Multiobjective clustering with automatic k-determination
for large-scale data

Scalable automatic determination of the number of clusters

ABSTRACT

Web mining - data mining for web data - is a key factor of
web technologies. Especially, web behavior mining has at-

tracted a great deal of attention recently. Behavior mining

involves analyzing the behavior of users, finding patterns of
user behavior, and predicting their subsequent behaviors or

interests. Web behavior mining is used in web advertising

systems or content recommendation systems. To analyze

huge amounts of data, such as web data, data-clustering

techniques are usually used. Data clustering is a technique

involving the separation of data into groups according to

similarity, and is usually used in the first step of data mining.

In the present study, we developed a scalable data-clustering

algorithm for web mining. To derive clusters, we applied

multiobjective clustering with automatic k-determination

(MOCK). It has been reported that MOCK shows better

performance than k-means, agglutination methods, and other
evolutionary clustering algorithms. MOCK can also find the

appropriate number of clusters using the information of the

trade-off curve. The k-determination scheme of MOCK is

powerful and strict. However the computational costs are

too high when applied to clustering huge data. In this paper,

we propose a scalable automatic k-determination scheme.

The proposed scheme reduces Pareto-size and the appropri-

ate number of clusters can usually be determined.
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1. INTRODUCTION

We are studying data clustering for web behavior analysis.
Data clustering is a technique of separating huge datasets
into groups according to their similarities. Web behavior
analysis is performed to find characteristic behavior pat-
terns of users and predict their subsequent behaviors. Web
behavior analysis is the key factor behind personalization
and effective ad delivery systems, etc. This clustering tech-
nique is very important to allow the analysis of millions of
sets of web behavior data.

There are many techniques for data clustering, like k—me-
ans, the agglutination method, and other methods based on
EAs, etc[3][4][5]. The main points involved in clustering are
determining the appropriate number of clusters', and find-
ing the partitions among k clusters. k-means is better at
finding partitions but worse at determination of appropriate
k, while, the agglutination method is better at determina-
tion of appropriate k but worse at finding partitions. Each
method uses a single objective, the objective of k-means is
compactness of clusters and that of agglutination is connect-
edness of similar data.

In our study, we used a multiobjective evolutionary clus-
tering algorithm with these two objectives. We used the
multiobjective clustering algorithm proposed by Handl and
Knowles[1][2], MOCK (Multiobjective clustering with au-
tomatic k—determination)[1]. This algorithm optimizes two
complementary objectives based on cluster compactness and
connectedness. It has been reported that MOCK finds the
partitions better than k-means, agglutination methods, and
other evolutionary clustering algorithms. It also has an au-
tomatic k-determination scheme and simultaneously finds
the appropriate number of clusters and partitions among
the k clusters. MOCK is one of the most powerful and in-
teresting algorithms for data-clustering problems.

One goal of our research was to apply MOCK to web
data clustering. However, the original algorithm is difficult
to use for web data, because of the limits of the computation
cost. Especially, the cost of the automatic k-determination
scheme is huge. Therefore we investigated a scalable auto-
matic k-determination scheme. In this paper, we propose
the scalable automatic k-determination scheme. The re-
mainder of this paper is organized as follows. Section II
presents a review of MOCK. In Section III, we describe the
scalability of the original MOCK algorithm and our new
scheme. The effectiveness of our scheme is discussed in Sec-
tion IV. Finally, Section V concludes this paper.

Lusually called k



2. MULTIOBJECTIVE CLUSTERING WITH
AUTOMATIC K-DETERMINATION

MOCK (Multiobjective clustering with automatic k-deter-
mination) is a powerful clustering algorithm based on a mul-
tiobjective genetic algorithm. It optimizes two complemen- .- ""Cluste

tary objectives based on cluster compactness and connect-
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different numbers of clusters, and the MST-based initializa-
tion makes well-connected initial solutions like those made
by the agglutination method. After optimizing two objective
functions through genetic operations - crossover, mutation,
and selection - Pareto solutions with a range of different &
are made. Finally, we describe Pareto of MOCK, and the
automatic k-determination scheme. The Pareto solutions
contain different trade-off partitioning over a range of dif-
ferent k, and the automatic k—determination scheme is able
to determine the final solution from the Pareto solutions,
and find the appropriate k.

Figure 1: Graph-based representation

Created Minimum Spanning Tree

2.1 Graph-based representation

MOCK uses graph-based representation[6] in which each
datum is represented as a node, and an edge between two
nodes indicates that these data are in the same cluster. This
allows treatment of a wide range of k£ in a single trial.
In Figure 1, each datum is numbered ¢ € {1..9}. The dot- C‘CD<—@
ted lines indicate removed edges. Removing the edges from
8 to 3 and from 6 to 8 separates the nodes into three clus-
ters. All k solutions are represented in this way. Removing
edges is the key to creating clusters. It is effective in the @ G
initialization scheme with a minimum spanning tree.
A gene is represented as the list of edges. The phenotype _
is the list of edges in the directed graph, and the genotype ’ Cut-off 2 longest links
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MOCK uses Prim’s algorithm[8] to create the MST. This

algorithm has order N log N time complexity.

Figure 2: MST-based initialization
2.3 Objective functions

2The initial solutions of MOCK are similar to those created
by the agglutination method.



The two objectives of MOCK are connectivity and overall
deviation. Connectivity is based on cluster connectedness,
and overall deviation is based on cluster compactness.

2.3.1 Connectivity

Connectivity is intended to divide similar data into the
same cluster. It is defined as equation (1), where ¢ is the
data id, C is the total dataset, C is the kth cluster, and
nn;(4) is the ordinal number®.
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0 otherwise

Connectivity is minimized. When all similardata® are
clustered in the same cluster, connectivity of the solution
becomes zero. When these data are in different clusters,
connectivity increases 1/j. Therefore, minimizing connec-
tivity decreases k. When k = 0, connectivity is always zero.

2.3.2  Overall deviation

Overall deviation, defined as equation (2), is intended to
make clusters more compact. d() is the distance function
designed to calculate the similarity between every datum
in the dataset. puj is the center coordinate or the median
datum of kth cluster.
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Overall deviation is also minimized. More compact sep-
aration makes this value smaller. Therefore, minimizing
overall deviation increases the number of clusters. When
separating N data into IV clusters, overall deviation is zero.

Minimizing these two objectives, a wide range of different
k solutions are generated. This is efficient to find the appro-
priate number of clusters, k. For each k, overall deviation is
minimized and most compact clusters are made. Therefore,
MOCK returns a range of different £ solutions, and each
solution is well separated.

2.4 Pareto solutions

While reduction of overall deviation, each cluster size be-
comes smaller and k& becomes larger. In contrast, with re-
ducing connectivity, each cluster size becomes larger because
many neighbor data are collapsed into same clusters, and &
become smaller. Therefore, Pareto of MOCK contains so-
lutions over a wide range of k, as shown in Figure 3. In
Figure 3, smaller k solutions are on the top left and more k
solutions are on the bottom right.

The Pareto curve shows the relation between k and 6D /5C,
where C'is connectivity and D is overall deviation. This rela-
tion is used in the next step, the automatic k-determination
scheme.

2.5 Automatic k-determination scheme
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Figure 3: Pareto of MOCK

The automatic k-determination scheme of MOCK is based
on the Gap statistic[7]. In this scheme, we make random
data ® based on principal component of the original data,
and divide these data into clusters by MOCK. The Pareto
curves of the random and original data are different. In the
original Pareto, the most distant solution from the nearest
solution of all Control solutions is selected as the most char-
acteristic solution. In the Gap statistic, we guess that such
a solution has appropriate k. (Figure 4)
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Figure 4: Automatic k-determination scheme of
MOCK

As described above, the k-determination scheme of MOCK
requires a random data clustering step. The calculation cost
is as high as when clustering the provided dataset. If using
the random data clustering step in M trial, the original cal-
culation cost is M + 1 times as large. This computational
cost is very high, especially in large-scale dataset such as
web data. Therefore, we propose a scalable k-determination
scheme without the random data clustering step in the next
section.

Scalled Control data



3. IMPROVEMENT OF SCALABILITY OF
THE K-DETERMINATION SCHEME

Determination of the number of clusters is one of the most
important concerns in the clustering problem. In this pro-
cess, the k-determination scheme of MOCK based on the
GAP statistic works well. However, as mentioned in the
previous section, the original scheme has a problem. The
computation costs for determining the cluster number in
the original MOCK scheme are high. The cost is serious
problem when classifying over a million data.

In this section, we describe the cost of the original k-
determination scheme. In addition, we propose new scalable
k-determination scheme, which uses the information of the
Pareto curve. In our scheme, the relation between connec-
tivity and overall deviation is very important.

3.1 Relation of connectivity and overall devi-
ation

In Figure 3, fewer k solutions are on the top left, and
more k solutions are on the bottom right. We can consider
the Pareto curve as a function of k. When Pareto solutions
contain the solution of the appropriate k, the smaller k£ solu-
tions are on the left of the appropriate k solution, and larger
on the right.

The left figure in Figure 5 shows the situation where the
data should be separated into two clusters. In this situation,
when the cluster is separated into two, the value of connec-
tivity is small and the overall deviation becomes smaller. On
the other hand, the figure on the right shows the situation
where the data should not be separated. In this situation,
when the cluster is separated into two, the overall devia-
tion becomes smaller but the value of connectivity increases.
This is because the number of data penalized becomes very
large. Therefore, |0D/6C|, where C' is connectivity and D
is overall deviation, rapidly decreases near the appropriate
k solution. This knee[9] is shown in Figure 4.

Should be separated

Shouldn’t be separated

Penalized solutions

Figure 5: Should be separated or not

3.2 Scalable k-determination scheme

Figure 6 shows the operation flow of MOCK and our
new k-determination scheme. Our proposed scheme is com-
posed of two steps: a Pareto-size reduction step and a k-
determination step. In the first step, removing the local
non-convex part of solutions reduces the Pareto size. This

reduction step helps to determine the appropriate k more
easily in the next step. The second step is also composed
of two sub-schemes. The first scheme usually determines
the appropriate solution, although it makes errors in several
situations. The second scheme overcomes the defect of the
first. This set of k-determination sub-schemes is applied in
parallel. Each scheme is applied to same reduced Pareto so-
lutions, and returns each final solution. When the returned
solutions are not the same, the user chooses either one of
the two.
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Figure 6: The flow of our automatic k-determination
scheme

3.2.1 Reduction step
The set of Pareto solutions obtained by the original MOCK
algorithm contains several same-k solutions, and low-potential

solutions. These solutions are removed in this step. (Figure
7)

Original Pareto Solutions Reduced Pareto Solutions

| Partly non-convex : .
e solutions :

...................... c

Figure 7: Reduction of Pareto size

We empirically assume that Pareto is convex. The crite-
rion to remove is that the solution is in a partly non-convex
part. Solutions in the partly non-convex part do not have
more compact clusters than those of the nearby convex part.
Figure 8 shows the convex and non-convex sample solutions
in Pareto of Figure 7. S1-S3 are part of the Pareto solutions
returned by MOCK, and all these solutions are obtained



when k£ = 3. S1 and S3 are in a partly non-convex part of
Pareto and S2 is in a convex part.
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Figure 8: Non-convex and convex part of solutions

In S1, almost all data are divided into the two largest
clusters, and a few data are divided into the smallest clus-
ter. This solution is similar to those obtained when k=2.
Such a solution is worse than the k=2 solutions on the left,
because the smallest cluster contains too few data and has
little information. Solutions S2 and S3 seem to be the same.
However, connectivity is not the same, so the border of the
above two clusters is more efficient in S2 than in S3. Thus,
S1 and S2 are lower-potential solutions than S2. The flow
of this step is as follows.

1. Normalize overall deviation and connectivity to [0, 1]
- [1, 0]

2. Sort solutions by connectivity.

3. Calculate adjacent angles. When it is non-convex, re-
move the solution. This step is iterated until no more
solutions are removed.

3.2.2  k-determination step: first scheme

Our k-determination scheme uses the information of the
Pareto curve, [0D/dC|. We determine the solution on the
knee of the Pareto curve as the final solution. This is not as
powerful as the original MOCK scheme®. However, this is
a very simple and efficient method to determine the appro-
priate k, which does not require the random data clustering
step. The process is described below.

1. Reduction step.
2. Calculate adjacent angles and determine the knee.

3.2.3 k-determination step: second scheme

Figure 9 shows the failure pattern of the first sub-scheme.
This dataset is composed of non-circular clusters.

5This scheme makes errors when the typical knee is not
shown in the Pareto, although the reduced Pareto contains
the appropriate k solution.
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Figure 9: Failure pattern of the first sub-scheme

Such non-circular clusters foil the first sub-scheme for the
following two reasons.

1. Overall deviation decreases any time separating clus-
ters, and circular clusters are more efficient than non-
circular ones using the Euclidean distance.

2. When cutting such a wide cluster, penalized data in
connectivity function are fewer than circular clusters.

The following steps are our basic solution to solve this
problem.

e When separating a wide non-circular cluster, keep |0D/6C/|
the same as when it is circular.

e This adjustment is done in overall deviation function,
because the connectivity function uses ordinal num-
bers and it is difficult to change the value.

We accept the scaling filter to the overall deviation func-
tion, after obtaining the Pareto solutions. The flow below is
our filter method.

1. Reduction step.

2. Make each cluster of each solution non-correlated by
PCA.

3. Calculate variance of each dimension of each cluster,
and scale down each dimension to the minimum-variance
dimension.

4. Re-valuate overall deviation of each solution, and cre-
ate new Pareto.

5. Determine the new knee.

We can treat non-circular clusters in this sub-scheme.



4. ASSESSMENT EXPERIMENT

4.1 Proposal of the experiment

This experiment was performed to investigate the per-
formance of our new scheme. For this purpose, we used 9
characteristic test datasets: basic circulate clusters, overlap-
ping clusters, non-circular clusters, circular and non-circular
clusters, different distribution in clusters. We applied our
first and second sub-scheme to each dataset, and investi-
gated whether the appropriate k£ solution was selected by
each scheme, and the size of the reduced Pareto. Notice
that, in all test datasets used, the appropriate k solution
was always created by MOCK and these were in the Pareto.

4.2 Dataset

We used 9 test datasets employed in [1]. Their names,
size” and appropriate k are listed in Table 1, and Figure
10 shows an overview. They are all 2D continuous-valued
datasets.

Table 1: Test dataset

Dataset Size | Appropriatenumberofclusters
Squarel 1000 4
Square4 1000 4
Sizesb 1000 4
Trianglel 1000 4
Longl 1000 2
Twenty 1000 20
D2C10 2882 10
Spiral 1000 2
LongSquare | 900 6

Squarel and Squared consist of four circular clusters of
equal size and spread. They differ in the overlapping of
clusters. The sizes of clusters in Sizes5 are not equal. Trian-
glel consists of a non-circular cluster. Longl consists of only
non-circular clusters. Twenty has twenty clusters of equal
size, circularity, and spread. D2C10 consists of ten non-
circular and circular clusters of different size and spread.
LongSquare consists of Longl and Squarel.

4.3 Parameter settings

The parameters used in this experiment are listed in Table
2. These are recommended values for MOCK. (See [10])
In our MOCK, the internal population size is equal to the
external population size, because we used SPEA2[11] as the
base multiobjective genetic algorithm of MOCK. Handl’s
MOCK is based on PESA-II[12]. We also used archive copy
selection and neighborhood crossover schemes, proposed by
Watanabe[13], as the internal population selection scheme
and for crossover of SPEA2, respectively.

4.4 Experimental results

We investigated the performance of auto k-determination
and reduction rate of Pareto size when applying our pro-
posed scheme to MOCK.

Figure 11 shows the k of the selected solution by our two
sub-schemes. The thick line is the appropriate k for the
dataset, which is described in Table 1. In Squarel, Square4,

7i.e., number of data

Table 2: Parameter settings for MOCK

Parameter Setting
Gene length(N) dataset size
Number of generations 200

min(50, 2*kmax)
min(50, 2*kmax)
Minimum Spanning Tree
Uniform and
neighborhood crossover
Crossover rate 0.7
Mutation type L nearest neighbors(L = 20)
Mutation rate 1/N + (I/N)?
Constraints ke{1,.,25},
cluster size>2

Internal population size
External population size
Initialization

Crossover

Sizes5, Trianglel, and Twenty, the first scheme found the
appropriate k perfectly. However, in Longl and Spiral, the
first scheme did not find appropriate k. In these cases, the
second sub-scheme covered the first. In this result, either of
our two sub-schemes can find the appropriate k.

Comparison of this result and [1] indicated that the per-
formance of our scheme is worse than that of the original
scheme. However, our scheme can be used without random
data clustering, which can reduce the calculation costs over
50% as compared with the original MOCK. This is one of
the most important factors in web mining.

Table 3 shows the reduced Pareto size (average of 10 tri-
als). Over the whole dataset, about 70% of solutions are
removed in the first sub-scheme, and 50% more are removed
in the second. In addition, in the case in which the auto
k-determination scheme makes a mistake in identifying k,
the appropriate k solutions remained in the reduced Pareto.
This result indicated that our scheme reduced the Pareto
size by about 50-70%. It is efficient in cases in which an
expert selects the last solution when they are not satisfied
with the selected solution.

Table 3: Reduction rate of Pareto size

Dataset 1stscheme | 2ndscheme
Squarel 76.4% 60.8%
Square4 77.8% 49.2%
Sizesb 74.2% 60.4%
Trianglel 73.0% 74.6%
Longl 70.4% 69.6%
Twenty 84.7% 72.5%
D2C10 74.4% 57.6%
Spiral 74.4% 74.2%
LongSquare 68.0% 58.8%
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5. CONCLUSIONS

Data clustering is an important technique used in the
preparation step of web mining. Many methods are avail-
able to do this, each of which has both merits and demerits.
We used a multiobjective clustering algorithm, MOCK, for
clustering performance. It has been reported that MOCK is
better than k-means and agglutination methods. However,
the calculation costs associated with this algorithm are too
high for use with large-scale data, such as web access data.
Especially, automatic k-determination scheme has high cal-
culation cost. We attempted to resolve this problem.

We proposed a new automatic k-determination scheme
of MOCK, which includes two sub-schemes. The first sub-
scheme using the information of the Pareto curve is effective
but produces fatal errors under some conditions. The sec-
ond sub-scheme covers this drawback. Our new scheme is
able to determine the appropriate k£ at low cost, although
the performance is poorer than the original algorithm. In
addition, our scheme can reduce the Pareto size by about
50-70%. Using this scheme, MOCK can be applied to large-
scale data.

In future work, the proposed schemes will be applied to
realistic web data clustering and behavior mining.
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