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Abstract— In this paper, we propose the concept of the flex-
ibility of design variables to Pareto-optimal solutions inMulti-
Objective Optimization problems. In addition, we introduce a
method for measurement of the flexibility of design variables
to Pareto-optimal solutions. Increases in the number of design
variables usually result in a wide variety of optimum solutions.
However, when the flexibilities of some design variables are
small, the contributions of these design variables are alsovery
small. This means that the same Pareto-optimal solutions can
be derived without these parameters. Therefore, it is very
important to find the flexibility of the design variables to the
Pareto-optimal solutions. To find the flexibility, the values of
one of the design variables are changed, while those of the
remaining parameters are fixed. In this procedure, it is very
important to determine the fixed values. We describe these
procedures to determine the flexibility of the design variable
to the Pareto-optimal solutions. Finally, we illustrate using the
diesel engine fuel emission scheduling problem that the Pareto-
optimal solutions can be derived with only the design variables
whose flexibilities are high.

I. I NTRODUCTION

Recently, systems with inner variables that can change
their characteristics dynamically have attracted a great deal
of attention. TheseHflexible systemsIcan adapt to changes
in the environment and are applicable to the needs of various
users.

To illustrate flexible systems, the procedures used in
the design of diesel engines are discussed. Diesel engines
have good fuel efficiency and good carbon dioxide exhaust
characteristics. For these reasons, diesel engines are widely
used especially in commercial applications. However, diesel
engines have disadvantages in that they produce high levels
of NOx and soot in the exhaust. Many researchers and devel-
opers are attempting to solve these problems. In conventional
engines, the driving pattern of diesel engines is static and
cannot be changed dynamically during driving. Therefore,
the combustion forms are almost the same even when the
engine is in a high speed static run and running on a slope.
Some diesel engine parameters, such as swirl ratio, fuel start
angle, and fuel shape, can be changed by electronic control
during driving. These changes also alter the characteristics
of diesel engines. Thus, control of these parameters allows
the fuel efficiency and the amounts of NOx and soot to
be changed. When diesel engines are designed as flexible
systems, these characteristics can be changed along with
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Fig. 1. Trade-off between NOx and Soot

environmental changes and the driverGs needs. As a result,
the best combustion conditions can be chosen for the driving
environment. Fuel efficiency is important when driving on the
highway. The parameters of engines are shifted to values that
confer high fuel efficiency on the engine. On the other hand,
when the driver feels that the engine needs high power, the
parameters can be changed. In this way, the design of engines
as flexible systems can be both useful and convenient. For the
design of flexible systems, it is important to find parameters
that confer high flexibility on the characteristics.

In our sequential studies, we introduced the concept of
flexible systems and proposed a method for the design of
flexible systems. Flexible systems are especially effective in
multidisciplinary designs, such as mechanical structure,con-
trol, circular design, and software development. Therefore,
there are several evaluate criteria in target design problems.
Generally, it is impossible to satisfy all of these criteriaor
optimize these functions at the same time. For example,
the evaluation functions in diesel engine design are the
fuel efficiency and the amounts of NOx and soot. It is
better to design diesel engines that have high fuel efficiency
and produce small amounts of NOx and soot. However, it
is impossible to maximize and minimize these values at
the same time, as there is a tradeoff relation between fuel
efficiency, NOx, and soot, as described in Fig. 1.

In this paper, we describe the new concept of flexibility,
which evaluates the flexibility of the design variables not
to functions but to the Pareto-optimal solutions. The Pareto-
optimal solutions are derived with design variables. However,
when the flexibilities of some design variables are high, while
those of others are low, and the same Pareto-optimal solutions
are derived with parameters whose flexibilities are high. Only
one of the design variables is needed if the ranges of the
flexibilities of two design variables are almost the same.
Evaluation of the flexibility of design variables to Pareto-



optimal solutions is not easy. Here, we introduce a method
for evaluation of the flexibility based on the diesel engine
fuel emission scheduling problem.

II. M ULTI -OBJECTIVE OPTIMIZATION

A. Multi-Objective Optimization Problems

In the optimization problems, when there are several
objective functions, the problems are called Multi-objective
Optimization Problems (MOPs) [1]. Multi-objective opti-
mization problems are formulated as follows,8<:min(max)

�!f (�!x ) = (f1(�!x ); f2(�!x ); : : : ; fk(�!x ))T
subject to �!x 2 X = f�!x 2 Rnj gi(�!x ) � 0; (i = 1; : : : ;m)g (1)

In these equations,�!x = (x1; x2; : : : ; xn)T is nth vector
decision parameter.x indicates feasible region.� fi(�!x ) = fi(x1; x2; : : : ; xn); i = 1; : : : ; kgj(�!x ) = gj(x1; x2; : : : ; xn); j = 1; : : : ;m (2)

Usually these objectives cannot minimize or maximize at
the same time, since there is a trade off relation ship between
the objectives. Therefore, one of the goals of multi-objective
optimization problem is find a set of Pareto-optimum solu-
tions.

B. Pareto-optimum solutions

Pareto-optimum solutions are defined using the concept of
the domination of the solutions. The definitions of the dom-
ination and non-nomination in multi-objective optimization
problems are defined as follows.

The definition of the domination of the solutions:x1; x2 2 F(x = (x1; x2; : : : ; xn)) is assumed.

1) When f(x1) � f(x2), x1 is superior tox2.
2) When f(x1) < f(x2), x1 is superior tox2 in the

strong manner.

If x1 is superior tox2, x1 is better thanx2. In the
multi objective optimization problems, the solutions thatare
superior to the other solutions are searched. The definition
of the Pareto solutions can be explained as follows.

The definition (The Pareto optimum sotluions): x0 2F(x = (x1; x2; : : : ; xn)) is assumed.

1) There is no solution x0 that are superior tox 2 F in
strong manner,x0 is called Pareto optimum solution.

2) There is no solution x0 that are superior tox 2 F ,x0 is called weak Pareto optimum solution.

In Fig. 2, the example of the Pareto optimum solutions
in the case of two objectives(p = 2) is illustrated. In this
figure, strong line shows the Pareto optimum solutions and
dot line shows the weak Pareto optimum solutions.

Generally, there are plural Pareto optimum solutions are
existed. To derive these optimum solutions set with one
calculation trial, Multi Objective Genetic Algorithms are
often used [2], [3], [4], [5], [6], [7].

Fig. 2. Pareto Optimal Solution and Feasible Region

Fig. 3. Description of one-pulse injection shape

III. T HE DIESEL ENGINE FUEL EMISSION SCHEDULING

PROBLEM

A. Outline of the diesel engine fuel emission scheduling
problem

In this study, a diesel engine was designed to minimize
the amounts of SFC, NOx, and soot. SFC is an index
minimization of which is associated with maximization of
fuel economy. There are many design parameters for the
diesel engine. In this study, we did not address shape
parameters, such as bore diameter and stroke length, but
targeted parameters that can be controlled electronically, such
as EGR, swirl rate, and fuel injection ratio. The target shape
parameter is related to physical size and is predetermined
by the specification, and the degree of design freedom is
low. On the other hand, parameters that can be controlled
electronically are controllable or are new technologies that
are becoming controllable, and will be used for engines
in the near future. By targeting parameters that can be
controlled electronically, the designed engine will not have
one fixed solution but will have a dynamic design that can
be adapted according to requirements. This is a so-called,
flexible system, and will also be one of the forms of future
engine design.

In this study, the amounts of SFC, NOx, and soot were
used as the objective function, and we attempted to minimize
them simultaneously. As shown in Fig. 3, the injection shape
of the fuel is one-step injection where the fuel is injected in
a single pulse.

Design Variables used here are StartAngle, Exhaust Gas
Recirculation (EGR), Boost Pressure, Swirl Ratio, and Inter-
val Angle.



B. HIDECS

The simulation of a diesel engine is very complicated.
Therefore, many models of diesel engine combustion have
been proposed. These models can be classified into two
categories: phenomenological models and detailed multi-
dimensional models. Over the past 30 years, the most
sophisticated phenomenological spray-combustion model,
HIDECS, has shown great potential as a predictive tool
for both performance and emissions in a wide range of
direct injection diesel engines. This model was developed
originally at the University of Hiroshima and was named
FHIDECSGonly recently. A detailed discussion of this model

and examples of its successful application are given in the
references[8], [9], [10], [11], [12], [13], [14]. In this study,
HIDECS was used as an analyzer to determine the target
function values in optimization.

In HIDECS, the required calculation load is very light.
KIVA code of a detailed multi-dimensional model is a well-
known diesel engine combustion analyzer; however, this
model requires a very large calculation load for analysis
for one trial. The genetic algorithm used in the present
study exhibits high optimum solution search ability. The
downside is that the calculations must be repeated many
times. However, HIDECS allows use of the genetic algorithm
within a practical time frame.

IV. FLEXIBILITY OF DESIGN VARIABLES

In this section, the concept of design variable flexibility
is described. Then, the method for measurement of the
flexibility is introduced. For simplicity, we focus on a multi-
objective problem-the Diesel Engine Fuel Emission Schedul-
ing Problem, which has two objectives, NOx and SFC.

A. The concept of flexibility of design variable

Robust design that preserves the quality of the products
is very important, and there has recently been a focus on
flexibility design[15], [16], [17], [18], [19]. In flexibility
design, some of the inner parameters can be changed dy-
namically and the characteristics of the designs can be altered
along with the changes in these parameters. These changes
in the characteristics can be applied readily to changes in the
environment and various needs of the user.

Products designed to maintain high flexibility can be
applied not only to changes in the environment but also to
the various needs of the user. Inx � �x2 < x < x + �x2 ,
Robustness and Flexibility of the objective function,f(x)
are formulated as follows.

Robustness: �F is smaller.

Flexiblity : �F is larger.
(3)

If �x is minimum,limx!0 Fmax � Fmin�x = j�F�x j

Fig. 4. Concept of Robustness and Flexibility

Robustness: j�F�x j is smaller.

Flexiblity : j�F�x j is larger.
(4)

WhereFmax andFmin are the maximum and minimum
values off(x) respectively, and�F = Fmax�Fmin. �x in
Robustness is unpredictable,�x in Flexibility is predictable
and adaptive.

The robustness and flexibility of the design variables are
shown in Fig. 4.

When the products have high robustness in their design
variables, small changes in the design variables do not
affect the evaluation functions. These design methods have
advantages in the case of errors in the design variables in the
production process. On the other hand, changes in the design
variables strongly affect the evaluation functions in flexible
designs. These design methods are advantageous when the
products require a wide range of evaluation functions. Here,
we focus on flexibility.

Flexibility can be measured to find gaps in the evaluation
function along with changes in the design variables. This is
the flexibility of the design variables to a certain function.
In the next section, we discuss the flexibility of the design
variables to the Pareto-optimal solutions in multi-objective
optimization.

B. Flexibility in Multi-objective Optimization

The previous section described the flexibility of design
variables. However, there is only one function in this expla-
nation. In multi-objective optimization, as there are several
evaluation functions, the conditions of flexibility are differ-
ent.

Fig. 5 illustrates two types of the flexibility in multi-
objective optimization.

In Fig. 5, the Pareto-optimal solutions are derived with
several design variables. The dotted line indicates the Pareto-
optimal solutions. Here, we changed the values of certain
design variables with the remaining design variables fixed.

In Fig. 5(a), the values of the evaluation functions are
also changed. These changes are similar to the Pareto-
optimal solutions. The changes in the evaluation functions
are also illustrated in Fig. 4(b). In this case, the changes are
completely different from the Pareto-optimal solutions and
each change is dominated to the Pareto-optimal solutions.



Fig. 5. Two types of concept of Flexibility

Fig. 6. Robustness and Flexibility of design variables

In case(a), we can determine that the change in the focused
parameters can cover the Pareto-optimal solutions even when
the other design parameters are fixed. On the other hand, in
case (b), the change in the focused parameters cannot cover
the Pareto-optimal solutions at all.

From this discussion, we can define the flexibility of the
design variables to the Pareto-optimal solutions as follows:
the focused design variables have high flexibility to Pareto-
optimal solutions in case (a) but not in case (b).

When a certain design variable has flexibility to the Pareto-
optimal solutions, then the Pareto-optimal solutions can be
derived without this design variable. One of the goals of
multi-objective optimization is to derive the Pareto-optimal
solutions. Usually, when we use a wide variety of design vari-
ables, we can derive a wider range of different Pareto-optimal
solutions. However, from the discussion of the flexibility to
the Pareto-optimal solutions, it can be concluded that some
design parameters are not necessary to derive the Pareto-
optimal solutions if these parameters do not have flexibility.
Therefore, it is very important to derive the flexibility to the
Pareto-optimal solutions.

Here, we summarize the concept of robustness and flexi-
bility to the Pareto-optimal solutions in Fig. 6.

In Fig. 6, there are three design parameters,x1, x2 andx3, which are used to derive the Pareto-optimal solutions. In
this example, one of the design variables is changed and the
others are fixed. The effects of the changes in each design
variable on the evaluation functions are different. Whenx1
is changed, the change inf1 is large but that inf2 is small.
In the same manner, whenx2 is changed, the change inf2 is
large but that inf2 is small. On the other hand, the change in

x3 does not affect the Pareto front. These results suggest that
the robustness ofx3 to the evaluation functions is very high.x1 has flexibility tof1 andx2 has flexibility tof2. Therefore,
the derived Pareto-optimal solutions may be derived only
with x1 andx2.

The decision making is one of the most difficult prob-
lems in multi-objective problems. Designers always straggle
to determine the final design parameters from the derived
Pareto-optimal solutions. When there are many design pa-
rameters and some of are not important for the Pareto-optimal
solutions, it is very difficult to determine the final design
parameters. For designers, it is much easier to find the final
design parameters from a small number of design variables.
Products with a small number of design variables can be
produced at low cost.

Therefore, the flexibility of design variables to the Pareto-
optimal solutions is very important. In the following section,
we illustrate measurement of the flexibility of design vari-
ables to the Pareto-optimal solutions.

C. Evaluation Method of Flexibilities of Design Variables to
Pareto-optimal Solutions

The previous sections described the importance of flex-
ibility of design variables to the Pareto-optimal solutions.
However, it is very difficult to evaluate flexibility to the
Pareto-optimal solutions. To find the flexibility of each design
variable, the changes in the evaluation functions should be
measured along with the changes in the focused parame-
ter under conditions where the values of the other design
variables are fixed. Of course, these fixed values affect the
changes in the evaluation functions. Therefore, it is very
important to determine these fixed values.

In this paper, we propose a method for evaluation of the
flexibility of design variables to the Pareto-optimal solutions
as follows (Fig. 7).

1) Formulate the multi-objective problem. This problem
is solved using all the design variables. In this case,
no design variable values are fixed.

2) The derived Pareto-optimal solutions are sorted along
with the value of a certain object function.

3) Five points are determined from the sorted Pareto-
optimal solutions. The distances between the five
points should be the same.

4) In each point, one of the design variables is changed.
In this case, the values of the other solutions are
fixed. The range of the design variable is assumed.
In this condition, the multi-objective optimization is
performed again and the new Pareto-optimal solutions
are derived. These new Pareto-optimal solutions de-
termined along with the changes in the parameter are
equal to the flexibilities of this point.

5) The flexibilities of all design variables and all five
points are derived.

From this procedure, the flexibility of the design variable
to the Pareto-optimal solution is derived. In this procedure,
the values of the Pareto-optimal solution are used as fixed



Fig. 7. Method for measuring flexibility

Fig. 8. Pareto-optimal Solutions (SFC, NOx)

values. Among the steps, step 4 is very important. Since non-
dominated solutions are derived again from the solutions with
along to the change of one design variable, the results are
totally different from the sensitinity analysis of the objective
functions.

D. Examination of Method for Evaluation of Flexibilities of
Design Variables

In the previous sections, the method for evaluation of flex-
ibilities of design variables to the Pareto-optimal solutions
was described. Examination of this method is discussed in
this section. First, the results of the optimized diesel engine
fuel emission scheduling problem without fixed design vari-
ables are shown in Fig. 7. The diesel engine fuel emission
scheduling problem has three objective functions, but we
focused on only two-SFC and NOx, for ease of visually
grasping the distribution of solutions.

The results of optimization with three objective functions
are shown on the left of Fig. 8, and the results focusing on
the Pareto-optimal solutions of NOx and SFC are shown on

the right of Fig. 8. Among the Pareto-optimal solutions (39
individuals) of NOx and SFC, five points were extracted.
These five were 6, 13, 20, 27, and 34th optimum solution
sorted in ascending order according to NOx value. The
design variable values of each extracted optimal solution are
shown in Table. I.

Multi-objective optimization is performed by the design
variable that measures flexibility, using the design variable
values of each solution shown in Table. I as fixed values. The
relationships between SFC of the optimized Pareto-optimal
solutions and each design variable are shown in Fig. 9,
and the relationships between NOx of the optimized Pareto-
optimal solutions and each design variable are shown in Fig.
10.

The sub-figures((1)�(5)) in Fig. 9 show the results of
optimizing with only the arbitrary design variables unfixed
at each extraction point.

In Fig. 9-(3), the values of SFC change markedly when
StartAngle is changed in all of the extracted points. There-
fore, we can see that flexibility of StartAngle regarding SFC
is high. Moreover, in Fig. 9-(1), as the values of SFC do
not change when BoostPressure is changed in any of the
extracted points, we can see that flexibility of BoostPressure
regarding SFC is low and the robustness is high. In Fig.
10-(2), the values of NOx change markedly when EGR is
changed in all of the extracted points. Therefore, we can see
that flexibility of EGR regarding NOx is high. Moreover,
in Fig. 10-(1), we can see that flexibility of BoostPressure
regarding NOx is low and the robustness is high.

The above results indicate that using the proposed method
it is possible to estimate the flexibility of the Pareto-optimal
solutions. Moreover, we can also confirm that flexibility
differs among the solutions chosen from the Pareto-optimal
solutions, and not only flexibility but the robustness of a
design variable can be confirmed.

The next section describes analysis regarding the useful-
ness of using design variables with high flexibility to SFC
and NOx when performing flexible design of the diesel
engine fuel emission scheduling problem.

E. Examination of the Design Variable For a Flexible Design

The design variables, StartAngle and EGR, have high flex-
ibility regarding NOx and SFC and are used in optimization.
The optimized results are shown in Fig. 11.

From Fig. 11-(3), we can see that the Pareto-optimal solu-
tions obtained are similar to those obtained when all design
variables were unfixed. Moreover, other results indicated that
various Pareto-optimal solutions were obtained.

The above results indicate that it is possible for a flexible
design of a diesel engine, with StartAngle and EGR as the
only unfixed design variables, to achieve similar performance
compared to the case where all design variables are unfixed.

V. CONCLUSIONS

The importance of flexible systems that can change their
characteristics along with the internal parameters has at-
tracted a great deal of attention. Flexible systems can adapt



TABLE I

DESIGNVARIABLES OF EXTRACTED POINTS

Extracted Points SFC NOx BoostPressure EGR Duration Angle StartAngle
6 396.312 0.000137 3.50161 0.3 36 6.39216

13 270.225 0.000378 3.65 0.3 36 -3.80392
20 229.35 0.001679 3.57903 0.3 35.5 -4.11765
27 205.126 0.008548 3.59839 0.3 35.5 -4.66667
34 175.069 0.450112 3.65 0.241935 25 -9.68627

Fig. 9. Relations of SFC and Design Variables

Fig. 10. Relations of NOx and Design Variables

to changes in the environment and be applied to a wide
variety user needs. To design flexible systems, these internal
parameters should be determined. When there are several
design parameters, multi-objective optimization problems are
solved. In this case, one of the goals is to derive the Pareto-
optimal solutions. The Pareto-optimal solutions are derived
with several design variables. However, in some cases, some
design variables do not contribute to the Pareto-optimal

solutions. As the flexibility of these variables is small, the
other variables can cover construction of the Pareto-optimal
solutions. Therefore, the flexibility of the design variables to
the optimum solution is very important. This paper illustrated
the concept of flexibility of the design variables to the
Pareto-optimal solutions. At the same time, the method for
evaluation of the flexibility of the design variables to the
optimum solutions was introduced. In the proposed method,



Fig. 11. Pareto-optimal Solutions (StartAngle, EGR)

one of the design variables is changed and the change in the
Pareto-optimal solutions is evaluated under conditions where
the rest of the design variables are fixed. In this case, the fixed
values are very important. We propose deriving these values
from the points of the Pareto-optimal solutions. In addition,
we showed that the Pareto-optimal solutions can be derived
only with the design variables whose flexibilities are high in
the diesel engine fuel emission scheduling problem.

The following items remain for future studies:� In the proposed procedure, five points scattered on the
Pareto-optimal solutions are used. Further discussion of
the number of points, their location, etc., should be
performed.� In this paper, only multi-objective optimization prob-
lems with two objectives were discussed. In future
work, we will propose an evaluation method for multi-
objective optimization problems that have more than
three objectives.

In our studies, we will introduce design systems for
flexible systems.
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