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Abstract— As there are many good optimization algorithms
each with its own characteristics, it is very difficult to choose the
best method for optimization problems. Thus, it is important
to select and apply the appropriate algorithms according to
the complexities of the problem. However, it is difficult to
solve very complicated problems with only a single algorithm,
and a hybrid optimization approach, which combines multiple
optimization algorithms, is necessary. To develop an efficient
hybrid optimization algorithm, it is necessary to determine
how the optimization process is performed. This paper focuses
on the balance between local and broad searches. Multiple
optimization methods are controlled to derive both the optimum
point and the information of the landscape. To achieve the pro-
posed optimization strategy, three distinguished optimization
algorithms are introduced: DIRECT (Dlviding RECTangles),
GAs (Genetic Algorithms), and SQP (Sequential Quadratic Pro-
gramming). To integrate these three algorithms, each algorithm,
especially DIRECT, was modified and developed. This paper
describes a new hybrid method using these three algorithms.
The performance of the proposed hybrid algorithm was exam-
ined through numerical experiments. From these experiments,
not only the optimum point but also the information of the
landscape was determined. The information of the landscape
verified the reliability of optimization results.

I. INTRODUCTION

to solve these difficulties, a hybrid optimization approach is
often used [4] [5]. Hybrid optimization algorithms consist
of multiple optimization algorithms with different features
and performances, and should provide high performance that
cannot be achieved with only a single algorithm.

In this paper, the necessity of the hybrid optimization
approach is first discussed, and then a description of how
to design hybrid optimization algorithms is given.

1. HYBRID OPTIMIZATION APPROACH

A. Strategy for Controlling the Multiple Optimization Algo-
rithms

The most important things in developing an efficient hy-
brid optimization algorithm are how the optimization process
is performed and what types of solution are required after
optimization. For example, the best solution may be required
with a reasonable convergence speed, or the promising area
or candidate solutions may be obtained after the optimization
process even if the execution time is not realistic. The desired
solutions may vary depending on the user, and it is difficult
to fulfill all demands.

Therefore, it is necessary to define the search strategy or

Various efficient optimization algorithms have been dethe required solutions before designing a hybrid optimization
veloped and used in many applications with good resultajgorithm. This is referred to here as the "optimization strat-

Sequential Quadratic Programming (SQP) [1], Genetic Algasgy” The optimization strategy determines the algorithms
rithms (GAs) [2], and Simulated Annealing (SA) [3] are well-that should be hybridized, and also provides control policies
known optimization algorithms. SQP is one of the best alggor the multiple algorithms.

rithms to solve constrained nonlinear optimization problems.

Heuristics, such as GAs and SA, are also efficient in solving. Optimization Strategy for Global Exploration

complex multimodal optimization problems. Although these Based on the discussion in the previous section, the effec-

algorithms have been applied to several types of real-worlg,e qtimization strategy for designing an efficient hybrid

problems, their performance is significantly influenced byqithm is discussed in this section. First, we focus on the
the complgxﬂy of the given problgms. For exgmple, SQ'E))roblem in application of the optimization algorithm to real-
show efficient performance for unimodal functions, Wh'l%orld problems.

GAs suffer from poor convergence. On the other hand, GAs Generally, when we solve an optimization problem, the

are effective even when the target problem has several qughdscape of the target problem is unknown. In this case,
optima. o . various optimization algorithms are applied and the land-
To solve real-world optimization problems, it is 'mportamscape of the solution space is investigated through trial and

to select the appropriate optimization algorithms according tg., Otherwise, application of strong global optimization
the complexity of the problem. However, it may be difficult,,ihods such as GAs. is expected.

to solve suc_h. problems with only a single algorithm when Although GAs are very powerful and are called "global”
the complexities of the problems are high. As one mEthOSjptimization algorithms, they are not guaranteed to search the
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. IIl. OPTIMIZATION ALGORITHMS
A. DIRECT Algorithm

DIRECT (Dlviding RECTangles) is a global optimiza-
tion algorithm to solve optimization problems with bound
constraints. The DIRECT algorithm is a modification of
Lipshitzian optimization. Classical Lipschitzian Optimization
requires an appropriate setting for the Lipshitz constant.

Fig. 1. Unexplored areas in the GA search. DIRECT does not require estimation of the Lipshitz con-

stant, and searches for optimum solutions using all possible
constants [7] [8].

Figure 1, the figure on the right shows the GA search in two- DIRECT divides the hyper-rectangles (referred to here

dimensional space, while that on the left shows the contoas "boxes”), and samples their center points. The DIRECT

plot of the target problem. From the figure, although GAalgorithm is given as follows:

obtains the global optima, unexplored areas remain after GA DIRECT algorithm —

search.

To determine whether the optimum solution exists in th _ ;
unexplored area, there is no choice but to search within this with center pointey, and evaluatef(cy).

area. Otherwise, we have to believe the results provided by 2) Until the tgrmmal criterion s sat|sf|ed, .
the GA. a) ldentify the setS of potentially optimal

boxes.
b) For each boxy € S

X Global optimum Unexplored area

1) Normalize the search space to the unit hyper-cube

To solve these problems, we propose an optimizatign
strategy for global exploration, to search the variable spage

uniformly and equally. That is, areas that cannot be searched i) Sample new points, and evaluate the
by probabilistic algorithms, such as GAs, are covered by function value at the new points.

other algorithms with features different from GAs. In thi i) Divide the box;.

approach, it is expected that we can obtain the landscape J/
information, and evaluate the reliabilities of the obtained Each operation is described in the next sections.
solutions after optimization. 1) Initialization and Division of the Hyper-cubddIRECT

begins the search by transforming the domain of the target
9roblem into the unit hyper-cube:

. L . . i QO={reR":0<x; <1} 1)

Based on the discussion in the previous section, it is
difficult to perform a search based on the proposed strategyThen, the center point of the hyper-cubgis sampled.
using only GAs. Therefore, ab optimization algorithm thaiNext, DIRECT divides this space by evaluating the function
can search the variable space more uniformly and equaMglues at the points, é¢;(i = 1, ..., n), whered is one-third
is needed. However, such a broad search may lead tte side-length of the hyper-cube, afids theith Euclidean
the requirement of a large number of function evaluation®ase-vector. Thatis, a hyper-cube is divided into three hyper-
Therefore, an algorithm that can efficiently explore the entireectangles in each dimension.
search space is required. In this research, the DIRECT opti- The sequence of the dimensions to be divided is deter-
mization algorithm [6] is used for more global explorationmined byw;, which is shown in Equation (2), and the first
DIRECT performs a global search of the variable space whilvision is performed in the dimension with the smallest
identifying promising areas.

Although DIRECT can search the variable space uniformly,,, — min{f(c; + de;), f(c1 — de;)} (i=1,...n) (2)
and equally, its features lead to convergence degradation. On_ o ) i
the other hand, GAs are faster than DIRECT with regard This operation is repeated for all dimensions on the box

to convergence speed. Therefore, if these algorithms aféith the pointc;, choosing the next dimension with the next

hybridized while preserving the characteristic features ofmnallestw;. Figure 2 illustrates the search space after the
each algorithm, an efficient hybrid optimization algorithminitial divisions. The numbers in the figure on the left of
will be developed. Figure 2 show the function values at each point. In this case,
Moreover, as GAs have trouble finding an exact solu®! — 60.0 andw, = 1.50'1;. therefore, the first division is
grformed along the direction af;.

tion aft_gr _reachmg a _global region because |_ts search a? 2) Division of the Hyper-rectangleDIRECT divides the
probabilistic, Sequential Quadratic Programming (SQP) i : T . .
yper-rectangles by performing division only in the dimen-

also hybridized with these two algorithms. SQP is among: . .
the best algorithms to solve nonlinear constrained conv gmns with the Iongest_5|de _Iength of th_e_hyper-rectang_les.
?;we sequence of the dimensions to be divided is determined

C. Optimization Algorithms Used for the Proposed Strateg

optimization problems, using gradient information. Details o _
these three algorithms (referred to here as "sub-algorithms Wi
are described in the next section. w; = man{ f(c; + die;), f(c; — diej)}, jel (3
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Fig. 2. Design variable space after the first division.
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Fig. 4. Several iterations of the DIRECT search.

« Rosenbrock function

(0. fuu = o) A@ =Y {100 —a)* + (1 - )} (5)
> i=2
distance from center point to vertices (_2048 S T S 2048)

min(f(xz)) = F(1,1,...,1) =0

function value at center point

Fig. 3. Selection of hyper-rectangles to be divided.

The Rosenbrock function is unimodal and has correla-

tion among its design variables.
wherel is set of the dimensions with the longest side length, . Rastrigin function

andé; is one-third the length of the longest side of the hyper-
rectanglei. DIRECT performs division for all dimensions in

fo2(%) 10n + zn:{a:f —10cos(2mz;)}  (6)

1.

3) Potentially Optimal BoxesDIRECT divides all of the
boxes that satisfy the definition of potentially optimal:

Definition (potentially optimal boxes
/— (P y op )ﬁ

i=1
(—4.12 < z; < 6.12)
min(f(z)) = F(0,0,...,0) =0

The Rastrigin function has lattice-shaped local optima

around the global optimum, and there is no correlation
among design variables.
Schwefel function

Let ¢ > 0 be a positive constant and let,,;, be
the current best function value. A bgxis potentially
optimal if there exists som& > 0 such that: .

) = Kd; < fle) = Kdi, Vi, and (&) f5(7) = 418.98~n—zn:xisin<\/m> )
f(cj)_de S fmin_e‘fmin| i=1
N J (=512 < z; < 640)

In Equation (4),c; is the center point of the box, and min(f(z)) = F(420.97,...,420.97) =0
d; defines a measure for this hyper-rectangle. Jones et al.
[6] used the distance from the center paintto its vertices.

Jones also recommended the value= 1.0 x 10~%. This

definition is illustrated in Figure 3. . . . . .
. . . . . There is no correlation among its design variables.
In Figure 3, the horizontal axis represents déhia Equation . . . .
These functions are two-dimensional. Figure 5 shows

(4), and the vertical axis show§c). From Figure 3, it can ) ) .

be seen that the potentially optimal boxes lie on the bottorme ;?ﬁrihDréség%{ OI( IIDHSE?; Fror? ;he flgure,ni:ct rcriln b?] d
right hand part of the convex hull of the all boxes in theooon tha explores the search space unitormiy a
graph. equally, and we can roughly grasp the landscapes of the target

. problems from the results. Therefore, the search history of
Moreover, the hyper-rectangles wiffy,;,, are not always

: . A DIRECT provides the information of the landscape.
potentially optimal. That is¢ controls the local and global
search. The DIRECT search is performed by repeating tie2 Genetic Algorithms
above operations. Several iterations of the DIRECT search Generally, in GAs, the binary representations are used as

are shown in Figure 4. representation schemes. However, for function optimization,
4) Features of the DIRECT searchlTo determine the Real-Coded GAs (RCGAs), which use real number vector
characteristics of the DIRECT search, DIRECT was appliecepresentation of chromosomes, work well for global opti-
to the following three benchmark functions—Rosenbrocknization of nonlinear functions. In RCGAs, offspring can
Rastrigin and Schwefel function: be generated by dealing directly with the parent distribution

The Schwefel function consists of a number of peaks
and valleys. It has some local optima far from the global
optimum where many search algorithms are trapped.
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Fig. 6. Offspring generation by SPX.

linear optimization problems. Here, the open source software
ADVENTURE_Opt module, developed as part of the AD-
VENTURE project [15], was used.

Fig. 5. All points sampled by DIRECT.
IV. VERIFICATION OF THEHYBRID OPTIMIZATION

ALGORITHM

in design space. Thus, various crossover operators have beeyy this section, one example of the hybrid optimization

proposed for RCGAs, some of which have been shown té’pproach using sub-algorithms—DIRECT, GA, and SQP—

have efficient search ability [9] [10] [11] [12]. is proposed, and studies to investigate its performance are
Simplex Crossover (SPX) [12] [13] [14] is one of the mOStyegeribed.

efficient crossover operators for RCGAs. trdimensional
space, SPX generates offspring in a simplex, a polyhedrgQ) Hyprid Optimization Algorithm

formed byn+1 parents. As SPX is robust for the correlation hi _ hvbrid obtimizati lqorith
among design variables or the rotation of the coordinate ' this Section, we propose a hybrid optimization algorithm

system, RCGA using the SPX operator was used for Hoat achieves the proposed strategy, and examine the effective

proposed hybrid optimization algorithm. Details of the SPyE0Ntrol of sub-algorithms. First, in the proposed hybrid opti-
method are as follows: mization algorithm, the purposes of the three sub-algorithms

SPX algorithm are summarized as follows:
4 ) DIRECT

1) Selectn+1 parentgy, ..., p, from the population « To search the variable space uniformly and equally.

by random sampling. . To identify the promising area and narrow down the
2) Calculate their center of magsas: search area.

R T GA
g= > B 8 : . . .

n+1— « To intensify the search in the promising area and
improve the accuracy of solutions.

SQP
« Fine-tuning to determine the optimal solution.

L As DIRECT can globally explore the entire search space,
re = (u(0,1))%T it is used to achieve the strategy—to explore the design
space uniformly and equally. Moreover, DIRECT defines the
"potentially optimal box” that is considered to be promising.
Therefore, we assume that DIRECT can also be used to
identify the promising area.

GA is used for more locally intensified searches than

C=1Tn + 0 (10) DIRECT, and improves the overall search performance. GA

N begins the search by utilizing the center points of the po-

Figure 6 illustrates the offspring generation by SPXtentially optimal boxes as their individuals. By this, GA can
SPX generates offspring distributed uniformly on the rangitensify the search in the promising area found by DIRECT.
illustrated in Figure 6, where is the expansion rate and a Although SQP is not efficient for multimodal functions,
positive parameter of SPX. The expansion rate has a markegpid convergence to an optimum solution is obtained using
effect on the search of SPX, and the efficient value of theghe gradient information for unimodal functions. Therefore,

3) Calculatex; andc, by:
Ty = G+ePr—9)
G = Tp—1(Zp—1 — Th + Cr—1) 9

wheree is the expansion rates > 0), a control
parameter of SPXw(0,1) is uniform random
numbere [0, 1].

4) Generate offspring by:

expansion rate = v/n + 2 is recommended [12]. SQP is used to fine-tune the solutions obtained by DIRECT
and GA. SQP begins from the best point found so far, and
C. SQP improves the best solution.

Sequential Quadratic Programming (SQP) is one of the The procedure of the proposed hybrid optimization algo-
most efficient gradient-based algorithms for constrained norithm is as follows:



Hybrid Optimization Algorithm
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z 5]
1) Perform the search by DIRECT until the terminal 5 i S }% .
criterion is satisfied. 8 I{cfelo v
. . . g -
2) ldentify the potentially op_tlmal boxes when th £ | © O‘f‘;;
DIRECT search was terminated. E v | .
3) Execute GA until the terminal criterion is satisf £ | s Box2

fied. In this, the center points of the potentiall
optimal boxes are utilized as individuals in GA.
4) Execute SQP from the elite individual in GA.

diameter (center-vertex distance) (design variable space)

Fig. 7. Box selection algorithm

N

In the proposed algorithm, the number of individuals

equals the number of potentially optimal boxes in DIRECTihe set of potentially optimal boxes, the number of boxes
because GA utilizes the center point of the potentially optipartitioned at each iteration can be reduced.

mal boxes. However, the number of potentially optimal boxes However, inadequate selection of the boxes breaks the

increases with an increase in the dimensions and iterationg,e| concepts of DIRECT. For example, if boxes with
Therefore, DIRECT must divide a large number of boxesymaller diameter (center-vertex distance) are chosen for
and so its performance becomes poor for high-dimensionglision, the DIRECT search is biased more toward local
problems [16]. In addition, as GA utilizes the center pointsmnrovement [18], while the selection of boxes with larger
an increase in the number of the potentially optimal boxegiameter biases the search toward exhaustive search.

leads to an increase in the number of the individuals of GA. Therefore, box selection should be made without breaking
]\c/_Ve(;issumedf[hat thehnumberlof _|nd|vf|d;J]als |st;jleterrr_:_|rr]1ed ‘"?”?He original search characteristics. Typical implementations
Ixed according to the complexity of the problem. ThUS, Iy iy RECT palance local and global searches by selecting

the. proposed hybrid algorithm, the numper of potentiall%oth smaller and largest boxes as potentially optimal. Thus,
optimal boxes should be adjusted according to the numbwe propose the following box selection algorithm:

of individuals. B lecti lqorith
Therefore, in Step 3), if the number of potentially optima Ox selection algorithm \

boxes is not sufficient for the GA search, randomly generated 1) |dentify the setS of potentially optimal boxes.

individuals are added. Otherwise, if the number of potentiall 2) If the number of boxes inS is larger than the

optimal boxes is greater than the number of individual prescribed parametey, . uced,

a certain number of potentially optimal boxes should b a) Select the best boy,.;, in the boxes with

selecteq for the individuals of GA. Thus, to select th the smallest diameter and the best biox,.

appropriate number of boxes, box selection rules are needed. among the boxes with the largest diametgr
One of the shortcomings of DIRECT is the lack of an obvi from S, and add them to the reduced potef

ous terminal criterion [8] [16] [17]. Although Jones’ original tially optimal SetS,cquecd.

DIRECT uses the iteration limit as the termination rule, it i b) Removej,in and jmas from S.

unsuitable for the proposed hybrid optimization algorith c) for each box; € S,

in which DIRECT should be stopped after completing th . . .

global exploration of the search space. If the iteration lim ) (?alcqlate the d'Sta.mCQ between; and

was set, we would have to appropriately adjust the lim|t _ Jmin IN design yanable space. .

to perform the global exploration. Therefore, it is necessary ) (;alcu_late the d'StafnCQ between; and

. . . o Jmaz IN design variable space.

to define the effective terminal conditions for the propose

hybrid algorithm. i) Lj = ll_+ 2 _
Thus, some modifications with respect to the box selectign  3) Sort S by L; in descending order, and selegt

rules and terminal rules were made to DIRECT in thi Nreducea DOXeS With larger.;.

study. Details of the modifications and terminal criterion ar 4) Add Nycgucea boxes selected in 3) 6, ciuced-

described in the next section.
It is also necessary to define the terminal criterion of GA. Here, the boxes with the best function value in each

Generally, in RCGA, the search is terminated by the nunfliameter are referred to as the "best boX cquceq is the

ber of function evaluations or the function value thresholumber of the selected boxes. Figure 7 illustrates the selec-

prescribed. Thus, a new terminal condition is required as #Pn procedures. In this mechanism, the smallest and largest

the case of DIRECT. The new terminal criterion of GA isPoxes in the potentially optimal set are always selected.

described in Section IV-C. Moreover, the boxes near the smallest and the largest are
o ) discarded by calculating the distanég in design variable
B. Modifications to the DIRECT Algorithm space from them. In this way, the search characteristics of the

1) Box Selection from the Potentially Optimal Sétere, original DIRECT are preserved while reducing the number
the selection mechanism of the boxes chosen for divisiarf the potentially optimal boxes, without biasing the search
is proposed. By selecting a certain number of boxes fromoward local or global search.



The number of selected box€s,.4.c.q 1S the control « Stop when the function value is less thaor3.
parameter for reduction level. If the number of potentially Ga
optimal boxes is smaller thaiwV,..q...q, the selection al-
gorithm is not applied. As DIRECT is switched to GA,
the number of potentially optimal boxes at the end of the
DIRECT search corresponds to the number of individuals

« Stop when the spread of the individuals in design space
is less than Rypper — Riower) X 1073,
« Stop when the function value is less th&dr*.

in GA. Thus, N,cquceqa Should be determined based on the SQP (k1) (k)
number of individuals in GA. « Stop when the value ggk(: x —x%)) has reached
2) Terminal Criterion: To perform efficient switching to the tolerance valug0™.

GA, a new terminal criterion is proposed. In the proposed ¢ StOP whenl000 iterations have been reached.

hybrid optimization algorithm, only a certain depth of the To illustrate the effectiveness of the proposed hybrid op-

design space exploration is required because DIRECT is rfghization approach, the proposed algorithm was compared

used to obtain the global optima, but is used only for globdP the search using only GA in 30 runs. The search using

exploration of the solution space. only GA was repeated until the function value was less than
Therefore, we utilize a new terminal criterion—the longest0—°. In addition, if GA could not obtain the optimum in

side length of the best potentially optimal box. The "best0° function evaluations, the search was terminated.

potentially optimal box” is that with the best function value In DIRECT, the number of selected box&%.quyccq is set

in the potentially optimal set. In this criterion, DIRECTto 100. That is, the number of individuals in GA becomes

is terminated when the longest side length of the be#ie same value.

potentially optimal b_ox is less than the prescribed t_oleran " Results and Discussion

value. We can easily set the tolerance and terminate the ] )

DIRECT search at the required level of exploration, because TaPle | shows the function value when each sub-algorithm

the longest side length of the box represents the degree ¥#S terminated, and also shows the function value obtained

exploration. by the search using only GA. The function value of the hy-
. o brid optimization algorithm was equal to that of SQP because
C. New Terminal Criterion for GA SQP improves the best solution found so far. Moreover, Table

In the proposed hybrid optimization algorithm, as the locdl also shows the number of function evaluations.
search is performed by SQP, it is not necessary for GA to As shown in Table I, for the Rosenbrock function and
make local improvements. Similar to DIRECT, only a certaithe Schwefel function, the hybrid optimization algorithm
depth of design space exploration is required. Thus, we defiegtained the optimum. In addition, Table Il shows that the
the "spread of individuals in design variable space” and ugeoposed hybrid algorithm can derive the optimum with
this as the terminal criterion. lower function evaluations than the GA-only search. SQP
The spread of individuals in design variable space corrvas successful in improving the solutions obtained in the
sponds to the distance from the individual with the minimun$A search, and obtained the global optima with less function
design variable to that with the maximum: evaluations.
. ) On the other hand, for the Rastrigin function, the proposed
di = max(z;) — min(z;) (i=1,...,n) (1) hybrid algorithm could not obtain the optimum. In the
If d; is smaller than the threshold in all dimensions, GAProposed algorithm, GA could not intensify the search in
is terminated because this means that the population of GA€ promising area because the potentially optimal boxes
converges. We can easily determine the threshold accordiftft were identified when the DIRECT search was terminated

to the required level of exploration. converged to the local optimum. Moreover, for the Rastrigin
function, SQP failed to line search, so that it could not
V. NUMERICAL EXPERIMENTS improve the best solution. The Rastrigin function has lattice-

In this section, we describe application of the proposeshaped local optima around the global optimum, and a local
hybrid optimization algorithm to the benchmark problem andptimum exists near the center point of the search space.
discuss its efficiency. Therefore, as DIRECT samples the center point first, it
explored near the center point and converged to the local
optimum. Thus, the performance of the proposed approach

The search of the hybrid optimization algorithm was comwas not efficient for the functions with the local optima near
pared with the search using only GA through the Rosenbrogke center of the search space.
function, the Rastrigin function and the Schwefel function. However, our purpose was not to obtain the optimum' but
The dimensions of the problems were set to 10. The param cover the search space and to provide the information of
eters for the terminal criterion of each sub-algorithm werehe landscape. Therefore, to determine whether the proposed
set as follows: optimization strategy—to search the design space uniformly

DIRECT and equally—was achieved by the hybrid approach, the

« Stop when the longest side length of the best potentiallyistories in design variable space of the DIRECT and GA

optimal box is less tham0=3. search in the hybrid algorithm and the search by GA only

A. Experimental Setup



TABLE |

the results of the hybrid optimization represents the long
FUNCTION VALUE OF THE OBTAINED SOLUTION IN EACH ALGORITHM.

narrow ridge of Rosenbrock. Especially, for the Schwefel

#value DIRECT GA SQP GA function, the multimodal landscape can be grasped from
(Hybrid) | (single) the hybrid optimization result. For the Rastrigin function,

T AVG 120E+00 8.10E-05 1.54E-05 5.45E-05 : : . .

St. Dev. | 0.00E+00 1.44E-05 1.41E-05 2.08E-04  although the hybrid algorithm could not obtain the optimum,
fa AVG 9.09E+00 3.02E+00 3.02E+0p 2.02E+00  the approximated landscape provides the rough information
, ibGDeV- 03-%025;8‘23 21-‘1195;82 25-%15'5;8; é-gé?gg of the entire search space. On the other hand, the landscape
3 . - . - . - . + .

St Dev. | 0.00E+00 111E-04 344E-08 1.82E+02  @pproximated from the GA results was shallow, and was

almost unimodal on all functions. Especially for the Schwefel
function, it was obvious that GA could not provide the
information of the local optima near the bounds. These
observations indicate that GA cannot provide information
for the entire space. These results showed that the proposed
hybrid optimization approach provides information of the

AVG: Average of 30 runs
f1: Rosenbrock f2: Rastrigin, f3: Schwefel

TABLE I
NUMBER OF FUNCTION EVALUATIONS OF EACH ALGORITHM

#eval DIRECT GA  SQP Hybrid| GA .
7 NG 55479 85953 Q53 1)(')8 785 192373 entire search space, apd we can roughly grasp the landscape
St. Dev. 0 10361 8 10362 47584 of the problem. In this way, we can easily evaluate the
f2 AVG 475 163107 45 163627 245167 reliability of the obtained solution.
St. Dev. 0 25626 17 25630, 28403
f3 AVG 13529 111857 46 125432 279703 V| CONCLUS|ONS
St. Dev. 0 6376 12 6378| 22402

AVG: Average of 30 runs
f1: Rosenbrock f2: Rastrigin, f3: Schwefel

This paper described how to design hybrid optimization
algorithms and also proposed a new hybrid optimization
algorithm. In constructing hybrid optimization algorithms, it
Ij1s_ important to define the optimization strategy—how the

are shown in Figure 8. In these figures, the histories in te timization pr hould b formed. or what t
dimensional variable space for the Schwefel function argP ation process shou € pertormed, or what types
f solution are required. One of the major contributions of

projected into two-dimensional space. Although there art is research is the proposal of an optimization strate
45 plots, only a typical exampler{, x5 plane) is shown in prop P v

Figure 8. Here, the global optima of the Schwefel functiortl0 search the design space uniformly and equally. From this

is (21, ..., a10) = (420.97, ... 420.97). ftratﬁ?y, r;\fter ;Ee Io;::}t:jmum soI;Jtt|rc1)n tlsrdetrM:dE)Ithri us:(; ch
Figure 8 shows that the hybrid algorithm performs gIoba\I/%L:i?y t);]g ?eslgbilﬁya:)f tf](e::agpe)ti(r)niza?ioi ?:surl)tso €m, and also
exploration, and detects not only the global optimum, but also Moreover, based on the proposed strategy, a hybrid op-

the local optimum. On the other hand, the GA-only Searcg;nization algorithm using DIRECT, GA, and SOP was

failed to reach the global optimum and could not detect an . i . . .

local optima. That is, in the hybrid algorithm, DIRECT cov- roposed a_nd its effectiveness was mveshgated. To integrate

ered the unexplored area where GA could not explore. Fro ese a'gof'Fth’ DIRECT.wa§ modl|f|eq to reduce the num-
8" of partitions. The termination criteria of each algorithm

were also discussed. Through numerical experiments, the

proposed hybrid algorithm was shown to have efficient

C. Usage of the Search Results of Hybrid Optimization performance, and to provide the information of the landscape.

To show that the proposed hybrid optimization approach AS future work, to verify its efficiency, it will be neces-
provides the information of the landscape, we discuss &Y 0 apply the proposed algorithm to various benchmark
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