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Abstract Genetic algorithms (GAs) for structure topology optimization problems (STOPs) have been 
developed in recently because GAs are flexible and effective to be applied to various complicated 
engineering problems. A stress-based crossover (SX) operator [1] for continuous STOPs was proposed to 
suppress the “checkerboard” pattern and disconnection phenomena, which are common for simple GA for 
STOPs. Here, this SX operator was improved and the details are described. Different generation models 
were adopted to verify the effectiveness of this operator. For GA to multi-constrained STOPs, how to 
define fitness function is always an important consideration because the fitness value determines which 
individuals maybe transmitted to the next generation. The fitness function used in this paper is well 
defined to compose the objective function and constraints items. These discussions were examined 
through a number of multi-constrained STOPs. The results demonstrated that improved SX with GA is a 
global search algorithm with which it is easy to obtain the applicable topology. 
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INTRODUCTION  
 

Structural topology optimization involves searching for an optimal material layout in engineering. Formal 
methods addressing this problem include the homogenization method [2] in which each element in a grid 
contains composite material of continuously variable density [0,1] and orientation. However, evaluation of 
optimal microstructures and their orientations is usually cumbersome and numerically complicated [3]. As 
an important alternative approach within this family, the power-law approach [3], which is also called the 
SIMP (Solid Isotropic Microstructure with Penalization) method and was originally introduced by 
Bendsoe [4], has become generally accepted in recent years because of its computational efficiency and 
conceptual simplicity [5]. However, it does not directly address the original 0-1 problems [6] and thus 
tends to converge to a local optimal topology with indistinct boundaries or undesirable checkerboard 
patterns [6,7] or to converge to an infeasible solution to the original 0-1 problems [8]. Xie and Steven 
proposed the evolutionary structural optimization (ESO) method, which follows the concept of gradual 
removal of inefficient material from a structure [9]. As an extension of the ESO method, bi-directional 
ESO (BESO) allows efficient materials to be added in addition to removal of inefficient materials to 
remedy the elements deleted in previous processes [10]. However, ESO is not an optimization method. 
Therefore, the results of ESO do not satisfy the objective nor constraint conditions [11,12]. Evaluation 
optimization algorithms, such as genetic algorithms (GA), simulated annealing (SA), evolution strategy 
(ES), and evolution programming (EP) to STOPs have been developed. GA is a powerful global stochastic 
search method and has been applied to a variety of complicated engineering design problems. For STOPs, 
GA with Binary genotype [13] and simple operators, such as 1-point/2-point crossover operators, often 
derive a “disconnected topology” or “checkerboard” pattern [14], which makes the resulting topology 
impractical. Some researchers have attempted to resolve these problems through different representations. 
For example, the voronoi-based representation introduced by Schoenauer [15], graph representation 
introduced by Wang and Tai [16], and morphological representation proposed by Tai and Chee [17]. In 



this paper, we introduce an improved stress-based crossover operator (SX) with GA to multi-constrained 
STOPs. Different generation evolution models are adopted to validate the effectiveness of this operator. 
For GA to multi-constrained STOPs, how to define the fitness function is always an important problem. In 
this paper, we also introduce our defined fitness function in detail. A number of experiments represent the 
capability of SX with GA to STOPs. 
 
GA TO STRUCTURE TOPOLOGY OPTIMIZATION 
 

GA to structure topology optimization includes the following steps: 
(1). Randomly initial population P(t) generation 
(2). Structure analysis of  P(t) 
(3). Fitness calculation of P(t) 
(4). Selection operation 
(5). Crossover operation 
(6). Mutation operation 
(7). Structure analysis of child population P’(t) 
(8). Fitness calculation of P’(t)  
(9). Recombination of P(t) and P’(t) to generate next population P(t+1) 
(10). If termination, finish. Else go to (4). 
 

First, the initial population is generated randomly. Then, structure analysis is performed for each 
individual. The fitness of each individual is calculated. Selection, crossover, and mutation operations are 
carried out to generate new offspring. After structure analyses, recombination selection is applied on P(t) 
and P’(t) to generate the next population P(t+1). In the following section, we introduce each of the main 
operators in the GA in detail. 
 

Chromosome Representation When GA is applied to continual STOPs, the design domain is usually 
divided by fixed regular meshes to describe the material distributaries. Each mesh represents one gene on 
the chromosome. The distribution of material and voids in the design domain, in which ‘1’ represents 
material and ‘0’ represents void, is shown in Fig.1. The chromosome length is equal to the mesh size of the 
design domain. The straightforward and natural representation method is called bit-string or bit-array. In 
this paper, the bit-string representation is adopted.  
 

 
Fig. 1 Chromosome Representation 

 

Improved Stress-based Crossover Operator One reason for the disconnected phenomenon is that 
neighbor mesh continuity is not considered correctly. For real problems, the structure properties of the 
neighboring material, such as stress and stiffness, often change gradually. The ESO method, which can 
obtain a connected topology, is also based on this principle. Therefore, in this paper an improved 
stress-based operator is introduced. The procedures of this operator are as follows. First, the nomenclature 
used in this operator is explained. 
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1. Randomly select two individuals pi(t) ,pj(t)  from P (t). 
2. Add the stress value at each gene of pi and pj by formula (1). Naming this value as the power of each 

gene of child individual pi(t+1). 
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4. Divide the genes of  into two groups, U0 and U1. U1 is the group of genes of which the power 

value is in the front-m of the sorted genes. U0 is the last group of genes. Here, m is defined by formula 
(2). A child individual p
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Mutation Operator After crossover operation, the mutation operator is applied to each gene of each 
individual with a small rate. The mutation operator focuses on local search. Randomly decreasing “1” in 
the chromosome drives a lighter topology.  
 
CONSTRAINT HANDLING STRATEGY AND FITNESS FUNCTION DEFINITION 
 

Optimization is defined to find the minimum of the objective function with some inequality-constrained 
function and some equality functions. Most practical STOPs have some constraints. In this paper, the 
objective function is defined to minimize the weight subject to constrained stress and constrained 
displacement as in formula (4), where  and  are the constrained stress and constrained 
displacement, respectively.  is the maximum stress of the topology.  is the maximum 
displacement of the topology. In this paper the maximal displacement is replaced by the displacement of 
loading point.  
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Penalty functions are often used for constraint handling techniques. In our study, the fitness function is 
defined as formula (5). The smaller the function values, the better the individual: 
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; For feasible individuals 

; For infeasible individuals 

 

In formula (5), weight is the “1” number of topology, weight* is equal to the mesh number of the design 
domain. That is, this topology is a full solid material topology. The perimeter is the length of the geometric 
topology outline. α  is a constant. This fitness function is composed of four items. The first item represents 
the objective function, the second is the ratio of maximal stress and constrained stress, the third is the ratio 
of maximal displacement and constrained displacement, and the fourth denotes the contour length of the 
geometric topology. In our study, the mesh connection is defined such that there is a shared edge or vertex 
between two meshes as shown in Fig2. Constant α  is assigned a value of 4 in this paper. 



 
Fig.2 Mesh Connectivity 

 

From the fitness definition, we can see that each of the last three items is less than 1 for feasible 
individuals. Therefore, the fitness function is focused on the objective function. Once the individuals 
violate the constraints, the weight is assigned the mesh size of the design domain. This guarantees that 
fitness values of feasible individuals are better than those of infeasible individuals.  
 
GENERATION EVOLUTION MODEL 
 

For GA, the selection operator usually includes survival selection that controls which individual has the 
opportunity to breed a child, and recombination selection that controls which individuals can be reserved 
in the next generation. The survival selection method used in this paper is tournament selection. For 
recombination selection many types of generation evolution models have been proposed.  
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Among the results (f)
displacement 6.81244
topology with the max
ig3-1. SGA Model                                        Fig.3-2. ER Model 
genetic algorithm model (SGA), as shown in Fig.3-1, and elite recombination model 
.3-2, were adopted to validate the effectiveness of SX. For one generation, first 

arents P(t), then use the crossover operator and mutation operators to generate two 
 The SGA model is defined such that the parent population is wholly replaced by the 
child population will be the next population. The ER model is defined such that the 
among parent and children will be transmitted to the next generation.  

D DISCUSSION 
n Model Discussion - 2D Cantilever Problem A 2D cantilever problem was 
ffectiveness of SX with GA by comparison of the SGA model with the ER model. 
ions are 20×10 (mm). It is simply fixed at its left, and a downward concentrated 
 is applied at mid-span on the right frame. For this example, the design domain is 
00 meshes, i.e, the chromosome length is 400. The constrained stress, , is limStress
strained displacement, , is 7 mm. The following material properties are 

dulus , Poisson’s ratio 
limDisp

GPaE 2061 = 3.0=ν , and density . The GA 
n Table 1, and the results of SGA model and ER model for 5 trials are shown in 

31000 −= kgmρ

 is the smallest weight with the maximal stress 3.35004e+10 (N) and maximal 
 (mm). The results show that all the experiments searched out the same resulting 
imal stress and maximal displacement meeting the constraints that demonstrated the 



capability of SX with GA to STOPs. The geometric results show that there are no marked differences 
between the SGA model and the ER model. For 5 trials, the average weight of SGA model is 190; the 
average weight of ER model is 185.  Average numerical weight of solution of ER model is better than that 
of the SGA model. 

Table 1.  Parameters of GA 
Population 

Size 

Chromosome 

Length 

Elites Crossover

 Rate 

Mutation

 Rate 

Tournament 
Size 

Max. 
Generation 

100 400 1 1 0.01 2 500 

 

 
 

Fig.4 Results of SGA model and ER-model 
 
Evolution Procedure Discussion - MBB Beam Problem MBB beam with dimensions of 2000×400 
(mm) as shown in Fig.5 are used to test the fitness function and evolution procedure of SX with GA. This 
problem is related to the design of the floor plane of a passenger airplane. The design domain is supported 
at its ends as shown in Fig.5. The domain has a downward concentrated load F = 5.12×109 (N) at mid-span 
on the upper frame. The frame is divided by 40×16 meshes, i.e, the chromosome length is 640. The 
objective function is to minimize the weight of the structure with constrained =3.3×10limStress 9 (N)and 
constrained displacement =0.33 (mm) respectively. The material properties are the same as in the 
2D cantilever problem. GA parameters are the same as in the 2D cantilever problem besides chromosome 
length. 

limDisp

 

 
 

Fig.5 MBB beam problem 



 
Fig. 6 shows the best results of generation 16, 52, and 500. The weights are 60%, 50%, and 47% of the full 
material structure, respectively. In 16th generation, SX with GA can quickly remove materials of less 
stressed meshes. This search leads to the optimal outline of the final design. In the 52nd generation, it has 
found an applicable topology with the numerical results meeting the constraints. As GA uses multiple 
individuals to search the design domain, it can perform a further optimization until the population loses 
diversity. For this problem, it searches out a more optimal solution. Comparison of Fig. 6 (b) and (c) 
indicates that Fig. 6(c) is smaller on weight has less difference between maximal stress and minimal stress, 
and similar maximal displacement value.  
 

 
 

Fig. 6 Results of MBB Beam problem 
 
Different Constraints Experiments - Michell Type Problem The Michell type structure is the first truss 
solution of least weight and is based on a general theory. It has been widely used as a typical problem to 
verify the effectiveness of evolutionary approaches to STOPs. Hence, in this paper, it is also adopted to test 
the capability of SX with GA to multi-constrained STOPs. The design domain of dimensions 10000×5000 
(mm) shown in Fig.7 is divided into 20×40=800 meshes. The two corners at the bottom are fixed and a 
downward concentrated load F = 1000N is applied at mid-span on the under frame. 

 
Fig.7 Michell type problem 

For this problem, we performed experiments with two group constraints : (a) =0.05 (N), 
=1.0×10

limStress

limDisp -9 (mm) and (b)  =0.055 (N), =1.5×10limStress limDisp -9 (mm). The results of experiments 
(a) and (b) are shown in Fig. 8.  
 
 

 



Fig.8 Results of Michell Type Problems 

 
The geometric results shown in Fig. 8 (a) indicate that GA with SX searches out a topology the same as the 
theoretical solution. The numerical results meet constraints. When we set a different constraint (b), an 
applicable solution was also searched out with numerical values close to the constraints. 
 
CONCLUSIONS 
 

GA has been developed to solve STOPs because of its global stochastic search ability and its flexibility for 
various optimization problems. Crossover is the most important operator that controls global evolution 
direction. However, 1-point/2-point crossover operator with GA to continuous STOPs often derives to 
disconnected phenomenon or “checkerboard” pattern. To obtain an applicable topology, an additional 
strategy must be adopted to suppress the checkerboard pattern or eliminate the disconnected phenomenon. 
ESO is one formal approach to STOPs with which it is easy to obtain a connected geometric topology. 
However, ESO is not a search method in the strict sense because it simply removes less stressed materials 
gradually. Furthmore, it is not fitted for multi-constrained problems. In this paper, we introduced an 
improved stress-based crossover operator. To verify the effectiveness of this operator, we made a 
comparison of two different evolutionary models, the SGA model and ER model. Both numerical results 
and geometric results demonstrated the capability of GA with SX for multi-constrained STOPs. The fitness 
function definition is important for GA to multi-constrained STOPS, because it determines which 
individuals may be transmitted to the next generation. In this paper, we defined a fitness function that is 
composed of objective function and constraints. For feasible individuals, the fitness function focuses on the 
objective function and the impact of constraint items is slight. Experiments demonstrated the applicability 
of the fitness function. In addition, the evolution history of the MBB beam problem demonstrates the global 
search ability of GA with SX. A typical Michell type problem was also adopted to experiment SX with GA 
on different constraints. The experimental results demonstrated that SX with our defined fitness function is 
a flexible method for multi-constrained STOPs and is powerful for search out applicable geometric 
topology. 
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