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Abstract— In this paper, we propose the concept of the flex- neomplete comﬂz,non
ibility of design variables to Pareto-optimal solutions in Multi- )
Objective Optimization problems. In addition, we introduce a 5
method for measurement of the flexibility of design variabls o
to Pareto-optimal solutions. Increases in the number of dégn S Tradeoff between NOx and Soot
variables usually result in a wide variety of optimum solutions. 3
However, when the flexibilities of some design variables are E complete combustion
small, the contributions of these design variables are alseery of fuel
small. This means that the same Pareto-optimal solutions ca £

X - . E

be derived without these parameters. Therefore, it is very min e
important to find the flexibility of the design variables to the a mount of "NOX"
Pareto-optimal solutions. To find the flexibility, the values of
one of the design variables are changed, while those of the Fig. 1. Trade-off between NOx and Soot

remaining parameters are fixed. In this procedure, it is very
important to determine the fixed values. We describe these

procedures to determine the flexibility of the design variale . -
to the Pareto-optimal solutions. Finally, we illustrate usng the environmental changes and the drivey needs. As a result,

diesel engine fuel emission scheduling problem that the Paro-  the best combustion conditions can be chosen for the driving
optimal solutions can be derived with only the design variales ~ environment. Fuel efficiency is important when driving oa th
whose flexibilities are high. highway. The parameters of engines are shifted to values tha
confer high fuel efficiency on the engine. On the other hand,
when the driver feels that the engine needs high power, the
Recently, systems with inner variables that can changgirameters can be changed. In this way, the design of engines
their characteristics dynamically have attracted a great d as flexible systems can be both useful and convenient. For the
of attention. These flexible system$ can adapt to changes design of flexible systems, it is important to find parameters
in the environment and are applicable to the needs of varioysat confer high flexibility on the characteristics.
users. In our sequential studies, we introduced the concept of
To illustrate flexible systems, the procedures used |f|bx|b|e systems and proposed a method for the design of
the design of diesel engines are discussed. Diesel engifxible systems. Flexible systems are especially effedtiv
have good fuel efficiency and good carbon dioxide exhaugiultidisciplinary designs, such as mechanical structcmwe;
characteristics. For these reasons, diesel engines amywidrol, circular design, and software development. Thersfor
used especially in commercial applications. However,aliesthere are several evaluate criteria in target design pruhle
engines have disadvantages in that they produce high levelgnerally, it is impossible to satisfy all of these criteoia
of NOx and soot in the exhaust. Many researchers and devgptimize these functions at the same time. For example,
opers are attempting to solve these problems. In conveaitionhe evaluation functions in diesel engine design are the
engines, the driving pattern of diesel engines is static arfde| efficiency and the amounts of NOx and soot. It is
cannot be changed dynamically during driving. Thereforgyetter to design diesel engines that have high fuel effigienc
the combustion forms are almost the same even when thfd produce small amounts of NOx and soot. However, it
engine is in a high speed static run and running on a slopg. impossible to maximize and minimize these values at
Some diesel engine parameters, such as swirl ratio, fuel stthe same time, as there is a tradeoff relation between fuel
angle, and fuel shape, can be changed by electronic contggficiency, NOx, and soot, as described in Fig. 1.
during driVing. These Changes also alter the charactEsisti In this paper, we describe the new Concept of f|eX|b|||ty,
of diesel engines. Thus, control of these parameters alloyich evaluates the flexibility of the design variables not
the fuel efficiency and the amounts of NOx and soot tg, functions but to the Pareto-optimal solutions. The Raret
be changed. When diesel engines are designed as flexiBl&imal solutions are derived with design variables. Hasvev
systems, these characteristics can be changed along WjfRen the flexibilities of some design variables are highjevhi
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I. INTRODUCTION



optimal solutions is not easy. Here, we introduce a method
for evaluation of the flexibility based on the diesel engine
fuel emission scheduling problem. f(oxr)

Feasible Region
II. MULTI-OBJECTIVE OPTIMIZATION

<—— Weak Pareto
Optimal Solution

f2

——

A. Multi-Objective Optimization Problems

In the optimization problems, when there are several f(Xz)é\o\o l,
objective functions, the problems are called Multi-obijet fxo) g @ =wmnmann o

Optimization Problems (MOPs) [1]. Multi-objective opti- o fx)
. . Pareto Optimal Solution
mization problems are formulated as follows,

fi

min(max) ? =(fi 7) f2(?), R fk(Y))T Fig. 2. Pareto Optimal Solution and Feasible Region
subjectto 7 € X ={Z eR" (1)
| gl(?) <0,(i=1,...,m)} 5 o. | .o  Injection of fuel
5 . Duration Angle K
In these equationsy = (z1,22,...,2,)7 is nth vector &
decision parametet: indicates feasible region. 5
g Crank Angle
= s
; = fi i =1,...,k
{ fl(7) ft(xlax% ,xn),Z. ) ) (2) Crank Angle
g]( ):gj(ajl)x?a"'axn)a]:17"'7m
Usually these objectives cannot minimize or maximize at Fig. 3. Description of one-pulse injection shape

the same time, since there is a trade off relation ship baetwee
the objectives. Therefore, one of the goals of multi-olyect

optimization problem is find a set of Pareto-optimum solu-!!l. THE DIESEL ENGINE FUEL EMISSION SCHEDULING
tions. PROBLEM

A. Outline of the diesel engine fuel emission scheduling
problem

Pareto-optimum solutions are defined using the concept of
the domination of the solutions. The definitions of the dom
ination and non-nomination in multi-objective optimizati
problems are defined as follows.

The definition of the domination of the solutions
zt 2% € F(x = (z1,22,...,7,)) is assumed.

B. Pareto-optimum solutions

In this study, a diesel engine was designed to minimize
Mhe amounts of SFC, NOx, and soot. SFC is an index
minimization of which is associated with maximization of
fuel economy. There are many design parameters for the
diesel engine. In this study, we did not address shape
parameters, such as bore diameter and stroke length, but
g When f(( )) < ff( Q x11|s superior toz?.. targeted parameters that can be controlled electronjsaith
When  f(z! @ is superior toz” in the  ,'F=p “swirl rate, and fuel injection ratio. The target shap
strong manner. parameter is related to physical size and is predetermined
If =' is superior toz?, z' is better thanz®. In the py the specification, and the degree of design freedom is
multi objective optimization problems, the solutions tha¢  |ow. On the other hand, parameters that can be controlled
Superior to the other solutions are searched. The deﬁniti@]bctronica”y are controllable or are new techno|ogi@ th

of the Pareto solutions can be explained as follows. are becoming controllable, and will be used for engines
The definition (The Pareto optimum sotluions) 2% € in the near future. By targeting parameters that can be
F(z = (z1,72,...,7,)) is assumed. controlled electronically, the designed engine will novda

1) There is no solution z° that are superiorta@ € Fin  one fixed solution but will have a dynamic design that can

strong mannerz® is called Pareto optimum solution. be adapted according to requirements. This is a so-called,

2) There is no solution z° that are superior to: € 7,  flexible system, and will also be one of the forms of future

z0 is called weak Pareto optimum solution. engine design.

In Fig. 2, the example of the Pareto optimum solutions In this study, the amounts of SFC, NOx, and soot were
in the case of two objective@ = 2) is illustrated. In this used as the objective function, and we attempted to minimize
figure, strong line shows the Pareto optimum solutions arttiem simultaneously. As shown in Fig. 3, the injection shape
dot line shows the weak Pareto optimum solutions. of the fuel is one-step injection where the fuel is injected i

Generally, there are plural Pareto optimum solutions am single pulse.
existed. To derive these optimum solutions set with one Design Variables used here are StartAngle, Exhaust Gas
calculation trial, Multi Objective Genetic Algorithms are Recirculation (EGR), Boost Pressure, Swirl Ratio, andrinte
often used [2], [3], [4], [5]. [6], [7]- val Angle.



B. HIDECS (a) Robustness (b) Flexibility
The simulation of a diesel engine is very complicated.
Therefore, many models of diesel engine combustion have
been proposed. These models can be classified into two
categories: phenomenological models and detailed multi- 2
dimensional models. Over the past 30 years, the most
sophisticated phenomenological spray-combustion model,
HIDECS, has shown great potential as a predictive tool
for both performance and emissions in a wide range of
direct injection diesel engines. This model was developed Fig. 4. Concept of Robustness and Flexibility
originally at the University of Hiroshima and was named
‘HIDECS’ only recently. A detailed discussion of this model

f(x)
(

x is robust design variable to f(x).  x is flexible design variable to f(x).

and examples of its successful application are given in the Robustness |8—F| is smaller.
references[8], [9], [10], [11], [12], [13], [14]. In this wdy, g}’; (4)
HIDECS was used as an analyzer to determine the target Flexiblity : |a—| is larger.

€T

function values in optimization.

In HIDECS, the required calculation load is very light. Where F,.. and F.,;, are the maximum and minimum
KIVA code of a detailed multi-dimensional model is a well-values off(z) respectively, and\F' = F,qz — Fpin. Az in
known diesel engine combustion analyzer; however, thisobustness is unpredictabléy in Flexibility is predictable
model requires a very large calculation load for analysignd adaptive.
for one trial. The genetic algorithm used in the present The robustness and flexibility of the design variables are
study exhibits high optimum solution search ability. Theshown in Fig. 4.
downside is that the calculations must be repeated manyWhen the products have high robustness in their design
times. However, HIDECS allows use of the genetic algorithrwariables, small changes in the design variables do not

within a practical time frame. affect the evaluation functions. These design methods have
advantages in the case of errors in the design variablein th
IV. FLEXIBILITY OF DESIGN VARIABLES production process. On the other hand, changes in the design

In this section, the concept of design variable erxibiIityV"’mfelbles strongly affect the evaluation functions in fteai
signs. These design methods are advantageous when the

is described. Then, the method for measurement of t duct . i ; luation functi
flexibility is introduced. For simplicity, we focus on a mult products require a wide range ot evaluation functions. Here
e focus on flexibility.

objective problem-the Diesel Engine Fuel Emission Scheduf’ e , . .
Flexibility can be measured to find gaps in the evaluation

ing Problem, which has two objectives, NOx and SFC. i . . ; . .
function along with changes in the design variables. This is
the flexibility of the design variables to a certain function

In the next section, we discuss the flexibility of the design

~ Robust design that preserves the quality of the produc{giaples to the Pareto-optimal solutions in multi-obijeet
is very important, and there has recently been a focus Yptimization.

flexibility design[15], [16], [17], [18], [19]. In flexibilty
design, some of the inner parameters can be changed @/- Flexibility in Multi-objective Optimization
namically and the characteristics of the designs can beedlte . . . I .

. . The previous section described the flexibility of design
along with the changes in these parameters. These changes

in the characteristics can be applied readily to changdsen t ar!ables. HOW_e"eT' th_ere IS (_)n!y one function in this expla
. . nation. In multi-objective optimization, as there are sale
environment and various needs of the user.

Products designed to maintain high flexibility can beevaluatlon functions, the conditions of flexibility are fdif

applied not only to changes in the environment but also to
the various needs of the user. in— % <z <az+ %,

Robustness and Flexibility of the objective functigfi(,x)
are formulated as follows.

A. The concept of flexibility of design variable

Fig. 5 illustrates two types of the flexibility in multi-
objective optimization.

In Fig. 5, the Pareto-optimal solutions are derived with
several design variables. The dotted line indicates thet@ar
optimal solutions. Here, we changed the values of certain

Robustness AF is smaller. design variables with the remaining design variables fixed.
Flexiblity : AF is larger. ) In Fig. 5(a), the values of the evaluation functions are
o also changed. These changes are similar to the Pareto-
If Az is minimum, optimal solutions. The changes in the evaluation functions
are also illustrated in Fig. 4(b). In this case, the changes a
o Fouw — Foin OF completely different from the Pareto-optimal solutionglan
;13% Az = |£ each change is dominated to the Pareto-optimal solutions.



(@) (b)

x5 does not affect the Pareto front. These results suggest that

| ;| — the robustness af3 to the evaluation functions is very high.
| | x1 has flexibility to f; andx» has flexibility to f». Therefore,
| | the derived Pareto-optimal solutions may be derived only
E’ N _T:’ AN with z; and zs.
- N The decision making is one of the most difficult prob-
7 - RN lems in multi-objective problems. Designers always stlagg
real Pareto optimum front™ -

to determine the final design parameters from the derived
Pareto-optimal solutions. When there are many design pa-
rameters and some of are not important for the Pareto-optima
solutions, it is very difficult to determine the final design
parameters. For designers, it is much easier to find the final
design parameters from a small number of design variables.
| Pareto Optimum Solutions . Products with a small number of design variables can be
\ / < \\\ g L produced at low cost.

P : A Therefore, the flexibility of design variables to the Pareto
a S pE optimal solutions is very important. In the following sextj
we illustrate measurement of the flexibility of design vari-
ables to the Pareto-optimal solutions.

f1(x) f1(x)

Fig. 5. Two types of concept of Flexibility

(1) x1 changed (2) x2 changed (3) x3 changed

minimize minimize minimize

f2(x)
fa(x

real Pareto optimum front™

fi(x)

f1(x)

Robustness to f1 Flexibility to f1

X3 > X2 > X1 X1> X2 > X3 Important Design Variables in Flexible Design

C. Evaluation Method of Flexibilities of Design Variables t
Pareto-optimal Solutions

Robustness to f2 f1ox1 f2:x2

X3 > X1> X2

Flexibility to f2
X2 > X1> X3

The previous sections described the importance of flex-
ibility of design variables to the Pareto-optimal soluson
However, it is very difficult to evaluate flexibility to the

In case(a), we can determine that the change in the focus'é%r.et()'()lcr['maI solutions. To find the fiexibility of each ies

parameters can cover the Pareto-optimal solutions even Wh\r‘?é:‘sbdfééhggr?anﬁ;ﬁ Itrk:ethfhZxatj:t;gntr?;n?ct)f;ssezhOzlgn?g-
the other design parameters are fixed. On the other hand, |r} under condi%ons where thegvalues of the otherpdesi N
case (b), the change in the focused parameters cannot cover. . i 9
the Pareto-optimal solutions at all. variables are fixed. Of course, these fixed values affect the

From this discussion, we can define the flexibility of thechanges in the evaluation functions. Therefore, it is very

design variables to the Pareto-optimal solutions as fcﬂlow'mportam to determine these fixed values. .

the focused design variables have high flexibility to Paretq [ [T Paper, we propose a method for evaluation of the

optimal solutions in case (a) but not in case (b). exibility o esign variables to the Pareto-optimal s@us
When a certain design variable has flexibility to the Paretd®® follows (Fig. 7).

optimal solutions, then the Pareto-optimal solutions can b 1) Formulate the multi-objective problem. This problem

derived without this design variable. One of the goals of IS solved using all the design variables. In this case,

Fig. 6. Robustness and Flexibility of design variables

multi-objective optimization is to derive the Pareto-opmi
solutions. Usually, when we use a wide variety of design-vari 2)
ables, we can derive a wider range of different Pareto-agtim
solutions. However, from the discussion of the flexibility t
the Pareto-optimal solutions, it can be concluded that some
design parameters are not necessary to derive the Pareto-
optimal solutions if these parameters do not have flexjbilit 4)
Therefore, it is very important to derive the flexibility thet
Pareto-optimal solutions.

Here, we summarize the concept of robustness and flexi-
bility to the Pareto-optimal solutions in Fig. 6.

In Fig. 6, there are three design parameters, x> and
x3, which are used to derive the Pareto-optimal solutions. In
this example, one of the design variables is changed and the
others are fixed. The effects of the changes in each designP)
variable on the evaluation functions are different. When
is changed, the change jfj is large but that inf, is small.
In the same manner, whef is changed, the change ja is

3)

no design variable values are fixed.

The derived Pareto-optimal solutions are sorted along
with the value of a certain object function.

Five points are determined from the sorted Pareto-
optimal solutions. The distances between the five
points should be the same.

In each point, one of the design variables is changed.
In this case, the values of the other solutions are
fixed. The range of the design variable is assumed.
In this condition, the multi-objective optimization is
performed again and the new Pareto-optimal solutions
are derived. These new Pareto-optimal solutions de-
termined along with the changes in the parameter are
equal to the flexibilities of this point.

The flexibilities of all design variables and all five
points are derived.

From this procedure, the flexibility of the design variable
to the Pareto-optimal solution is derived. In this procedur

large but that inf, is small. On the other hand, the change inhe values of the Pareto-optimal solution are used as fixed



f2(x)

f2(x)

f2(x)

NOx

minimize

Pareto Optimum Solutions Generally,

we optimize MultiObjective Problem.

Sort optimum solutions by fi.
We extract five points equally.

f1(x)

X extracted points

For example,
if we have 100 sorted optimum solutions,

We use design parameters of
each extracted points.

X extracted points

30th x1=0.2,x2=0.5
x3=1.2

For example,
if we want to measure flexibilty of x1 in 30th,
we should use x2(=0.5), x3(=1.2)

as fixed design parameters.

f1(x)

Fig. 7. Method for measuring flexibility
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Fig. 8. Pareto-optimal Solutions (SFC, NOXx)

extracted points are 10th,30th,50th,70th and 90th.

the right of Fig. 8. Among the Pareto-optimal solutions (39
individuals) of NOx and SFC, five points were extracted.
These five were 6, 13, 20, 27, and 34th optimum solution
sorted in ascending order according to NOx value. The
design variable values of each extracted optimal solutien a

shown in Table. I.

Multi-objective optimization is performed by the design
variable that measures flexibility, using the design vdeiab
values of each solution shown in Table. | as fixed values. The
relationships between SFC of the optimized Pareto-optimal
solutions and each design variable are shown in Fig. 9,
and the relationships between NOXx of the optimized Pareto-
optimal solutions and each design variable are shown in Fig.
10.

The sub-figures((B(5)) in Fig. 9 show the results of
optimizing with only the arbitrary design variables unfixed
at each extraction point.

In Fig. 9-(3), the values of SFC change markedly when
StartAngle is changed in all of the extracted points. There-
fore, we can see that flexibility of StartAngle regarding SFC
is high. Moreover, in Fig. 9-(1), as the values of SFC do
not change when BoostPressure is changed in any of the
extracted points, we can see that flexibility of BoostPressu
regarding SFC is low and the robustness is high. In Fig.
10-(2), the values of NOx change markedly when EGR is
changed in all of the extracted points. Therefore, we can see
that flexibility of EGR regarding NOx is high. Moreover,
in Fig. 10-(1), we can see that flexibility of BoostPressure
regarding NOXx is low and the robustness is high.

The above results indicate that using the proposed method
it is possible to estimate the flexibility of the Pareto-api
solutions. Moreover, we can also confirm that flexibility
differs among the solutions chosen from the Pareto-optimal
solutions, and not only flexibility but the robustness of a
design variable can be confirmed.

The next section describes analysis regarding the useful-
ness of using design variables with high flexibility to SFC

values. Among the steps, step 4 is very important. Since noand NOx when performing flexible design of the diesel
dominated solutions are derived again from the solutiotis wiengine fuel emission scheduling problem.

along to the change of one design variable, the results are

totally different from the sensitinity analysis of the otljge

fu

D. Examination of Method for Evaluation of Flexibilities of

nctions.

Design Variables

E. Examination of the Design Variable For a Flexible Design

The design variables, StartAngle and EGR, have high flex-
ibility regarding NOx and SFC and are used in optimization.
The optimized results are shown in Fig. 11.

From Fig. 11-(3), we can see that the Pareto-optimal solu-

In the previous sections, the method for evaluation of fleXtions obtained are similar to those obtained when all design

ibilities of design variables to the Pareto-optimal saos variables were unfixed. Moreover, other results indicatted t
was described. Examination of this method is discussed \&rious Pareto-optimal solutions were obtained.

this section. First, the results of the optimized dieseli@dg  The above results indicate that it is possible for a flexible
fuel emission scheduling problem without fixed design varidesign of a diesel engine, with StartAngle and EGR as the
ables are shown in Fig. 7. The diesel engine fuel emissiahly unfixed design variables, to achieve similar perforogan

scheduling problem has three objective functions, but wWgompared to the case where all design variables are unfixed.
focused on only two-SFC and NOx, for ease of visually

grasping the distribution of solutions. V. CONCLUSIONS

The results of optimization with three objective functions The importance of flexible systems that can change their
are shown on the left of Fig. 8, and the results focusing ocharacteristics along with the internal parameters has at-
the Pareto-optimal solutions of NOx and SFC are shown drmacted a great deal of attention. Flexible systems cantadap



TABLE |

DESIGNVARIABLES OF EXTRACTED POINTS

Extracted Point§ SFC NOXx BoostPressure EGR Duration Angle | StartAngle
6 | 396.312| 0.000137 3.50161 0.3 36 6.39216
13 | 270.225| 0.000378 3.65 0.3 36 -3.80392
20 229.35| 0.001679 3.57903 0.3 35.5 -4.11765
27 | 205.126 | 0.008548 3.59839 0.3 35.5 -4.66667
34| 175.069| 0.450112 3.65 | 0.241935 25 -9.68627
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Fig. 10. Relations of NOx and Design Variables

to changes in the environment and be applied to a widmlutions. As the flexibility of these variables is smalle th
variety user needs. To design flexible systems, these altermther variables can cover construction of the Pareto-aggtim
parameters should be determined. When there are sevesalutions. Therefore, the flexibility of the design varieblo
design parameters, multi-objective optimization protdeare the optimum solution is very important. This paper illuttch
solved. In this case, one of the goals is to derive the Paretiite concept of flexibility of the design variables to the
optimal solutions. The Pareto-optimal solutions are aativ Pareto-optimal solutions. At the same time, the method for
with several design variables. However, in some cases, soméaluation of the flexibility of the design variables to the
design variables do not contribute to the Pareto-optimalptimum solutions was introduced. In the proposed method,
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one of the design variables is changed and the change in thg
Pareto-optimal solutions is evaluated under conditionsreh

the rest of the design variables are fixed. In this case, thd fix
values are very important. We propose deriving these valugg]
from the points of the Pareto-optimal solutions. In additio

we showed that the Pareto-optimal solutions can be derived
only with the design variables whose flexibilities are high i [g]
the diesel engine fuel emission scheduling problem.

The following items remain for future studies:

El

« In the proposed procedure, five points scattered on the

In our studies, we will introduce design systems for
flexible systems.

(1]

(2]

(3]

(4]

(5]

Pareto-optimal solutions are used. Further discussion of
the number of points, their location, etc., should be
performed. [10]
In this paper, only multi-objective optimization prob-
lems with two objectives were discussed. In futurgiq)
work, we will propose an evaluation method for multi-
objective optimization problems that have more thar[hz]
three objectives.

(13]
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