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Abstract— This paper presents a genetic algorithm (GA) with
a stress-based crossover (SX) operator to obtain a solution
without“ checkerboard”patterns for multi-constrained topol-
ogy optimization problems. SX is based on the element stress.
On one hand, smaller mesh size is required to improve the
accuracy of structure analysis results. On the other hand, the
computation cost of genetic algorithms for structural topology
optimization problems (STOPs) increases with a more detailed
mesh. Therefore, it is necessary to discuss the mesh dependency
of SX for STOPs. Here, the mesh dependency of SX has
been investigated through experiments with four different sized
meshes. Furthermore, a comparison of evolutionary structural
optimization (ESO) and SX is discussed.

I. INTRODUCTION

Major approaches to continuum structure topology op-
timization include homogenization [1], solid isotropic mi-
crostructure with penalization (SIMP) [2], evolutionary struc-
tural optimization (ESO) [3] and bi-directional evolutionary
structural optimization (BESO) [4], evolutionary computa-
tion methods (such as GA, MOGA, and cellular method).
Homogenization and SIMP have been applied to solve
various engineering problems, and great progress has been
made. However, these approaches cannot be applied easily
to complicated nonlinear optimization problems. ESO is
based on the principle of removing less stressed elements
gradually to derive an optimal solution. As an extension of
the ESO method, the BESO method allows efficient materials
to be added in addition to removal of inefficient materials to
remedy the elements deleted in previous processes. However,
the rejection and inclusion ratio used in BESO is dependent
on a number of other properties [5]. Furthermore, it is
questionable whether these approaches can be extended to
other design cases, such as multi-physics problems and
multiple constrained problems. Recently, GAs for continuum
structural topology optimization problems were developed.
Bit-strings and bit-arrays are often used as chromosome
representations. To solve the disconnected phenomena on
geometric solutions, Wang and Tai introduced a graph rep-
resentation [6]. Another such method is the morphological
representation proposed by Tai and Chee [7], [8]. Regardless
of the representation used, 2-point crossover is often used
as the main operator in GA. However, this type of initial
operator does not consider the properties of real problems,
and the “ checkerboard-like” material distribution often
occurs. Sigmund and Petersson reviewed numerical insta-
bilities, such as checkerboards, mesh-dependence, and local
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minima occurring in applications of topology optimization
[9]. They reported that mesh dependence methods reduce
“ checkerboard”pattern because use of a constraint strong
enough to make the set compact so that solutions exist,
any sequence of admissible designs, such as finite element
solutions, has convergent subsequences during compaction.
A number of techniques have been adopted to prevent
checkerboard-like material distributions, such as smoothing
[9], higher-order finite elements [10], [11], and filtering [12].
However, smoothing is based on image processing, which
ignores the underlying problem [9]. Moreover, experiments
indicated that only higher-order finite element methods with
simple GA operators can eliminate the“ checkerboard-like”
material distribution in the solution [13]. Furthermore, it is
obvious that using higher-order finite element methods will
substantially increase computation cost. Filtering methods,
which are variations of image-processing techniques, involve
modification of the design sensitivities used in each genera-
tion of the algorithm. For filtering methods, the design sen-
sitivities of specific elements depend on a weighted average
over the element itself and its eight direct neighbors and are
very efficient in removing checkerboards [9]. However, when
filtering methods are applied to three-dimensional problems,
realization will be very complicated. In this paper, we intro-
duced a stress-based crossover operator [14], [15] in which
the connections of neighboring elements are considered dur-
ing the procedure. Experiments demonstrate that this operator
can easily obtain a solution without a checkerboard-like
material distribution. GA uses multiple individuals to search
the design domain. The finite element analysis for each
structure must be performed before fitness evaluation. It is
obvious that the computation cost will increase with increases
in mesh density. Therefore, it is necessary to discuss the mesh
dependency of GA for structure topology optimization. By
the bit-string/bit-array representation, it is easy to achieve a
variable chromosome length GA for progressive refinement
in topology optimization [16].

II. SX TO STOPS

When GAs are applied to STOPs, the design domain is
usually divided by a fixed regular mesh to describe the
material distributaries. Usually, each mesh is also called
an element in the finite element analysis area. Each mesh
represents one gene of the chromosome. The distribution
of material and voids in the design domain is such that
“ 1” represents material and“ 0” represents void. The
chromosome length is equal to the mesh number of the de-
sign domain. The straightforward and natural representation
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Fig. 1. Stress-base Crossover Operator

method is called a bit-string or bit-array. In this paper the
bit-string representation is adopted.

For GAs to structure topology optimization, usually it
includes the following procedures. Firstly, the initial pop-
ulation is generated randomly. Then, structure analysis is
performed for each individual. Each individual is evaluated
according to the fitness function. Selection, crossover, and
mutation operations are carried out to generate new offspring.
After structure analyses, recombination selection is applied
on parent population P (t) and children population P ′(t) to
generate the next population P (t + 1).

By now, simple GA operators for structural topology opti-
mization problems often cause a solution with checkerboard-
like material distribution or a solution with disconnected
material distribution. One reason for the disconnected phe-
nomenon is that neighbor mesh continuity is not considered
correctly. For real problems, the structure properties of the
neighboring material, such as stress and stiffness, often
change gradually. The ESO method, which can obtain a
connected topology, is also based on this principle. To solve
this problem, we introduce a stress-based crossover operator
in this paper. The following section presents stress-based
crossover in detail.

A. Stress-based Crossover Operator

In this section, the procedures of this operator are in-
troduced in detail. The procedures of this operator is also
discribed in Fig. 1. First, the nomenclature used in this
operator is explained.

• P (t)={pi(t)|i ∈ {1 . . . n}} is population of generation
t, n is the population size.

• P ′(t) is the children population.
• pi(t) is one individual.
• pi(t).weight is number of ”1” in chromosome.
• pi(t).code[k]∈{0, 1} is genetype of element, where

k∈{1 . . .N}, N is chromosome length.
• pi(t).stress[k] is stress of element k.
• p′i(t).power[k] is power of gene k of child individual

p′i(t).
step.1 Randomly select two individuals, pi, pj from P (t).

step.2 Add up the stress at each gene of pi and pj by
formula (1). Naming this value as the power of each
gene of child individual p′(t).

p′i(t).power[k] =pi(t).stress[k] + pj(t).stress[k]
, k = 1 . . .N (1)

step.3 Sort the power values p′i(t).power[k] from big to
small.

step.4 According to the power value of each gene, the
bigger power valued genes will be set ”1”. Namely,
divide the genes into two groups, U1 and U0. U1
is group of the front m genes. U0 is group of the
last N − m genes. In this study, m is defined by
formula (2). Generate a child individual by formula
(3).

pi(t + 1).weight =
pi(t).weight + pj(t).weight

2
(2)

pi(t + 1).code[k] =

{
1, if pi(t + 1).power[k] ∈ U1
0, if pi(t + 1).power[k] ∈ U0

(3)

Applying these four steps to generate new individuals.
After the crossover operation, the mutation operator is ap-
plied to each gene of each individual with a small rate. The
mutation operator focuses on local search. If the number of
‘ 1 ’s in the chromosome decreases, it drives to a lighter

topology. On the other hand, increasing the number of 1 ’s
in the chromosome may correct infeasible individuals.

III. OBJECTIVE FUNCTION AND FITNESS FUNCTION

A. MBB Beam Problem

The MBB beam with dimensions of 2000× 400 (mm) is
shown in Fig. 2. The thickness is 10mm. The design domain
is a simple beam supported at its ends, with a downward
concentrated load F = 5.12× 109(N) is applied at the mid-
span on the upper frame.
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min.{f(xi) =
N∑

i=1

xi}, xi ∈ {0, 1}

sub. : Stressmax < Stresslim,

Dispmax < Displim (4)

The objective is to minimize the weight of the structure
subjected to constrained stress - Stresslim and constrained
displacement - Displim. It can be wirten as forlula (4), where
Stressmax is maximal stress of structure and Dispmax

is maximal displacement of structure. For this paper, the
constraints are Stresslim = 3.3 × 107(N) and Displim =
0.33 (mm).

B. Mesh Size

For GAs, each structure represents one chromosome. The
design domain is divided by hexahedral meshes. Each mesh
represents one gene of chromosome. In this paper, the four
meshes shown in Fig.3 are used. The size of each mesh
is listed in Table I. According to these meshes, the mesh
numbers of the design domain are 20 × 4, 20 × 8, 40 × 8,
and 40 × 16, respectively.
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Fig. 3. Mesh Size = (x,y) mm

TABLE I
SIZES OF MESH IN FIG. 3

Index Mesh Size (x, y) mm
(a) (100, 100)
(b) (100, 50)
(c) (50, 50)
(d) (50, 25)

C. Fitness Function

The fitness function can be expressed as formula (5) for
feasible individuals. In this function, each of the last three
items is less than ”1”. The first item - weight is much
bigger than other items so that the fitness function focuses on
weight. Here, weight is the objective function, Stressmax

is the maximal stress of an individual, and perimeter is the

outline length of the geometric topology solution.

fitness(x) = weight +
Stressmax

Stresslim

+
Dispmax

Displim
+

perimeter

4 × weight
(5)

For infeasible individuals, weight is replaced by a con-
stant, which must be larger than the weight of any feasible
individual. In this paper, it is assigned the value of mesh
number of the design domain, which means the weight of
the full solid material structure.

For GAs to real-world engineering problems, different
researchers define different fitness functions to evaluate the
individuals, which makes it difficult to decide which solution
is the best. Especially for evolutionary computation algo-
rithms to multi-constrained problems, many fitness evalua-
tion approaches have been proposed. According to the above
analyses, for GA to multi-constrained problems, different
geometric topologies may be searched. Hence, for each mesh
size, the experiments are run with the same parameters for
six trials.

IV. EXPERIMENTS AND RESULTS

A. GA Parameters

The GA parameters used in this paper are listed in Table II.
These parameters are used for all the following experiments.
It should be noted that the chromosome length of each
experiment is the same as the mesh numbers of the design
domain.

TABLE II
GA PARAMETERS

Parameters Value
PopulationSize 100

ChromosomeLength mesh number
CrossoverRate 1.0
MutationRate 0.01

TournamentSize 2
EliteNumber 1
Generation 500

B. Experiments of Different Mesh Size

Because of the global search ability of GA and the com-
plexity of structural topology optimization, GAs may derive
to different solutions under same parameters. Therefore,
we ran multiple trials for each mesh size with the same
parameters.

1) Mesh Size (100, 100) mm: Geometric solutions of five
trials for mesh size (100, 100) mm are shown in Fig. 4. The
numerical properties of each solution in Fig. 4 are listed in
Table III.

The average weight of six trials is 55%. According to the
conceptual definition of structure topology, if the“ hole”
numbers in the structures are the same they can be taken
as one structure topology. Therefore, six trials with mesh
size (100, 100) mm obtained the same structural geometric
solution.
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Fig. 4. Results of Mesh Size (100, 100) mm

TABLE III
NUMERICAL REULSTS OF FIG.4

Index Weight(%) Stressmax (N) Dispmax (mm)
(a) 44 (55%) 1.57143e+07 0.328048
(b) 44 (55%) 1.74756e+07 0.323112
(c) 44 (55%) 2.90405e+07 0.321025
(d) 44 (55%) 1.57678e+07 0.310413
(e) 44 (55%) 1.64023e+07 0.325033
(f) 44 (55%) 1.64459e+07 0.322755

2) Mesh size (100, 50) mm : Experiments showed that all
geometric solutions of six trials for mesh size (100, 50) mm
derive the same topology, as shown in Fig.5. The numerical
properties of the solution shown in Fig.5 are listed in Table
IV. Hence, the average weight of six trials is 20%.

Fig. 5. Experimental results of mesh size (100, 50) mm

TABLE IV
NUMERICAL RESULTS OF FIG.5

Weight(%) Stressmax(N) Dispmax(mm)
32 (20%) 2.89236e+07 0.31117

3) Mesh size (50, 50) mm : Geometric solutions of six
trials for mesh size (50, 50) mm are shown in Fig. 6. The
numerical properties of each solution shown in Fig. 6 are
listed in Table V.

4) Mesh size (50, 25) mm: Geometric solutions of six
trials for mesh size (50, 25) mm are shown in Fig. 7. The
numerical properties of each solution in Fig. 7 are listed in
Table VI. The average weight of structure for six trials is
48.1%.

(a) trial-i (b) trial-ii

(c) trial-iii (d) trial-iv

(e) trial-v (f) trial-vi

Fig. 6. Results of Mesh Size (50, 50) mm

TABLE V
NUMERICAL REUSLT OF FIG.6

Index Weight(%) Stressmax (N) Dispmax (mm)
(a) 152(47.5%) 2.62234e+07 0.328465
(b) 162(50.6%) 3.14147e+07 0.316905
(c) 160(50.0%) 2.15050e+07 0.316090
(d) 152(47.5%) 2.62118e+07 0.326726
(e) 156(48.75%) 2.95782e+07 0.329426
(f) 154 (48.1%) 2.64110e+07 0.326562

(a) trial-i (b) trial-ii

(c) trial-iii (d) trial-iv

(e) trial-v (f) trial-vi

Fig. 7. Results of Mesh Size (50, 25) mm



TABLE VI
NUMERICAL RESULTS OF FIG. 7

Index Weight(%) Stressmax (N) Dispmax (mm)
(a) 312(48.7%) 3.28484e+07 0.327841
(b) 304(47.5%) 2.78104e+07 0.323325
(c) 304(47.5%) 3.11505e+07 0.324528
(d) 312(48.7%) 3.23893e+07 0.328988
(e) 314(49.1%) 3.07080e+07 0.323759
(f) 302(47.2%) 2.56965e+07 0.325971

V. RESULTS AND DISCUSSION

A. Resulting topology of mesh size (100, 50)

SX experiments showed that with a mesh size of (100,
50) mm, the geometric results were very different from the
solutions obtained with other meshes for both SX and ESO.
To explore these observations further, we first discuss FEA
results with regard to mesh size.

1) Discussion of FEA results to mesh size: The topologies
shown in Fig. 8 and Fig. 9 are re-meshed with size (50,
50) mm and the topologies are re-analyzed. The numerical
properties are listed in Table VII and Table VIII.

Fig. 8. solution with mesh (100, 100) mm

TABLE VII
NUMERICAL PROPERTIES OF TOPOLOGY IN FIG. 8

Mesh Size (mm) Stressmax (N) Dispmax (mm)
(100,100) 1.57143e+07 0.328048
(50 , 50) 3.17001e+07 0.390245

Fig. 9. solution with mesh size (100, 100) mm

From the comparisons of the numerical results in Table VII
and Table VIII, we can conclude that the mesh size affects
the finite element analysis results. Overall, variation in stress
and variation in displacement are the same. The difference
between mesh size (100, 100) mm and mesh size (50, 50) mm
is not large. However, it should be noted that this problem
is caused by finit element analysis and not by the topology
optimization algorithms.

2) Discussion of mesh size (100, 50): Similarly, the topol-
ogy in Fig. 5 is re-analyzed with a mesh of (50, 50) mm.
The topology properties are listed in Table IX.

The comparison showed that for mesh size (100, 50) mm
and mesh size (50, 50) mm, the variations of structure prop-
erties in stress and displacement are significant. Especially
for displacement, maximal displacement with mesh size (50,
50) is more than 300 times bigger than that with mesh size

TABLE VIII
NUMERICAL PROPERTIES OF TOPOLOGY IN FIG. 9

Mesh size (mm) Stressmax (N) Dispmax (mm)
(100,100) 1.74756e+07 0.323112
(50,50) 1.89271e+07 0.376026

TABLE IX
NUMERICAL PROPERTIES OF FIG. 5

Mesh Size Stressmax (N) Dispmax (mm)
(100,50) 2.89236e+07 0.31117
(50,50) 1.43263e+08 97.9899

(100, 50). According to the preseding section discussion we
know that structure properties variations of good topology
are not large. Therefore, it indicates that the solution with
mesh size (100, 50) is an ill-topology. This problem also
occurred for the ESO approach. Hence, we conclude that a
cube mesh is better than non-cube mesh.

Nevertheless, with mesh (50, 25), which is of the same
type as mesh (100, 50) but a different size, the geometric
solution of SX shown in Fig. 7 is similar with geometric
solution with cube mesh shown in Fig. 6. This observation
indicates that with the decreasing of mesh size there is no
difference for cube mesh and non-cube mesh.

B. Comparison of SX with ESO

ESO, as an effective approach to STOPs, has been widely
used to solve various engineering problems. This method is
also based on stress. Therefore, to further study the mesh
dependency of SX, a comparison of ESO and SX is carried
out. For ESO to constrained problems, evolution will stop
once the result violates the constraints.

The best solution of SX for different mesh sizes and ESO
results are shown in Fig. 10.

SX ESO

(a) solutions with mesh size (100, 100) mm

SX ESO

(b) solutions with mesh size (50, 50) mm

SX ESO

(c) solutions with mesh size (50, 25) mm

Fig. 10. Results Comparison of SX and ESO



Accordingly, the numerical properties of each solution
with each mesh size are listed in Table X.

TABLE X
NUMERICAL PROPERTIES OF SOLUTIONS

Index Weight(%) Stressmax (N) Dispmax (mm)
(a)-SX 44 (55%) 1.57678e+07 0.310413
(a)-ESO 50 (62.5%) 1.58790e+07 0.271756
(b)-SX 152(47.5%) 2.62118e+07 0.326726
(b)-ESO 154(48.1%) 3.14594e+07 0.327699
(c)-SX 302(47.2%) 2.56965e+07 0.325971
(c)-ESO 322(50.3%) 3.29281e+07 0.328190

The geometric results comparison of SX and ESO shown
in Fig. 10 demonstrates SX searched out the same topology
with different mesh sizes. The numerical results indicate
that with the decreasing mesh size, the structure weight is
smaller and smaller. In contrast, for ESO, different mesh size
derives to solutions with different geometric topologies. Fur-
thermore, the objective function - weight does not decrease
with decreasing mesh size. Moreover, with smaller mesh size,
the solution becomes complex.

Furthermore, the SX results demonstrate that a certain
mesh size is detail enough to obtain a satisfactory solution,
and subsequent reductions in the mesh size do nothing to
derive a more optimal solution. This can also be seen in Fig.
11, which shows the solution weight of SX with different
mesh sizes. For this MBB beam problem, geometric topology
with mesh size (100, 100) mm is approximate with geometric
topology with mesh size (50, 50) mm.
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Fig. 11. Solution Weight Comparison

VI. CONCLUSION

GAs, as global search algorithms, have been applied to
solve various types of real-world problems because of their
flexibility for complicated problems. However, there is no
way to avoid the long computation times for individual eval-
uations. Especially, when GAs are applied to solve STOPs,
the finite element analysis time for each individual is much
longer. From the viewpoint of computation cost reduction, it
is necessary to discuss the mesh dependency of GA.

In this paper, a stress-based crossover operator was in-
troduced to suppress the“ checkerboard-like”material dis-
tribution that is often seen with simple GAs. four different
meshes were adopted in experiments to examine the mesh
dependency of SX. A comparison of ESO and SX was also
performed.

The experiments yielded the following conclusions. First,
FEA solution accuracy is dependent on mesh size. However,
for good topology, the differences in structure properties
for different mesh sizes are not significant. Second, a cube
mesh is better than other types of mesh for obtaining a
good solution. With a cube mesh, a more detailed mesh size
allows the derivation of a more optimal solution. However,
the differences become smaller with decreasing mesh size.
Thus, there is a threshold mesh size that is sufficient for
topology optimization.
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