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Abstract— As there are many good optimization algorithms
each with its own characteristics, it is very difficult to choose the
best method for optimization problems. Thus, it is important
to select and apply the appropriate algorithms according to
the complexities of the problem. However, it is difficult to
solve very complicated problems with only a single algorithm,
and a hybrid optimization approach, which combines multiple
optimization algorithms, is necessary. To develop an efficient
hybrid optimization algorithm, it is necessary to determine
how the optimization process is performed. This paper focuses
on the balance between local and broad searches. Multiple
optimization methods are controlled to derive both the optimum
point and the information of the landscape. To achieve the pro-
posed optimization strategy, three distinguished optimization
algorithms are introduced: DIRECT (DIviding RECTangles),
GAs (Genetic Algorithms), and SQP (Sequential Quadratic Pro-
gramming). To integrate these three algorithms, each algorithm,
especially DIRECT, was modified and developed. This paper
describes a new hybrid method using these three algorithms.
The performance of the proposed hybrid algorithm was exam-
ined through numerical experiments. From these experiments,
not only the optimum point but also the information of the
landscape was determined. The information of the landscape
verified the reliability of optimization results.

I. I NTRODUCTION

Various efficient optimization algorithms have been de-
veloped and used in many applications with good results.
Sequential Quadratic Programming (SQP) [1], Genetic Algo-
rithms (GAs) [2], and Simulated Annealing (SA) [3] are well-
known optimization algorithms. SQP is one of the best algo-
rithms to solve constrained nonlinear optimization problems.
Heuristics, such as GAs and SA, are also efficient in solving
complex multimodal optimization problems. Although these
algorithms have been applied to several types of real-world
problems, their performance is significantly influenced by
the complexity of the given problems. For example, SQP
show efficient performance for unimodal functions, while
GAs suffer from poor convergence. On the other hand, GAs
are effective even when the target problem has several local
optima.

To solve real-world optimization problems, it is important
to select the appropriate optimization algorithms according to
the complexity of the problem. However, it may be difficult
to solve such problems with only a single algorithm when
the complexities of the problems are high. As one method
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to solve these difficulties, a hybrid optimization approach is
often used [4] [5]. Hybrid optimization algorithms consist
of multiple optimization algorithms with different features
and performances, and should provide high performance that
cannot be achieved with only a single algorithm.

In this paper, the necessity of the hybrid optimization
approach is first discussed, and then a description of how
to design hybrid optimization algorithms is given.

II. H YBRID OPTIMIZATION APPROACH

A. Strategy for Controlling the Multiple Optimization Algo-
rithms

The most important things in developing an efficient hy-
brid optimization algorithm are how the optimization process
is performed and what types of solution are required after
optimization. For example, the best solution may be required
with a reasonable convergence speed, or the promising area
or candidate solutions may be obtained after the optimization
process even if the execution time is not realistic. The desired
solutions may vary depending on the user, and it is difficult
to fulfill all demands.

Therefore, it is necessary to define the search strategy or
the required solutions before designing a hybrid optimization
algorithm. This is referred to here as the ”optimization strat-
egy.” The optimization strategy determines the algorithms
that should be hybridized, and also provides control policies
for the multiple algorithms.

B. Optimization Strategy for Global Exploration

Based on the discussion in the previous section, the effec-
tive optimization strategy for designing an efficient hybrid
algorithm is discussed in this section. First, we focus on the
problem in application of the optimization algorithm to real-
world problems.

Generally, when we solve an optimization problem, the
landscape of the target problem is unknown. In this case,
various optimization algorithms are applied and the land-
scape of the solution space is investigated through trial and
error. Otherwise, application of strong global optimization
methods, such as GAs, is expected.

Although GAs are very powerful and are called ”global”
optimization algorithms, they are not guaranteed to search the
variable space uniformly and equally because their search
is probabilistic. That is, as GAs do not necessarily cover
the entire search space, unexplored areas may remain in the
search results. Thus, there is significant doubt whether the
solutions obtained by GAs represent the global optima. In



Fig. 1. Unexplored areas in the GA search.

Figure 1, the figure on the right shows the GA search in two-
dimensional space, while that on the left shows the contour
plot of the target problem. From the figure, although GA
obtains the global optima, unexplored areas remain after GA
search.

To determine whether the optimum solution exists in the
unexplored area, there is no choice but to search within this
area. Otherwise, we have to believe the results provided by
the GA.

To solve these problems, we propose an optimization
strategy for global exploration, to search the variable space
uniformly and equally. That is, areas that cannot be searched
by probabilistic algorithms, such as GAs, are covered by
other algorithms with features different from GAs. In this
approach, it is expected that we can obtain the landscape
information, and evaluate the reliabilities of the obtained
solutions after optimization.

C. Optimization Algorithms Used for the Proposed Strategy

Based on the discussion in the previous section, it is
difficult to perform a search based on the proposed strategy
using only GAs. Therefore, ab optimization algorithm that
can search the variable space more uniformly and equally
is needed. However, such a broad search may lead to
the requirement of a large number of function evaluations.
Therefore, an algorithm that can efficiently explore the entire
search space is required. In this research, the DIRECT opti-
mization algorithm [6] is used for more global exploration.
DIRECT performs a global search of the variable space while
identifying promising areas.

Although DIRECT can search the variable space uniformly
and equally, its features lead to convergence degradation. On
the other hand, GAs are faster than DIRECT with regard
to convergence speed. Therefore, if these algorithms are
hybridized while preserving the characteristic features of
each algorithm, an efficient hybrid optimization algorithm
will be developed.

Moreover, as GAs have trouble finding an exact solu-
tion after reaching a global region because its search are
probabilistic, Sequential Quadratic Programming (SQP) is
also hybridized with these two algorithms. SQP is among
the best algorithms to solve nonlinear constrained convex
optimization problems, using gradient information. Details of
these three algorithms (referred to here as ”sub-algorithms”)
are described in the next section.

III. O PTIMIZATION ALGORITHMS

A. DIRECT Algorithm

DIRECT (DIviding RECTangles) is a global optimiza-
tion algorithm to solve optimization problems with bound
constraints. The DIRECT algorithm is a modification of
Lipshitzian optimization. Classical Lipschitzian Optimization
requires an appropriate setting for the Lipshitz constant.
DIRECT does not require estimation of the Lipshitz con-
stant, and searches for optimum solutions using all possible
constants [7] [8].

DIRECT divides the hyper-rectangles (referred to here
as ”boxes”), and samples their center points. The DIRECT
algorithm is given as follows:

DIRECT algorithm¶ ³

1) Normalize the search space to the unit hyper-cube
with center pointc1, and evaluatef(c1).

2) Until the terminal criterion is satisfied,

a) Identify the set S of potentially optimal
boxes.

b) For each boxj ∈ S

i) Sample new points, and evaluate the
function value at the new points.

ii) Divide the boxj.
µ ´

Each operation is described in the next sections.
1) Initialization and Division of the Hyper-cube:DIRECT

begins the search by transforming the domain of the target
problem into the unit hyper-cube:

Ω̄ = {x ∈ Rn : 0 ≤ xi ≤ 1} (1)

Then, the center point of the hyper-cubec1 is sampled.
Next, DIRECT divides this space by evaluating the function
values at the pointsc1±δ~ei(i = 1, ..., n), whereδ is one-third
the side-length of the hyper-cube, and~ei is theith Euclidean
base-vector. That is, a hyper-cube is divided into three hyper-
rectangles in each dimension.

The sequence of the dimensions to be divided is deter-
mined bywi, which is shown in Equation (2), and the first
division is performed in the dimension with the smallestwi.

wi = min{f(c1 + δei), f(c1 − δei)} (i = 1, ..., n) (2)

This operation is repeated for all dimensions on the box
with the pointc1, choosing the next dimension with the next
smallestwi. Figure 2 illustrates the search space after the
initial divisions. The numbers in the figure on the left of
Figure 2 show the function values at each point. In this case,
w1 = 60.0 and w2 = 150.1; therefore, the first division is
performed along the direction ofx1.

2) Division of the Hyper-rectangles:DIRECT divides the
hyper-rectangles by performing division only in the dimen-
sions with the longest side length of the hyper-rectangles.
The sequence of the dimensions to be divided is determined
by wj :

wj = min{f(ci + δiej), f(ci − δiej)}, j ∈ I (3)



Fig. 2. Design variable space after the first division.

Fig. 3. Selection of hyper-rectangles to be divided.

whereI is set of the dimensions with the longest side length,
andδi is one-third the length of the longest side of the hyper-
rectanglei. DIRECT performs division for all dimensions in
I.

3) Potentially Optimal Boxes:DIRECT divides all of the
boxes that satisfy the definition of potentially optimal:

Definition (potentially optimal boxes)¶ ³

Let ε > 0 be a positive constant and letfmin be
the current best function value. A boxj is potentially
optimal if there exists somêK > 0 such that:

f(cj)− K̂dj ≤ f(ci)− K̂di, ∀i, and (4)

f(cj)− K̂dj ≤ fmin − ε|fmin|
µ ´

In Equation (4),cj is the center point of the boxj, and
dj defines a measure for this hyper-rectangle. Jones et al.
[6] used the distance from the center pointcj to its vertices.
Jones also recommended the valueε = 1.0 × 10−4. This
definition is illustrated in Figure 3.

In Figure 3, the horizontal axis represents thed in Equation
(4), and the vertical axis showsf(c). From Figure 3, it can
be seen that the potentially optimal boxes lie on the bottom,
right hand part of the convex hull of the all boxes in the
graph.

Moreover, the hyper-rectangles withfmin are not always
potentially optimal. That is,ε controls the local and global
search. The DIRECT search is performed by repeating the
above operations. Several iterations of the DIRECT search
are shown in Figure 4.

4) Features of the DIRECT search:To determine the
characteristics of the DIRECT search, DIRECT was applied
to the following three benchmark functions—Rosenbrock,
Rastrigin and Schwefel function:

Fig. 4. Several iterations of the DIRECT search.

• Rosenbrock function

f1(~x) =
n∑

i=2

{
100(x1 − x2

i )
2 + (1− xi)2

}
(5)

(−2.048 ≤ xi ≤ 2.048)
min(f(x)) = F (1, 1, . . . , 1) = 0

The Rosenbrock function is unimodal and has correla-
tion among its design variables.

• Rastrigin function

f2(~x) = 10n +
n∑

i=1

{
x2

i − 10 cos(2πxi)
}

(6)

(−4.12 ≤ xi ≤ 6.12)
min(f(x)) = F (0, 0, . . . , 0) = 0

The Rastrigin function has lattice-shaped local optima
around the global optimum, and there is no correlation
among design variables.

• Schwefel function

f3(~x) = 418.98 · n−
n∑

i=1

xi sin
(√

|xi|
)

(7)

(−512 ≤ xi ≤ 640)
min(f(x)) = F (420.97, . . . , 420.97) = 0

The Schwefel function consists of a number of peaks
and valleys. It has some local optima far from the global
optimum where many search algorithms are trapped.
There is no correlation among its design variables.

These functions are two-dimensional. Figure 5 shows
the search history of DIRECT. From the figure, it can be
seen that DIRECT explores the search space uniformly and
equally, and we can roughly grasp the landscapes of the target
problems from the results. Therefore, the search history of
DIRECT provides the information of the landscape.

B. Genetic Algorithms

Generally, in GAs, the binary representations are used as
representation schemes. However, for function optimization,
Real-Coded GAs (RCGAs), which use real number vector
representation of chromosomes, work well for global opti-
mization of nonlinear functions. In RCGAs, offspring can
be generated by dealing directly with the parent distribution



Fig. 5. All points sampled by DIRECT.

in design space. Thus, various crossover operators have been
proposed for RCGAs, some of which have been shown to
have efficient search ability [9] [10] [11] [12].

Simplex Crossover (SPX) [12] [13] [14] is one of the most
efficient crossover operators for RCGAs. Inn-dimensional
space, SPX generates offspring in a simplex, a polyhedron
formed byn+1 parents. As SPX is robust for the correlation
among design variables or the rotation of the coordinate
system, RCGA using the SPX operator was used for the
proposed hybrid optimization algorithm. Details of the SPX
method are as follows:

SPX algorithm¶ ³

1) Selectn+1 parents~p0, ..., ~pn from the population
by random sampling.

2) Calculate their center of mass~g as:

~g =
1

n + 1

n∑

i=0

~pi (8)

3) Calculate~xk and~ck by:

~xk = ~g + ε(~pk − ~g)
~ck = rk−1(~xk−1 − ~xk + ~ck−1) (9)

rk = (u(0, 1))
1

k+1

where ε is the expansion rate (ε > 0), a control
parameter of SPX.u(0, 1) is uniform random
number∈ [0, 1].

4) Generate offspring~c by:

~c = ~xn + ~cn (10)
µ ´

Figure 6 illustrates the offspring generation by SPX.
SPX generates offspring distributed uniformly on the range
illustrated in Figure 6, whereε is the expansion rate and a
positive parameter of SPX. The expansion rate has a marked
effect on the search of SPX, and the efficient value of the
expansion rateε =

√
n + 2 is recommended [12].

C. SQP

Sequential Quadratic Programming (SQP) is one of the
most efficient gradient-based algorithms for constrained non-

Fig. 6. Offspring generation by SPX.

linear optimization problems. Here, the open source software
ADVENTURE Opt module, developed as part of the AD-
VENTURE project [15], was used.

IV. V ERIFICATION OF THEHYBRID OPTIMIZATION

ALGORITHM

In this section, one example of the hybrid optimization
approach using sub-algorithms—DIRECT, GA, and SQP—
is proposed, and studies to investigate its performance are
described.

A. Hybrid Optimization Algorithm

In this section, we propose a hybrid optimization algorithm
that achieves the proposed strategy, and examine the effective
control of sub-algorithms. First, in the proposed hybrid opti-
mization algorithm, the purposes of the three sub-algorithms
are summarized as follows:

DIRECT

• To search the variable space uniformly and equally.
• To identify the promising area and narrow down the

search area.

GA

• To intensify the search in the promising area and
improve the accuracy of solutions.

SQP

• Fine-tuning to determine the optimal solution.

As DIRECT can globally explore the entire search space,
it is used to achieve the strategy—to explore the design
space uniformly and equally. Moreover, DIRECT defines the
”potentially optimal box” that is considered to be promising.
Therefore, we assume that DIRECT can also be used to
identify the promising area.

GA is used for more locally intensified searches than
DIRECT, and improves the overall search performance. GA
begins the search by utilizing the center points of the po-
tentially optimal boxes as their individuals. By this, GA can
intensify the search in the promising area found by DIRECT.

Although SQP is not efficient for multimodal functions,
rapid convergence to an optimum solution is obtained using
the gradient information for unimodal functions. Therefore,
SQP is used to fine-tune the solutions obtained by DIRECT
and GA. SQP begins from the best point found so far, and
improves the best solution.

The procedure of the proposed hybrid optimization algo-
rithm is as follows:



Hybrid Optimization Algorithm¶ ³

1) Perform the search by DIRECT until the terminal
criterion is satisfied.

2) Identify the potentially optimal boxes when the
DIRECT search was terminated.

3) Execute GA until the terminal criterion is satis-
fied. In this, the center points of the potentially
optimal boxes are utilized as individuals in GA.

4) Execute SQP from the elite individual in GA.
µ ´

In the proposed algorithm, the number of individuals
equals the number of potentially optimal boxes in DIRECT,
because GA utilizes the center point of the potentially opti-
mal boxes. However, the number of potentially optimal boxes
increases with an increase in the dimensions and iterations.
Therefore, DIRECT must divide a large number of boxes,
and so its performance becomes poor for high-dimensional
problems [16]. In addition, as GA utilizes the center points,
an increase in the number of the potentially optimal boxes
leads to an increase in the number of the individuals of GA.
We assume that the number of individuals is determined and
fixed according to the complexity of the problem. Thus, in
the proposed hybrid algorithm, the number of potentially
optimal boxes should be adjusted according to the number
of individuals.

Therefore, in Step 3), if the number of potentially optimal
boxes is not sufficient for the GA search, randomly generated
individuals are added. Otherwise, if the number of potentially
optimal boxes is greater than the number of individuals,
a certain number of potentially optimal boxes should be
selected for the individuals of GA. Thus, to select the
appropriate number of boxes, box selection rules are needed.

One of the shortcomings of DIRECT is the lack of an obvi-
ous terminal criterion [8] [16] [17]. Although Jones’ original
DIRECT uses the iteration limit as the termination rule, it is
unsuitable for the proposed hybrid optimization algorithm,
in which DIRECT should be stopped after completing the
global exploration of the search space. If the iteration limit
was set, we would have to appropriately adjust the limit
to perform the global exploration. Therefore, it is necessary
to define the effective terminal conditions for the proposed
hybrid algorithm.

Thus, some modifications with respect to the box selection
rules and terminal rules were made to DIRECT in this
study. Details of the modifications and terminal criterion are
described in the next section.

It is also necessary to define the terminal criterion of GA.
Generally, in RCGA, the search is terminated by the num-
ber of function evaluations or the function value threshold
prescribed. Thus, a new terminal condition is required as in
the case of DIRECT. The new terminal criterion of GA is
described in Section IV-C.

B. Modifications to the DIRECT Algorithm

1) Box Selection from the Potentially Optimal Set:Here,
the selection mechanism of the boxes chosen for division
is proposed. By selecting a certain number of boxes from

Fig. 7. Box selection algorithm

the set of potentially optimal boxes, the number of boxes
partitioned at each iteration can be reduced.

However, inadequate selection of the boxes breaks the
novel concepts of DIRECT. For example, if boxes with
smaller diameter (center-vertex distance) are chosen for
division, the DIRECT search is biased more toward local
improvement [18], while the selection of boxes with larger
diameter biases the search toward exhaustive search.

Therefore, box selection should be made without breaking
the original search characteristics. Typical implementations
of DIRECT balance local and global searches by selecting
both smaller and largest boxes as potentially optimal. Thus,
we propose the following box selection algorithm:

Box selection algorithm¶ ³

1) Identify the setS of potentially optimal boxes.
2) If the number of boxes inS is larger than the

prescribed parameterNreduced,

a) Select the best boxjmin in the boxes with
the smallest diameter and the best boxjmax

among the boxes with the largest diameter
from S, and add them to the reduced poten-
tially optimal setSreduced.

b) Removejmin and jmax from S.
c) for each boxj ∈ S,

i) Calculate the distancel1 betweenj and
jmin in design variable space.

ii) Calculate the distancel2 betweenj and
jmax in design variable space.

iii) Lj = l1 + l2

3) Sort S by Lj in descending order, and select
Nreduced boxes with largerLj .

4) Add Nreduced boxes selected in 3) toSreduced.
µ ´

Here, the boxes with the best function value in each
diameter are referred to as the ”best box.”Nreduced is the
number of the selected boxes. Figure 7 illustrates the selec-
tion procedures. In this mechanism, the smallest and largest
boxes in the potentially optimal set are always selected.
Moreover, the boxes near the smallest and the largest are
discarded by calculating the distanceLj in design variable
space from them. In this way, the search characteristics of the
original DIRECT are preserved while reducing the number
of the potentially optimal boxes, without biasing the search
toward local or global search.



The number of selected boxesNreduced is the control
parameter for reduction level. If the number of potentially
optimal boxes is smaller thanNreduced, the selection al-
gorithm is not applied. As DIRECT is switched to GA,
the number of potentially optimal boxes at the end of the
DIRECT search corresponds to the number of individuals
in GA. Thus,Nreduced should be determined based on the
number of individuals in GA.

2) Terminal Criterion: To perform efficient switching to
GA, a new terminal criterion is proposed. In the proposed
hybrid optimization algorithm, only a certain depth of the
design space exploration is required because DIRECT is not
used to obtain the global optima, but is used only for global
exploration of the solution space.

Therefore, we utilize a new terminal criterion—the longest
side length of the best potentially optimal box. The ”best
potentially optimal box” is that with the best function value
in the potentially optimal set. In this criterion, DIRECT
is terminated when the longest side length of the best
potentially optimal box is less than the prescribed tolerance
value. We can easily set the tolerance and terminate the
DIRECT search at the required level of exploration, because
the longest side length of the box represents the degree of
exploration.

C. New Terminal Criterion for GA

In the proposed hybrid optimization algorithm, as the local
search is performed by SQP, it is not necessary for GA to
make local improvements. Similar to DIRECT, only a certain
depth of design space exploration is required. Thus, we define
the ”spread of individuals in design variable space” and use
this as the terminal criterion.

The spread of individuals in design variable space corre-
sponds to the distance from the individual with the minimum
design variable to that with the maximum:

di = max(xi)−min(xi) (i = 1, . . . , n) (11)

If di is smaller than the threshold in all dimensions, GA
is terminated because this means that the population of GA
converges. We can easily determine the threshold according
to the required level of exploration.

V. NUMERICAL EXPERIMENTS

In this section, we describe application of the proposed
hybrid optimization algorithm to the benchmark problem and
discuss its efficiency.

A. Experimental Setup

The search of the hybrid optimization algorithm was com-
pared with the search using only GA through the Rosenbrock
function, the Rastrigin function and the Schwefel function.
The dimensions of the problems were set to 10. The param-
eters for the terminal criterion of each sub-algorithm were
set as follows:

DIRECT
• Stop when the longest side length of the best potentially

optimal box is less than10−3.

• Stop when the function value is less than10−3.

GA
• Stop when the spread of the individuals in design space

is less than(Rupper −Rlower)× 10−3.
• Stop when the function value is less than10−4.

SQP
• Stop when the value ofpk(= x(k+1)−x(k)) has reached

the tolerance value10−3.
• Stop when1000 iterations have been reached.

To illustrate the effectiveness of the proposed hybrid op-
timization approach, the proposed algorithm was compared
to the search using only GA in 30 runs. The search using
only GA was repeated until the function value was less than
10−6. In addition, if GA could not obtain the optimum in
106 function evaluations, the search was terminated.

In DIRECT, the number of selected boxesNreduced is set
to 100. That is, the number of individuals in GA becomes
the same value.

B. Results and Discussion

Table I shows the function value when each sub-algorithm
was terminated, and also shows the function value obtained
by the search using only GA. The function value of the hy-
brid optimization algorithm was equal to that of SQP because
SQP improves the best solution found so far. Moreover, Table
II also shows the number of function evaluations.

As shown in Table I, for the Rosenbrock function and
the Schwefel function, the hybrid optimization algorithm
obtained the optimum. In addition, Table II shows that the
proposed hybrid algorithm can derive the optimum with
lower function evaluations than the GA-only search. SQP
was successful in improving the solutions obtained in the
GA search, and obtained the global optima with less function
evaluations.

On the other hand, for the Rastrigin function, the proposed
hybrid algorithm could not obtain the optimum. In the
proposed algorithm, GA could not intensify the search in
the promising area because the potentially optimal boxes
that were identified when the DIRECT search was terminated
converged to the local optimum. Moreover, for the Rastrigin
function, SQP failed to line search, so that it could not
improve the best solution. The Rastrigin function has lattice-
shaped local optima around the global optimum, and a local
optimum exists near the center point of the search space.
Therefore, as DIRECT samples the center point first, it
explored near the center point and converged to the local
optimum. Thus, the performance of the proposed approach
was not efficient for the functions with the local optima near
the center of the search space.

However, our purpose was not to obtain the optimum, but
to cover the search space and to provide the information of
the landscape. Therefore, to determine whether the proposed
optimization strategy—to search the design space uniformly
and equally—was achieved by the hybrid approach, the
histories in design variable space of the DIRECT and GA
search in the hybrid algorithm and the search by GA only



TABLE I

FUNCTION VALUE OF THE OBTAINED SOLUTION IN EACH ALGORITHM.

#value DIRECT GA SQP GA
(Hybrid) (single)

f1 AVG 1.20E+00 8.10E-05 1.54E-05 5.45E-05
St. Dev. 0.00E+00 1.44E-05 1.41E-05 2.08E-04

f2 AVG 9.99E+00 3.02E+00 3.02E+00 2.02E+00
St. Dev. 0.00E+00 2.01E+00 2.01E+00 1.01E+00

f3 AVG 3.52E-02 1.49E-04 5.05E-08 5.58E+02
St. Dev. 0.00E+00 1.11E-04 3.44E-08 1.82E+02

AVG: Average of 30 runs
f1: Rosenbrock,f2: Rastrigin,f3: Schwefel

TABLE II

NUMBER OF FUNCTION EVALUATIONS OF EACH ALGORITHM.

#eval DIRECT GA SQP Hybrid GA
f1 AVG 22479 85953 53 108485 192323

St. Dev. 0 10361 8 10362 47584
f2 AVG 475 163107 45 163627 245167

St. Dev. 0 25626 17 25630 28403
f3 AVG 13529 111857 46 125432 279703

St. Dev. 0 6376 12 6378 22402
AVG: Average of 30 runs

f1: Rosenbrock,f2: Rastrigin,f3: Schwefel

are shown in Figure 8. In these figures, the histories in ten-
dimensional variable space for the Schwefel function are
projected into two-dimensional space. Although there are
45 plots, only a typical example (x2, x5 plane) is shown in
Figure 8. Here, the global optima of the Schwefel function
is (x1, . . . , x10) = (420.97, . . . , 420.97).

Figure 8 shows that the hybrid algorithm performs global
exploration, and detects not only the global optimum, but also
the local optimum. On the other hand, the GA-only search
failed to reach the global optimum and could not detect any
local optima. That is, in the hybrid algorithm, DIRECT cov-
ered the unexplored area where GA could not explore. From
the experimental results, the effectiveness of the proposed
hybrid optimization approach was demonstrated.

C. Usage of the Search Results of Hybrid Optimization

To show that the proposed hybrid optimization approach
provides the information of the landscape, we discuss the
usage of the search results of the proposed algorithm.

If the proposed algorithm provides the information of the
landscape, the landscape can be roughly understood from the
search results. To verify this, we attempted to fit the search
results by DIRECT and GAs in the proposed algorithm
on each benchmark function to the following polynomial
function:

f(x1, x2) =
4∑

i=0

i∑

j=0

aijx1
i−jx2

j (12)

The parameteraij is determined by least-squares fitting.
We assume that the landscape of the problem can be roughly
approximated by the fitting function. Fitting is made on two
design variables (x1, x2).

Figure 9 shows the results of fitting. For the Rosenbrock
function, it can be seen that the landscape approximated from

the results of the hybrid optimization represents the long
narrow ridge of Rosenbrock. Especially, for the Schwefel
function, the multimodal landscape can be grasped from
the hybrid optimization result. For the Rastrigin function,
although the hybrid algorithm could not obtain the optimum,
the approximated landscape provides the rough information
of the entire search space. On the other hand, the landscape
approximated from the GA results was shallow, and was
almost unimodal on all functions. Especially for the Schwefel
function, it was obvious that GA could not provide the
information of the local optima near the bounds. These
observations indicate that GA cannot provide information
for the entire space. These results showed that the proposed
hybrid optimization approach provides information of the
entire search space, and we can roughly grasp the landscape
of the problem. In this way, we can easily evaluate the
reliability of the obtained solution.

VI. CONCLUSIONS

This paper described how to design hybrid optimization
algorithms and also proposed a new hybrid optimization
algorithm. In constructing hybrid optimization algorithms, it
is important to define the optimization strategy—how the
optimization process should be performed, or what types
of solution are required. One of the major contributions of
this research is the proposal of an optimization strategy—
to search the design space uniformly and equally. From this
strategy, after the optimum solution is derived, the user can
roughly grasp the landscape of the target problem, and also
verify the reliability of the optimization results.

Moreover, based on the proposed strategy, a hybrid op-
timization algorithm using DIRECT, GA, and SQP was
proposed and its effectiveness was investigated. To integrate
these algorithms, DIRECT was modified to reduce the num-
ber of partitions. The termination criteria of each algorithm
were also discussed. Through numerical experiments, the
proposed hybrid algorithm was shown to have efficient
performance, and to provide the information of the landscape.

As future work, to verify its efficiency, it will be neces-
sary to apply the proposed algorithm to various benchmark
functions and real-world problems.
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