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Abstract— A number of multi-objective genetic algorithms
(MOGAs) have been developed to obtain Pareto optimal solu-
tions for multi-objective optimization problems. However, as
these methods involve probabilistic algorithms, there is no
guarantee that the global search will be conducted in the
design variable space. In such cases, there are unsearched
areas in the design variable space, and the obtained Pareto
solutions may not be truly optimal. In this paper, we propose
an optimization method called NSDIRECT-GA to conduct a
global search over as much as possible of the design variable
space, which improves the reliability of the obtained Pareto
solutions. The effectiveness of NSDIRECT-GA was examined
through numerical experiments. By NSDIRECT-GA, not only
the optimal solutions but also the information of the landscape
can be determined, and it is possible to obtain Pareto solutions
with higher reliability than with normal MOGAs.

I. INTRODUCTION

Multi-objective optimization problems are those in which

multiple objectives must be optimized. As these multiple

objectives often conflict with each other, a single optimum

solution is often not available. Therefore, the goal in such

cases is to obtain Pareto optimal solutions, which are so-

lutions with objective values that cannot be simultaneously

improved without degradation of at least one other value.

There have been many recent studies of the adaptation of

Genetic Algorithms (GAs) to multi-objective optimization

[1], [2], [3], [4], [5], [6]. This is because a GA search

is performed by multiple individuals, and it is capable of

obtaining Pareto solutions in a single search. Adaptation of

GAs to multi-objective optimization is called Multi-objective

Genetic Algorithm (MOGA). Of the many MOGAs that have

been developed to date, NSGA-II [5] and SPEA2 [6] are

known to perform well.

However, GAs and MOGAs are probabilistic algorithms,

and there is no guarantee that a global search of the design

variable search will be conducted. A MOGA search is

strongly influenced by non-dominated solutions, and tends

to concentrate in the area in which the non-dominated

solutions exist, resulting in an uneven search. Furthermore,

when an individual with high fitness value that overwhelms

other individuals is created in a MOGA search, its genetic

information will quickly spread throughout the population

and result in early convergence. There will be unsearched

areas in a MOGA search due to the high influence of the

non-dominated solutions, and the obtained Pareto solutions

lack reliability with regard to being truly optimal. Therefore,
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it is necessary to consider a mechanism to perform a global

search of the design variable space as much as possible, and

to improve the reliability of the obtained Pareto solutions.

In this paper, we propose an optimization method called

NSDIRECT-GA, which is a combination of a global search

algorithm of DIRECT [7] and MOGA. NSDIRECT-GA

executes a global search of the design variable space as much

as possible, and reduces unsearched areas. It also makes it

possible to roughly understand the landscape of the search

space when the optimization is finished.

II. GLOBAL SEARCH METHOD

To improve the reliability of the solutions derived by

a MOGA, it is necessary to search throughout the design

variable space without leaving any areas unsearched. Global

search becomes important for this purpose, and a single ob-

jective optimization method called DIRECT [7] has attracted

a great deal of attention in this field. However, it has been

confirmed that the convergence of DIRECT is slow when

applied to multimodal functions [8].

In this paper, we propose an optimization method

called NSDIRECT-GA (Non-dominated Sorting DIRECT-

GA), which adapts DIRECT to multi-objective optimization

and combines it with MOGA. The following sections will ex-

plain DIRECT and the modifications made to adapt DIRECT

to multi-objective optimization.

A. DIRECT

DIRECT (DIviding RECTangle) is a method that searches

for the optimal solution by considering design variable space

to be an N-dimension hyper-cube (referred to as
�

boxes
�

in

this paper), dividing the hyper-cube, and sampling the center

points. The DIRECT algorithm is given follows:

1) Normalization

2) Division of the Hyper-cube

3) Potentially Optimal Hyper-rectangles

4) Division of the Hyper-rectangles

5) Repeat 3, 4 until the termination rule is satisfied

Each operation is described in the following sections.

1) Normalization and Division of the Hyper-cube: DI-

RECT begins the search by transforming the domain of the

target problem into the unit hyper-cube:

Ω = {x ∈ RN : 0 ≤ xi ≤ 1} (1)

Then, the center point of the hyper-cube c1 is sampled.

Next, DIRECT divides this space by evaluating the function

values at the points c1 ± δ−→ei (i = 1, ..., N), where δ is one-

third the side length of the hyper-cube, and −→ei is the ith



Euclidean base-vector. That is, a hyper-cube is divided into

three hyper-rectangles in each dimension.

The sequence of the dimensions to be divided is deter-

mined by wi, which is shown in (2), and the first division is

performed in the dimension with the smallest wi.

wi = min(f(c1 + δei), f(c1 − δei)) (2)

i = 1, ..., N

This operation is repeated for all dimensions on the box

with the point c1, choosing the next dimension with the next

smallest wi. Fig. 1 illustrates the search space after the initial

divisions. The numbers in the figure on the left of Fig. 1

show the function values at each point. In this case, w1 =

60.0 and w2 = 150.1, so the first division is performed along

the direction of x1.

Fig. 1. Design variable space after the first division

2) Potentially Optimal Hyper-rectangles: DIRECT di-

vides all of the hyper-rectangles that satisfy the definition

of potentially optimality:

Let ε > 0 be a positive constant and let fmin be the

current best function value. A hyper-rectangle j is potentially

optimal if there exists some K > 0 such that

f(cj) − Kdj ≤ f(ci) − Kdi, ∀i, and (3)

f(cj) − Kdj ≤ fmin − ε|fmin|

In (3), cj is the center point of the hyper-rectangle j, and

dj defines a measure for this hyper-rectangle. Jones et al.

used the distance from center point cj to its vertices for this

measure. Jones also concluded that a good value for ε is

1.0× 10−4. Fig. 2 illustrates this definition.

Fig. 2. Selection of hyper-rectangles to be divided

3) Division of the Hyper-rectangles: DIRECT divides

the hyper-rectangles by performing division only in the

dimensions with the longest side length. The sequence of

the dimensions to be divided is determined by wj by small

sequence:

wj = min(f(ci + δiej), f(ci − δiej)) (4)

j ∈ I

Where I is the set of dimensions with the longest side

length, and δi is one-third the length of the longest side

of hyper-rectangle i. DIRECT performs the division for all

dimensions in I .

The DIRECT search is performed by repeating the above

operations. Several iterations of DIRECT search are shown

in Fig. 3.

Fig. 3. Several iterations of DIRECT search

B. NSDIRECT-GA

As DIRECT mentioned in the previous section is a single

objective optimization method, some modifications are nec-

essary to apply it to multi-objective optimization problems.

To improve the slow convergence of DIRECT in multi-

modal functions, MOGA is also utilized. In this paper, we

propose NSDIRECT-GA (Non-dominated Sorting DIRECT-

GA) which combines the modified DIRECT and MOGA.

Several modifications have been made in NSDIRECT-GA

from the original DIRECT, including a change in the divi-

sion of the hyper-cube and hyper-rectangles, determination

of potentially optimal hyper-rectangles, and utilization of

MOGA. NSDIRECT-GA also utilizes Non-dominated Sort

and Crowding Distance used in NSGA-II [5]. The modifica-

tions are described in the following sections.

1) Changes in Division of the Hyper-cube: In DIRECT,

a cube is divided according to the values of f(c1± δ−→ei )(i =
1, ..., N) in each dimension at points c1 ± δ−→ei (i = 1, ..., N).
In NSDIRECT-GA, the division is executed on the following

basis:

1) Rank at the center point of the each box (Rank)

2) Crowding Distance at the center point of the each box

(CD)

NSDIRECT-GA divides this space according to Rank and

CD at points c1±δ−→ei (i = 1, ..., N), where δ is one-third the

side length of the hyper-cube, and −→ei is the ith Euclidean



base-vector. That is, a hyper-cube is divided into three hyper-

rectangles in each dimension.

The order in which the dimensions are divided is de-

termined by Ri, as shown in (5), and the first division is

performed in the dimension with the smallest Ri. However,

when there are multiple dimensions with equal R, the se-

quence is determined by Ci, as shown in (6). In this case,

the dimension with the longest Ci is divided first.

Ri = min(Rank(c1 + δei), Rank(c1 − δei)) (5)

i = 1, ..., N

Ci = max(CD(c1 + δei), CD(c1 − δei)) (6)

i = 1, ..., N

2) Change in Determination of Potentially Optimal Hyper-

rectangles: In NSDIRECT-GA we divide all of the hyper-

rectangles that are potentially optimal as in DIRECT. The

definition of potentially optimal in NSDIRECT-GA is as

follows:

Let ε > 0 be a positive constant. A hyper-rectangle j is

potentially optimal if there exists some K > 0 such that:

Rank(cj) − Kdj ≤ Rank(ci) − Kdi, and

Rank(cj) − Kdj ≤ 1 − ε, and

if(dj = diandRank(cj) = Rank(ci))

then(CD(cj) ≥ CD(ci)), ∀i (7)

In (7), cj is the center point of the hyper-rectangle j, and

dj is the distance between the center point cj and its vertices.

In this paper, we used 1.0 × 10−4 for ε . Fig. 4 illustrates

this definition.

Fig. 4. Selection of hyper-rectangles to be divided

In Fig. 4, the horizontal and vertical axis represent d in

(7), and Rank(c), respectively. From Fig. 4, it can be seen

that the potentially optimal boxes are located at the bottom

of each column, forming a convex front with all other boxes

located above it.

Moreover, the hyper-rectangles with Rank = 1 were not

always potentially optimal. Therefore, the value of ε controls

the balance of local and global search.

3) Changes in Division of the Hyper-rectangles: DIRECT

divides the hyper-rectangles only in the dimensions with the

longest side length in the hyper-rectangles. The sequence

of dimensions to be divided is determined by Rj shown in

(8), in ascending order. However, when there exist multiple

dimensions with equal R, the sequence is determined by Cj

as shown in (9), in descending order.

Rj = min(Rank(ci + δiej), Rank(ci − δiej)) (8)

j ∈ I

Cj = max(CD(ci + δiej), CD(ci − δiej)) (9)

j ∈ I

In (8) and (9) I is the set of dimensions with the longest

side length, and δi is one-third the length of the longest side

of hyper-rectangle i. NSDIRECT-GA performs the division

for all dimensions in I .

4) Utilization of MOGA: In NSDIRECT-GA, MOGA

is utilized after having divided the design variable space

with DIRECT into the number of hyper-rectangles decided

beforehand. Then, hyper-cubes are created with DIRECT

according to the solutions obtained by MOGA search.

As shown in Fig. 5, the design variable space of MOGA

search is divided into hyper-cubes with side length being d,

where d is the side length of the smallest hyper-rectangle

obtained by the DIRECT search. Only the center points of

these divided hyper-cubes are used as the candidate solutions

of the MOGA.

Fig. 5. Division of the design variable space for MOGA search

Non-dominated solutions are obtained from the MOGA

search. These solutions are center points of the hyper-cubes

with the side length of d. The hyper-cubes containing the

non-dominated solutions are added to the candidate hyper-

rectangles to be divided by DIRECT as shown in Fig. 6.

d

Fig. 6. Addition of optimal solution to DIRECT search

However, these hyper-cubes containing the non-dominated

solutions cannot be simply added to the candidates, as this

would result in the creation of shapes other than hyper-

rectangles in the design variable space. To prevent this, it

is necessary to make adjustments by dividing the design

variable space so that it consists only of hyper-rectangles.



The following method of the adjusting division is conducted

for all of the added solutions.

Step 1 Specify the hyper-rectangle in which the added

solution exists.

Step 2 End if the hyper-rectangle is a hyper-cube with side

length d. If not, go to Step 3.

Step 3 Divide the hyper-rectangle using the method shown

in Section II-B.3 � Then, return to Step 1.

The process of adjusting division is shown in Fig. 7 �

Fig. 7. Adjusting division of the design variable space

III. NUMERICAL EXPERIMENT

A. Experimental Overview

The search history of the design variable space by the

proposed NSDIRECT-GA was compared with that of NSGA-

II [5].

DIRECT is known to be effective for unimodal problems

[8], and so it was expected that the proposed method utilizing

DIRECT would also be effective for unimodal problems.

Although the convergence of DIRECT is slow when applied

to multimodal problems, the proposed method was expected

to resolve this issue by combining MOGA with DIRECT.

To verify the effectiveness of the proposed method, it was

applied to both unimodal and multimodal test problems in

the experiment.

To confirm what type of search was performed by each

method in the design variable space, the search historys were

compared with the actual landscape of the test problem. The

MOGA utilized in NSDIRECT-GA was NSGA-II [5].

B. Test Problem

The test problems used in the experiment were ZDT2 and

ZDT4. The landscapes of the test problems were expressed

by the function g(x), which represents the distance from the

Pareto optimal front. Areas in the design variable space with

small values of g(x) are closer to the Pareto optimal front.

Fig. 8 shows the relations of function g(x) and the Pareto

optimal front. As shown in Fig. 8, the Pareto optimal front

has a g(x) value of 0; therefore, areas in the design variable

space with g(x) of 0 are where the Pareto optimal solutions

are found.

The test problems used are described in the following

sections.

f1

f2

Pareto Optimal Front

g(x)=0

g(x)=0.3

g(x)=0.8 g(x)=1.5

Fig. 8. Relation of function g(x) and Pareto optimal front

1) ZDT2: ZDT2 is a 2-objective minimization problem

where both single modal at f1(x) and f2(x) are unmoral.

The Pareto optimal front is non-convex and the equation of

ZDT2 is shown in (10). Its landscape is also shown in Fig.

9 �
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h(f1, g) = 1 − (f1/g)2

subject to xi ∈ [0, 1], i = 1, . . . , n, n = 2
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Fig. 9. Landscape of ZDT2

2) ZDT4: ZDT4 is a 2-objective minimization problem

with unmodal f1(x) and multi-modal f2(x). The Pareto

optimal front is convex and the equation of ZDT4 is shown

in (11). In the experiment, the design variable space is shifted

using the variable d because the Pareto optimal front of

ZDT4 exists in the center of the design variable space and

is obtained by the DIRECT algorithm in its initialization

process. The value of d in this experiment was 0.5. The

landscape of ZDT4 is shown in Fig. 10 �

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subject to x1 ∈ [0, 1]

xi ∈ [−5, 5], i = 2, . . . , n, n = 2

(11)
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Fig. 10. Landscape of ZDT4

C. Evaluation Method

Many methods are available to evaluate the obtained Pareto

solutions; the Generational Distance (GD) was used here. GD

measures the distance between the obtained Pareto solutions

and the Pareto optimal front. Pareto solutions with small

GD value are closer to the Pareto optimal front. GD was

calculated by (12).

GD =

(

1

nPF

nP F
∑

i=1

d2

i

)
1

2

(12)

Here, nPF is the number of individuals in the obtained

Pareto solutions and di is the Euclidean distance between the

individual i of the obtained Pareto solutions and the Pareto

optimal front in the objective space.

D. Parameters

The parameters of NSDIRECT-GA and of NSGA-II used

in the experiment are shown in Tables I and II, respectively.

TABLE I

NSDIRECT-GA PARAMETER SETTINGS.

Number of boxes when MOGA is applied 5000

Maximum Generation 50

Population size 100

Crossover Method 2 point crossover

Crossover Rate 1.0

Gene length 10*Dimension

Mutation Rate 1.0/Gene length

Crowding tournament size 2

TABLE II

NSGA-II PARAMETER SETTINGS.

Maximum Generation 100

Population size 100

Crossover Method 2 point crossover

Crossover Rate 1.0

Gene length 10*Dimension

Mutation Rate 1.0/Gene length

Crowding tournament size 2

E. Results

The search results of ZDT2 and ZDT4 in 30 trials are

shown in Figs. 11 and 12, respectively. GD values shown

here are the medians of 30 trials.

Fig. 11. Search Results and GD of ZDT2 in 30 trials

Fig. 12. Search Results and GD of ZDT4 in 30 trials

From Figs. 11 and 12, it can be seen that in both ZDT2 and

ZDT4 test problem, NSGA-II and NSDIRECT-GA obtained

similar solutions. The GD values showed that in both test

problems the solutions obtained by NSGA-II reached the

Pareto optimal front. On the other hand, although the so-

lutions obtained by NSDIRECT-GA were not truly optimal,

as shown by the GD value, they were sufficiently close to

the Pareto optimal front. In NSDIRECT-GA, the obtained

solutions only exist at the center of the hyper-rectangles.

Therefore, solutions located on the sides of the hyper-

rectangles cannot be obtained. With both test problems, the

Pareto optimal solutions were located on the sides of the

hyper-rectangles, and this is why NSDIRECT-GA was unable

to obtain the Pareto optimal front. These results indicate that

the accuracy of NSDIRECT-GA is similar to that of NSGA-

II.

From Figs. 11 and 12 indicate that in both ZDT2 and

ZDT4 test problems, NSDIRECT-GA obtained similar solu-

tions to the Pareto optimal front. Therefore, NSDIRECT-GA

was effective for both unimodal and multimodal problems.

The search histories of the design variable spaces of ZDT2

and ZDT4 by each method are shown in Figs. 13 and 14,

respectively.

Figs. 13 and 14 show that in both ZDT2 and ZDT4

test problems, NSDIRECT-GA conducted global search in

the design variable space with few unsearched areas, and

searched close to the area with the Pareto optimal front. On

the other hand, although NSGA-II was successful in finding

the Pareto optimal front, many unsearched areas remained
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Fig. 13. Search histories in design variable space of ZDT2
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Fig. 14. Search histories in design variable space of ZDT4

in the design variable space. Therefore, when solutions with

similar accuracy are obtained by both methods, those ob-

tained by NSDIRECT-GA are considered to be more reliable

than those obtained by NSGA-II.

The search history of NSDIRECT-GA not only showed

the area in which the Pareto optimal front was located, but

also the locations of the local Pareto fronts. Comparison of

the search history of NSDIRECT-GA and the test problem

landscapes in Figs. 13 and 14 indicated that NSDIRECT-

GA provided useful information regarding the solution space.

This information regarding solution space is useful for veri-

fying the reliability of the optimized results.

IV. CONCLUSIONS

In this paper, we proposed an optimization method called

NSDIRECT-GA, which consists of a combination of DI-

RECT and MOGA. NSDIRECT-GA was designed to conduct

a global search of the design variable space as much as

possible.

The obtained solutions of the proposed NSDIRECT-GA

and NSGA-II along with their search histories were com-

pared through numerical experiments. The experimental re-

sults indicated that the accuracy of NSDIRECT-GA is similar

to that of NSGA-II with less unsearched areas revealed by

comparing the landscapes of the test problems, and the search

history of NSDIRECT-GA was successful in providing infor-

mation of the solution space.

As NSDIRECT-GA leaves less areas unsearched as com-

pared to MOGA and provides information regarding the so-

lution space, solutions obtained by NSDIRECT-GA are more

reliable. In future research, adaptation of NSDIRECT-GA to

test problems with higher dimensions will be considered.
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