performed as follows:

1. From the best individual for one of the function values,
the population is sorted in close order in the objective
space.

2. Neighborhood shuffle, which changes individuals ran-
domly in some range of population size, is performed
for the sorted population to prevent crossing over re-
peatedly between the same pair of individuals.



3. Crossover is performed between two individuals lo-
cated side by side.

In neighborhood crossover, the neighborhood shuffle opera-
tor is the key to effectiveness. We will discuss the effective-
ness of neighborhood crossover in detail in section 4.

3.3 Increasing the Number of Offspring Gen-
erated

In the proposed model, the number of offspring generated is
changed with the performance of the calculation resources.
In conventional GA, two offspring are usually generated after
crossover. We increase this number and select the best two
offspring according to the following procedure:

1. Neighborhood crossover is performed several times de-
pending on the performance of each calculation re-
source, and the offspring population C is formed.

2. The mutation operation is performed against C, and
all offspring are then evaluated.

3. Non-Dominated Sort [7] is performed against C to
rank all offspring.

4. The two best offspring that are rankl and most ex-
cellent with regard to objective function values are re-
turned to the parent population. If the number of rank
1 offspring is 1, the best offspring in rank 2 is then re-
turned to the parent population.

5. Iterate from step 1 to step 4 against the parent popu-
lation, and the archive is then updated.

In this algorithm, when the number of offspring generated
by crossover increases, the number of evaluations per gener-
ation also increases.

Before the proposed parallel model is examined, it is neces-
sary to investigate the effectiveness of neighborhood crosso-
ver and increasing the number of offspring in Multi-Objective
GAs. First, the effectiveness of neighborhood crossover is
discussed in section 4, and the effectiveness of increasing
the number of offspring is discussed in section 5. Then,
our proposed model is reviewed through the results of com-
putational experiments on heterogeneous computational re-
sources in section 6.

4. EFFECTIVENESSOF NEIGHBORHOOD
CROSSOVER

As mentioned in the previous section, neighborhood shuffle
is a very important operation in neighborhood crossover. If
neighborhood shuffle is not conducted, crossover will be con-
ducted with the same pair in every generation, and thus it
will be impossible to escape after falling into a localized so-
lution. Therefore, it is important to perform neighborhood
shuffle with a moderate width. The width of neighborhood
shuffle in which this neighborhood shuffle is conducted is
decided depending on the ratio of the neighborhood shuffle
width (Rnsw). Rusw 1S a real number between 0 and 1.0, and
the size of the width of neighborhood shuffle is represented

as the ratio to the size of the population. For example,
Rysw 0.1 means that the neighborhood shuffle is conducted
with a width that is 10% of the population. The proximity
of the individuals changes depending on the size of R,sw,
and the proximity increases with reduction in this size, but
this also increases the possibility that crossover will be con-
ducted repeatedly with the same pair. This section describes
the influence of changes in width of neighborhood shuffle on
solution search ability examined through a numerical ex-
periment, to investigate the effectiveness of neighborhood
Crossover.

4.1 Test Problems

In this study, NSGA-II using neighborhood crossover was ap-
plied to several types of test function. Due to the limitations
of this paper, the discussions are described for the follow-
ing two test functions that have wide Pareto-optimal front:
KUR [11] and multi-objective 0/1 knapsack problem [8, 12]
with two knapsacks and 750 items.

KUR is a problem with an interaction between two contin-
uous variables in fi(z) and a multi-convex in f>(z). In this
experiment, there were 100 design variables and it was very
difficult to find the solutions.

While multi-objective 0/1 knapsack problems with two knap-
sacks and 750 items in Zitzler are easy to setup, the problem
itself is very difficult and it is difficult to find the solution.

4.2 Performance Measures

To evaluate the derived Pareto-optimal solutions, two fac-
tors should be measured: accuracy and diversion. The de-
rived Pareto-optimal solutions should be close to the real
Pareto-optimal solutions. At the same time, the derived
solutions should not concentrate on a certain point. The
derived solutions should also be scattered over a wide area.
For this purpose, various performance measures have been
proposed to evaluate non-dominated solution sets. In this
paper, we use the following performance measures to com-
pare a number of solution sets simultaneously:

1. Cover Rate

N

. Spread [13]

w

. Hypervolume [14]

4. Ratio of Non-dominated Individuals: RNI [15]

The Cover Rate is a method of evaluating whether the solu-
tion set is distributed uniformly in the objective space and
to calculate the rate of number k; of the small domain when
the domain of Pareto-optimal solutions is divided into K
parts. The Cover Rate calculated for the solution set in N
objective functions is as follows. The closer to 1.0, it is es-
timated that the solution can be found to all domains. In
this experiment, we set the number of divisions K to the
population size.

_ 1 ky
Cover Rate= + > ;= 3



Table 1: Parameters

Problem KUR KP750-2
Population Size 100 250
Number of Dimensions 100

Chromosome Length 2000 750
Crossover Probability 1.0
Mutation Probability | 1/Chromosome Length
Max Generation 250 | 2000

The Spread measure is a method of evaluating whether the
solution set is obtained widely and can be calculated for the
solution set as follows:

Spread= Y% [maxf;(z)—minf;(z)]

The Hypervolume calculates the size of the dominated space
by the obtained solutions in the objective space.

RNTI is a method for evaluation by comparing the dominance
of two populations obtained by two different algorithms. In
RNI, the populations obtained from the two algorithms, S;
and S2, are combined to make a union set, Sy. The set
of non-dominated individuals Sp is obtained from Sy . The
number of individuals contained in Sp from each algorithm
is used to obtain the ratio, and the value is used as the result
of the evaluation. When the value is closer to the maximum
of 100%, the algorithm has produced a better population.

4.3 Discussion through Numerical Experimen-

tation

In this section, the effects of neighborhood crossover are
discussed through numerical examples. In the conventional
NSGA-II, the binary tournament selection is used as the
mating selection method. In the proposed method, copy se-
lection is used for mating selection as many individuals that
are as different from each other as possible are needed in
neighborhood crossover. The parameters used in this exper-
iment are shown in Table 1.

In each target problem, various R,s. are examined. In
KUR, R,sw with values of 0.0, 0.05, 0.1, 0.2, 0.25, 0.5, and
1.0 are examined. R,;,0.0 means that neighborhood shuf-
fle is not executed after the sort, and as R.,.. 1.0 executes
neighborhood shuffle in width of the size of the population
after the sort, it will be the same as the original NSGA-I
I which changes the selection method only. In addition, in
KP750-2, Ry with values 0.0, 0.02, 0.04, 0.1, 0.2, 0.5, and
1.0 are examined.

The results for KUR and KP750-2 are shown in Figures. 2
and 3, respectively. The results of original NSGA-II are also
shown for comparison. The results are shown as averages of
the 30 runs. Figures. 2(a) and 3(a) show the Cover Rate,
2(b) and 3(b) show Spread, 2(c)and 3(c) show Hypervol-
ume, and 2(d) and 3(d) show RNI compared to the original
NSGA-II. Figures. 2 and 3 indicate that the obtained solu-
tion sets with neighborhood crossover are wide and have ex-
cellent diversity, especially when R,.s. is around 0.1 or 0.2.
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Figure 2: Results of Cover Rate, Spread, Hypervol-
ume and RNI when R,;., is changed in KUR prob-
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Figure 3: Results of Cover Rate, Spread, Hypervol-
ume and RNI when R,.., is changed in Knapsack
problem

When R,sw = 0.0 (i.e., when neighborhood shuffle is not
conducted), the search was believed to be influenced because
the frequency of crossover in the same pair increased. These
results confirmed that the best Pareto-optimal solutions are
obtained when the neighborhood shuffle is conducted with
the some width of neighborhood shuffle.

5. EFFECTIVENESSOFINCREASING THE
NUMBER OF OFFSPRING GENERATED

In this section, we clarify the effects of the number of off-
spring through numerical experiments. The target functions
and parameters used are the same as in the previous sec-
tion. As the effect of the number of offspring is of interest,
the same number of offspring were generated from the two
parent individuals.

5.1 Numerical Experiments

To clarify the effects of increasing the number of offspring,
we performed numerical experiments with the number of
offspring generated by neighborhood crossover set to 2, 4,



6, 8, 10, and 20. The number of evaluation calculations was
fixed to 25,000 in KUR and 500,000 in KP750-2.

The results for KUR are shown as averages of the 30 runs in
Figure. 4. As shown in Figure. 4(a), the diversity was lost
with increasing number of offspring. Figures. 4(c) and (d)
also show that the performance was inferior to the original
NSGA-II as the number of offspring increased. If the number
of offspring increases, the number of evaluations per genera-
tion must also increase. Thus, with this algorithm, both the
number of generations and the performance were reduced as
compared with the original NSGA-II with the same number
of evaluations. On the other hand, Figure. 4(b) indicates
that Spread was improved with increases in the number of
offspring.

The results for KP750-2 are also shown as averages of the 30
runs in Figure. 5. As shown in this figure, the Cover Rate
and Hypervolume were inferior when the number of offspring
was set to 20, and the RNI was inferior with increases in the
number of offspring. On the other hand, the Spread im-
proved with increases in the number of offspring. These re-
sults indicate that increasing the number of offspring causes
convergence to be slow because of the decrease in number
of generations, but the solution set obtained is wide in the
objective space.
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Figure 4: Results of Cover Rate, Spread, Hypervol-
ume, and RNI with the number of evaluations fixed
in KUR proble

Then, we compared the results with those when the num-
ber of generations was fixed. As explained above, in the
proposed model, the number of offspring generated changes
with the performance of the computational resources. There-
fore, it is important to discuss not only fixed total evaluation
number but also fixed total number of generations. The ef-
fects of increasing the number of offspring can be seen by
fixing the number of generations. If the performance is im-
proved with increases in the number of offspring, it would
make sense to increase the number of offspring according to
the performance of the calculation resources available.

The results for KUR with the number of generations fixed
to 50 are shown in Figure. 6. The results for KP750-2 with
the number of generations fixed to 200 are also shown in
Figure. 7.
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Figures. 6 and 7 show that the diversity improves and the
obtained solution sets become wider as the number of off-
spring increases. The distribution graph in Figure.8 shows
the results of collecting all solutions for 30 runs with the
number of offspring set to 2, 10, or 20 for KUR. Figure.
9 also shows the distribution graph with the number of off-
spring set to 2, 6, or 10 for KP750-2. From Figures. 8 and 9,
we can see the effects of increasing the number of offspring.

5.2 Discussion

Although the performance improves with increases in the
number of offspring generated by the crossover operation,
the number of evaluations per generation also increases.
Therefore, in comparison with the original multi-objective
genetic algorithm for the same number of evaluations, it be-
comes difficult to achieve a sufficient number of generations
and yields inferior results. On the other hand, when we per-
formed the comparison with a fixed number of generations,
it was possible to obtain a wider variety of offspring in the
objective space as the number of offspring increased.

From the observations described above, it is expected that
a Pareto-optimal solution set with a high degree of accu-
racy can be obtained by increasing the number of offspring
according to the performance capabilities of the available
calculation resources. That is, when two individuals trans-
mit to each calculation resource at the same time, those
resources with excellent performance would generate large
numbers of offspring, while those with inferior performance
would generate few offspring, and the execution time per
generation can be united.

6. COMPUTATIONAL EXPERIMENTS ON
HETEROGENEOUSCOMPUTATIONAL
RESOURCES

In this section, we clarify the effects of the proposed parallel
model through computational experiments on heterogeneous
computational resources.

6.1 Experimental environment and Procedure
In this experiment, the validity of the proposed parallel
model was verified using one master process and a total of 50
slave processes using a 4-PC Cluster comprised of PCs that
differed in performance. Calculation resources are shown in
Table 2. We used the Grid RPC Ninf-G (version 2.4) [16]
to submit jobs to each PC Cluster, and Open-PBS (version
1.2) was used for scheduling jobs in each PC cluster. Ninf-G
is a reference implementation of the Grid RPC system using
the Globus Toolkit [17].

The flow of execution is shown in Figure. 10. First, the
master process generates an initial population and performs
Neighborhood Sort, which reorders in close order in objec-
tive space and also perform neighborhood shuffle. Then, the
master process submits two adjacent individuals to master
nodes of each PC Cluster using Ninf-G. At this time, the
data transmitted are the chromosome information of two
individuals. After the master nodes of each PC Cluster re-
ceive these data, they begin scheduling the jobs and dis-
tribute them to slave processes. Each slave process repeats
the operations of crossover, mutation, and evaluation over a

schedule jobs by PBS

submit jobs by Ninf-G

—— Master process ——

Neighborhood Sort

iterate
Submit Individuals in a given time
Retrieve Individuals

Update Archive

Slave processes

Receive two Individuals
Crossover

Return two Individuals

Figure 10: Execution Flow of Proposed model on
heterogeneous computational resources

given time, and perform non-dominated sort to choose the
best two offspring that should be returned to the master
process. The data transmitted from slave processes to the
master process are chromosome information and objective
function values of the best two offspring. These procedures
are carried out on all slave processes with synchronous com-
munications in one generation.

In this experiment, each calculation resource increased the
number of offspring adapted for performance of the calcu-
lation resources by repeated crossover, mutation, and eval-
uation during a given time. Thereby, all the calculation
resources can terminate processing almost simultaneously
after a given time, and the delay by the calculation resource
with low performance can be prevented. It is necessary to
set up a fixed time based on the calculation load of the ob-
ject problem on the performance of calculation resources.

The target function is KUR the calculation load of which
is increased by executing useless calculations to assume a
real problem. The evaluation times of one individual by the
calculation resources of each PC cluster for this problem
were 5.82 s on PC Cluster A, 8.62 s on B, 10.17 s on C,
and 17.06 s on D. Then, we set up a fixed time of 1 min so
that the calculation resources of PC Cluster D, which has
the poorest performance, could generate at least 2 offspring.

We compared our proposed parallel model with the original
NSGA-II algorithm, which is parallelized with the original
master slave model under the same environment and con-
ditions, and set 2 h as the termination condition. The pa-
rameters used in this experiment were the same as in the
previous section: population size, 100; number of dimen-
sions, 100; Rysw in our proposed algorithm was set to 0.1.
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6.2 Experimental Results

The average results over three runs for the KUR test prob-
lem are summarized in Figure. 11. As shown in this figure,
the effectiveness of the proposed model increased sharply,
especially in diversity and spread of Pareto-optimal solu-
tions. That is, the proposed parallel model was confirmed
to be effective on heterogeneous computational resources.
Figure. 12 shows the distribution graph of all three runs ob-
tained by the proposed model and the original master-slave
model. Figure. 12 shows that the solution sets obtained us-
ing the proposed model are good in terms of both diversity
and spread.

6.3 Discussion

In the proposed model, all calculation resources can termi-
nate processing almost simultaneously after a given time so
that the idle time of all calculation resources can be main-
tained to the minimum. It is also possible to reduce the
overhead time, such as communication time or jobs schedul-
ing, by increasing the process in remote slave processes. Ta-
ble 3 lists average CPU usage rates of a process in each PC
cluster, and Table 4 lists the total overhead time. Table 3
indicates that the idle time becomes longer on high perfor-
mance calculation resources, especially PC cluster A in the
original master-slave model. However, all processes have
uniform loads in the proposed model. The data shown in
Table 4 also confirmed that the influence of overhead time
is reduced in the proposed parallel model.

Finally, Figure. 12 shows the search history of the proposed
model and the original master-slave model that plots solu-
tion sets at times of 30, 60, and 120 min of progress. In
comparison with the original NSGA-II search process, wide-
ranging non-dominated solutions with great diversity were
obtained from the early stages of the search. These obser-

Table 3: Average CPU usage rate of a process in
each PC cluster

A B C D
8% | 91% | 95% | 91%
18% | 44% | 53% | 89%

Proposed parallel model
Original master-slave model

Table 4: Overhead time in the proposed model and
the original master-slave model

Time
Proposed model 4mbs
Original master-slave | 4m38s

vations indicate that it is possible to conduct a search while
maintaining the diversity of the population, and to obtain a
wide range of Pareto-optimal solutions using the proposed
model.

7. CONCLUSIONS

In this paper, we proposed a new parallel model of EMO
supporting a heterogeneous environment and examined the
accuracy of this model through computational experiments.
We combined our neighborhood crossover with a multi-objec-
tive genetic algorithm. We also considered increasing the
number of offspring dynamically according to the perfor-
mance of the available calculation resources. The results
of computational experiments indicated that neighborhood
crossover performs well and it was possible to obtain a wider
variety of individuals in the objective space as the number
of offspring increased. We also investigated the validity of
the proposed parallel model on heterogeneous calculation



Table 2:

Calculation Resources

number of CPU CPU | Memory OS
Client 1 Athlon64 3200+ 1GB | Fedora Core 4
PC Cluster A 10 Pentium4 2.8GHz 1GB Debian 3.1
PC Cluster B 15 Xeon 2.4GHz 1GB Debian 3.1
PC Cluster C 15 PentiumlIl 1GHz 512MB Debian 3.1
PC Cluster D 10 | PentiumIl 600MHz 256MB Debian 3.1
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Figure 11: Results of Cover Rate, Spread, Hyper-
volume, and RNI on proposed parallel model and
original master-slave model in KUR problem

resources.

Computational experiments indicated that the

proposed model has high search ability, and was able to uti-
lize the maximum performance of all calculation resources
and reduce the overhead time.
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