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Abstract. We discuss an approach for automated evolutionary design of the functionary of 
driving agent, able to operate a software model of fast running car. Our objective is to 
automatically discover a single driving rule (if existent) that is general enough to be able to 
adequately control the car in all sections of predefined circuits. In order to evolve an agent with 
such capabilities, we propose an indirect, generative representation of the driving rules as 
algebraic functions of the features of the perceived surroundings of the car. These functions, 
when evaluated for the current surrounding of the car yield concrete values of the main 
attributes of the driving style (e.g., straight line velocity, turning velocity, etc.), applied by the 
agent in the currently negotiated section of the circuit. Experimental results verify both the very 
existence of the general driving rules and the ability of the employed genetic programming 
framework to automatically discover them. The evolved driving rules offer a favorable 
generality, in that a single rule can be successfully applied (i) not only for all the sections of a 
particular circuit, but also (ii) for the sections in several a priori defined circuits featuring 
different characteristics. 

1  Introduction 

The success of the computer playing sport games (e.g., chess [7], checkers, 
backgammon, tic-tac-toe [2], etc.) has long served as touchstone of the progress in the 
field of artificial intelligence (AI). The expanding scope of applicability of AI for the 
implementation of an agent with autonomous “learning” abilities includes soccer [9] 
and F1 racing [15] etc. [4], etc. Focusing in the domain of computerized car racing, in 
this work we consider the problem of the automated design of driving agent, able to 
operate a model of a fast running car. We are motivated by the opportunity to develop 
a driving agent, able to address some of the challenges that human drivers face. In 
order to drive a car fast around the circuit, the driver needs to define the best driving 
line and the way of approaching turns in the circuit. To realize the optimal line, the 
driver (agent) is also required to make a precise judgment about the state (i.e., 
position, orientation and velocity) of the car and its surrounding (distance to the apex 
of the turn, apex homing angle, etc.) and to react timely and precisely. 

The objective of our work is to design the functionality of a driving agent, able to 
control a fast running software model of the remotely controlled scaled racing car in 
various circuits with diverse characteristics. The agent should be able to learn the 
most general rules about how to control the fast running car not only on a particular 
circuit, but also on several a priori defined circuits. The possibility to discover such 



general driving rules (if existent) implies that the agent, when trained on a set of 
circuits with diverse enough characteristics, would be able to optimally control the car 
in unknown circuits with the need of a little (if any) adaptation. The very feasibility to 
develop such a universal agent would open up opportunities to build a framework of 
adaptive racing games in which the human competes against the computerized racer 
in dynamic or a priori unknown (e.g., user-defined) tracks and dynamically 
changeable (moving cars, obstacles, etc.) environments. The proposed approach could 
also be applied for automated design of the control software for navigation of 
remotely operated vehicles capable to find an optimal solution to various tasks in 
uncertain and dynamic environment. 

Achieving our objective implies that the following four tasks should be addressed: 
(i) formalizing the driving style by defining the set of its key parameters, (ii) defining 
the notion of general driving rules that, when applied in the context of the concrete 
features of the current surrounding of the car, would yield concrete values of the key 
parameters of the driving style, (iii) defining the set of relevant features of the 
surrounding, that would facilitate the creation of general driving rules, and (iv) 
developing an algorithm paradigm for automated determination of the fastest, yet 
general driving rules, which yield concrete, optimal values of the parameters of the 
driving style when applied for the currently negotiated section of the circuit. 

The related work by Suzuki and Floreano [10] demonstrates the feasibility of 
applying an active vision for landmark navigation of a scale vehicle. Wloch and 
Bentley [15] applied genetic algorithms for automated optimization of the setup of the 
simulated racing car. However, neither the adaptation of the driving style to the setup 
of the car nor the generality of the evolved setup was considered. Togelius and Lucas 
[14] used scale models of cars in their research to demonstrate the ability of the 
artificial evolution to develop optimal neurocontrollers with various architectures. 
However, the effects of the inherent latencies in the video feedback of these 
controllers on either the precision or consistence were beyond the scope of their work. 
Our previous work [13] demonstrates that with addressing the problem of video 
feedback latency through an anticipatory modeling a human competitive driving agent 
could be automatically evolved via genetic algorithms. The driving agent, presented 
in their work is able to achieve lap times that are both faster and more consistent than 
those of a well-trained human operator. However, their work considers an agent 
obtained as a result of time-consuming simulated evolution on a single, a priori 
known circuit. The question about how well such an agent would perform in unknown 
circuits is considered as beyond the scope of their work.  

Moreover, employing genetic algorithms (GA) to determine the optimal, but fixed 
and concrete values of the attributes of driving style (straight line velocity, turning 
velocity, apex approach angle, etc.), pertaining to each section of the circuit [12] 
seems to be unfeasible for generalization across the various sections of the same 
circuit. Therefore, even a slight modification to the circuit would require evolutionary 
runs to define the new set of optimal values of the driving style parameters. Moreover, 
the generality of such an approach across different circuits could not be considered at 
all, at least because the newly introduced circuits might feature sections with 
completely different characteristics. In such case the once evolved optimal values of 
the set of driving style parameters pertaining to each of the sections in the previously 
considered circuit could not be reused and the evolutionary optimization of the values 



of driving style parameters on newly introduced circuit should, most probably, start 
from scratch. And the scalability of the approach of optimizing the concrete values of 
driving style parameters pertaining to each turn of the circuit is the last (but not the 
least important) concern, as the size of the search space of evolutionary optimization 
increases exponentially with the linear increase of the number of corners in the circuit. 

In our current work we attempt to address the problem of generality of the 
optimized driving agent by proposing an evolutionary framework, able to develop 
optimal, yet general driving “rules”, rather than concrete optimal values of the driving 
style parameters. We shall verify the generality of applying the evolved single rule 
both for all the sections of a single circuit, and for all the sections of several a priori 
known circuits with different characteristics. 

The remaining of this document is organized as follows. Section 2 explains the 
modeled configuration of the physical system. Section 3 elaborates on the formalizing 
the driving style and introduces the notion of driving rules. Section 4 explains the 
main attributes of the algorithm paradigm employed for evolution of the fastest, yet 
general driving rules. Section 5 presents the experimental results, and Section 6 draws 
a conclusion. 

2  Modeled Configuration of the Physical System 

2.1  System Configuration 

In our work we use a software model of the scaled (1/24) racing car. The main 
mechanical characteristics of the car are as elaborated in [12]. The perceptions of the 
agent are modeling the real physical system on which an image feed is obtained from 
a video camera mounted overhead (Figure 1). The camera features a CCD sensor and 
lenses with wide field of view (66 degrees), which allows to cover a sufficiently wide 
area of about 2800mm x 2100mm from an altitude of about 2200mm. The camera is 
modeled to operate at 640x480 pixels mode, scaling down the scene to about 4mm per 
pixel. The video sampling interval is 30ms, and the video feed latency is 90ms. 
 
 
 
 
 
 
 

Fig. 1. Modeled configuration of the physical system 
 
The car is operated by the agent via modeled ratio remote control with functionality 

including “forward”, “reverse” and “neutral” throttle control commands and “left”, 
“right” and “straight” steering controls.  
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2.2  Software Simulator 

The developed software simulator of the car and the environment allows to (i) 
"compress" the runtime of the fitness evaluation in the eventual implementation of 
agent's evolution and (ii) to verify the very feasibility of certain circuit configurations 
without the need to be concerned about the risks of possible damage to the 
environment or the car [12]. Furthermore, the internal model of the car and the 
environment comprises the kernel of the developed simulator. This model is 
continuously applied by the driving agent in order to anticipate the intrinsic, yet 
unperceivable state of the car from the currently available (outdated) perceptions. The 
model, calibrated with the concrete values of car’s parameters (e.g., mass, turning 
radius, max velocity, max acceleration, max deceleration, etc. [12]) takes into 
consideration (i) the Newtonian physics of the car including the handling attitude of 
car on cornering (neutral steering, oversteer and understeer), and (ii) the feedback 
latency of 90ms. 

The handling attitude of the physical car on cornering are defined by the relation of 
the sliding angles (if any) of the tires of front and rear axles of the car. The tires of the 
physical car on turning, operated at, or beyond the limits of the grip (friction, 
adhesion) forces, slide to some degree across the intended direction of traveling. The 
dynamic weight redistribution causes the grip levels at the front and rear wheels to 
vary as the turning car accelerates on “forward” or decelerates on either “neutral” or 
“reverse” throttle commands [5]. This, in turn, yields different sliding angles for the 
front and rear wheels, causing the car that tries to turns too fast to feature either a 
neutral steering (the slide angles of both axles assume the same values, and the car 
turns with a nominal or slightly smaller turning radius), an understeer (slide angle of 
the front wheels are greater than those of the rears - the car turns with a wider turning 
radius) or oversteer (slide angle of the front wheels are narrower than that of the rear 
ones- the car turns with a narrower turning radius). 

In addition to the degradation of the maneuverability of the car, the sliding of the 
wheels results in a significant braking momentum which, in turn, reduces the velocity 
of the car. Moreover, the increased actual turning radius due to sliding of the 
understeering car means that the car might enter the run-off areas of the track or even 
hit the guardrails on tight corners of the track, which, in turn, might result either in a 
damage of the car, lost of momentum, or both. Therefore, the sliding of the 
understeering car limits the average velocity on cornering car (due to the lower than 
intended speeds along longer than intended arcs), which may have a detrimental effect 
on the overall lap times. The complexity of the effects of handling attitudes of the car 
on the lap time renders the task of optimizing the driving style of the agent quite 
challenging, which, in turn, additionally motivated us to consider an automated 
evolutionary approach to address it. 

The realism of the software model of the car is proved by the very limited need of 
adaptation to the physical system of the driving agent, initially evolved in the 
software model [12]. Also, the realism is indirectly indicated by the consistence of 
both the obtained driving lines and the lap times of the physical car around predefined 
circuits [13], which is attributed to the negligibly small difference between the 



intrinsic, but unperceivable state of the car (i.e., position, orientation, and velocity) 
and the state, anticipated from the outdated perceptions. The precision of such 
anticipation can be seen as an evidence of the adequacy of the applied software model 
of the car. 

3  Representation of Driving Rules 

Achieving our objective to design a general driving agent, able to control the 
model of car in various circuits with diverse characteristics implies that we shall 
address the following four tasks:  
(i) How to formalize the driving style by defining the set of its key parameters, 
(ii) How to define the notion of general driving rule. The rule, when applied in the 

context of the current surroundings of the car, would yield an optimal, concrete 
values of the key parameters of the driving style, 

(iii) How to define the set of relevant features of the current surrounding of the car, 
that would facilitate the creation of general driving rules, and  

(iv) What algorithm paradigm could be used for automated evolution of fastest, yet 
general driving rules, which yield concrete, optimal values of the driving style 
parameters when applied for the currently negotiated section of the circuit? 

In this Section we elaborate on the former three, while in the following Section 4 we 
discuss the latter of these tasks. 

3.1  Parameterization of the Driving Style. 

We consider the driving style as the driving line, which the car follows before and 
around the corners in the circuits, combined with the breakdown of the speed, at 
which the car travels along this line. Our choice of parameters of the driving style is 
based on the view, shared among the high-performance drivers from various teams in 
different racing formulas, that (i) the track can be seen as a set of consequent turns 
they need to optimize divided by simple straights, and that (ii) the turns with the 
preceding straights should be treated as a single whole [1][3]. Based on these 
standpoints, we introduce the following set of four key parameters of the driving style, 
pertaining to each of the turns of the circuit: 
(i) Approach (homing) angle – the constant bearing of the apex of the turn. Higher 

values of the latter parameter yield wider driving lines featuring higher turning 
radiuses, 

(ii) Straight-line velocity - the velocity at which the car approaches the turn,  
(iii) Turning velocity – the velocity inside the turn, and  
(iv) Throttle lift-off zone – the distance from the apex at which the car begins 

slowing down from the straight-line velocity to the turning velocity. 
Notice that the first parameter solely defines the driving line, and the latter three 

parameters define the breakdown of the velocity along this line. 
Viewing the desired values of these four parameters as values that the agent tries to 



maintain, the functionality of the agent can be algorithmically formalized in a way as 
shown in Figure 2. The usage of the values of the key driving style attributes are 
underlined in the figure and indicated as “desired”. As Figure 2 illustrates, both the 
orientation (lines 7-10) and the speed (lines 12-15) of the car are continuously 
adjusted in order to match the desired values of the corresponding attributes. The 
open-loop adjustment of the car’s velocity (lines 13 and 14) is implemented by 
macro-commands ShiftGear(Gear), implemented via pulse-width modulation of 
the sequence of “forward” and “neutral” throttle commands with duty cycle of 120ms 
(4 sampling intervals). The possible values of the input parameter Gear (and, 
consequently, the possible values of the driving style parameters “Straight-line 
velocity” and “Turning velocity”) are 1, 2, 3 or 4, which correspond to the duty ratios 
of PWM of 0.25, 0.5, 0.75, and 1 respectively.  

 
1. At each time step do begin 
2. //--- Perceptions: 
3. Obtain the agent’s perceptions of car’s state: position (P), orientation and speed (V); 
4. Obtain the agent’s perceptions of the environment: approach angle (AA), and distance (AD) to the current apex 
5. //--- Reaction of the agent to the current perceptions 
6. //--- A) Steering control: 
7. if (AA> Desired AA)  and (abs(AA - Desired AA)> Desired Threshold AA)  
8.    then SetSteering(Left) 
9.    else  if (AA< Desired AA) and (abs(AA - Desired AA)> Desired Threshold AA)  

10.                 then SetSteering(Right)    else SetSteering(Straight); 
11.//--- B) Throttle control: 
12. if AD > Desired Throttle Lift-off Zone  
13.     then ShiftGear (Desired Straight Line Gear) 
14.     else ShiftGear (Desired Turning Gear); 
15. end 

Fig. 2. Functionality of driving agent 
 
Compared to the typical approaches of polynomial (spline) interpolation of curves, 

the use of the single parameter “Approach angle” to solely define the driving line 
significantly simplifies the representation of the driving style which, in turn reduces 
the search space of the simulated evolution which is intend to employed for 
automated optimization of driving rules. Fixing the homing angle of the car implies 
that the driving line is interpolated as an equiangular spiral. The proposed approach is 
inspired by the smooth decrease of the turning radius (and the corresponding optimal 
cornering velocity) along the spiral, which gives the agent an opportunity to smoothly, 
and progressively apply both the steering and the brakes as the car negotiates the turn. 
Moreover, “the smooth is fast” is among the most important rules in high-performing 
driving as the smoothness of both the radial (due to steering) and lateral (due to 
acceleration or braking) forces allows for a better control of the car near the traction 
limits of the tires [1]. The layouts of the roads in some highway junctions which can 
be approximated by equiangular spirals [6] could be viewed as a verification of the 
technical plausibility of the proposed an approach. 

 



3.2  Representation of the Driving Rules 

The driving rule in the proposed approach defines how to compute the four key 
parameters of the driving style (as elaborated in Section 3.1) for the currently 
perceived surrounding of the car. We implement the driving rule as a set of four 
evolvable algebraic functions. Each one of the four parameters of the driving style is 
associated with exactly one algebraic function and the value of the corresponding 
parameter is set to the value of the function, evaluated for the concrete features of the 
currently negotiated section of the circuit. Therefore, the same driving rule might 
potentially yield different values of the four driving style parameters when evaluated 
in different sections of the circuit. The relevant features of the currently negotiated 
section of the circuit are obtained from the features of the waypoint (or turn) at which 
the car is currently homing (Figure 3): (i) the length of the vector from the previous to 
the current waypoints dist_p_c, (ii) the length of the vector from the current to the 
next waypoints dist_c_n, and (iii) the angle between these two vectors 
angle_p_c_n.  

4  Evolution of Driving Rules 

We assume that the four key parameters of the optimal driving style around 
different turns of a circuit might feature different values, and that these values should 
be evaluated from a single driving rule comprising four algebraic functions 
(expressions). Therefore, the objective of automatic design of optimal driving rules 
can be rephrased as an automatic discovery of such a set of four expressions that yield 
optimal values of the four driving style parameters for each of the turns in given 
circuit. In this section we elaborate on the main attributes of the genetic programming 
(GP) framework [8] [11], employed for automated discovery of the general driving 
rules. 

The genotype in the proposed GP encodes for the evolving set of four algebraic 
expressions corresponding to the four parameters of driving style. The function set of 
GP comprises the addition, subtraction, multiplication and protected division 
operation. The terminal set consist of the three variables which correspond the three 
relevant features of the currently negotiated section of the circuit (as shown in Figure 
3) and a random constant within the range between 0 and 10. The main attributes of 
GP are summarized in Table 1. 

Considering the evolving rule as a genotype and the evaluated concrete values of 
the four parameters of driving style as a phenotype, the fitness evaluation of GP is 
accomplished in the following two phases: 
(i) Developing the genotype into phenotype by setting the values of the four 

parameters of the driving style associated with each of the turns of circuit to the 
concrete values evaluated from the four expressions comprising the driving rule 
(Figure .4), and  

(ii) A time trial of the car operated by the driving agent governed by the evaluated 
values of the four driving style parameters.  



 
 
 
 
 
 
 
 

Fig. 3. Relevant features of the currently negotiated section of the circuit comprising three 
waypoints #0, #1 and #2: the length of the vector from the previous to the current waypoints 
(dist_p_c), the length of the vector from the current to the next waypoints (dist_c_n), and the 
angle between these two vectors (angle_p_c_n). The car is currently homing at waypoint #1. 

Table 1.  Main Attributes of GP 

Category Value 
Function set { +, -, *, /  } 
Terminal set { dist_p_c、dist_c_n, angle_p_c_n, random constant [0..10] } 
Population size 100 individuals 
Selection Binary tournament, selection ratio 0.1, reproduction ratio 0.9 
Elitism Best 4 individuals 
Mutation Random sub-tree mutation, ratio 0.01 
Trial interval Two laps around a predefined circuit 
Fitness Average lap time of two consecutive laps (ms) 

penalized with 0.6 ms for colliding with the “guardrails” 
Termination criteria Number of generations = 40 

5  Experimental Results 

We conducted an experiment on evolution of the driving rules in order to verify the 
ability of the proposed evolutionary approach to automatically discover (if existent) a 
single driving rule that is general enough to be able to adequately control the car 
around all the turns in a predefined circuit. We considered the following four circuits 
featuring different characteristics: an O-shaped (two right, single-apex turns), 8-
shaped (a right and a left, double-apex turns), S-shaped (a series of right and left 
turns) and 2S-shaped (concatenated two S-shaped) circuits. The results of fitness 
convergence aggregated over 20 independent runs of GP and the driving line of the 
car controlled by a sample best-of-run driving rule are illustrated in Figure 5. As 
Figure 5 shows, the average of the best lap time over all runs improves from 3850ms 
to 3600ms for O-shaped (Figure 5a), from 5410ms to 5000ms for 8-shaped (Figure 
5b), from 4800ms to 4120ms for S-shaped (Figure 5c), and from 7810ms to 7060ms 
for 2S-shaped (Figure 5d). The result of the evolution of driving rules on all four 
circuits, intended to verify the generality of the evolved driving rules across several 
circuits with diverse characteristics is shown in Figure 5e). As Figure5e) illustrates, 
the aggregated lap time improves in average from 25430ms to 21520ms within 40 
generations.  
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angle_p_c_n 

Currently perceived 
surrounding of the car 



 
 

Driving rule 
(evolved genotype) 

 
 Approach_angle = FA( dist_p_c, dist_c_n, angle_p_c_n ) 
 Straigh_line_speed = FSLS ( dist_p_c, dist_c_n, angle_p_c_n ) 
 Cornering_line_speed = FCS( dist_p_c, dist_c_n, angle_p_c_n ) 
 Braking_zone = FBZ ( dist_p_c, dist_c_n, angle_p_c_n ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The fitness evaluation accomplished in two phases: (a) developing the genotype (driving 
rule) into the phenotype (values of the driving style parameters), and (b) time trial with the 
driving agent being governed by the evaluated values of the four driving style parameters. 
 

The emergent driving line with the breakdown of the velocity of the car governed 
by sample evolved best of run driving rule on 2S circuit is shown in Figure 6. The 
corresponding values of the driving style parameters, computed for each of the six 
waypoints of the circuit are shown in Table 2.  

In order to estimate the degree of optimality of the evolved general driving rules, 
we conducted a comparative analysis of the lap times of the agent governed by these 
general rules with the lap times of the agent controlled by the values of driving style 
parameters, directly evolved for each of the turns of the considered circuits. In order 
to directly evolve these values, we employed genetic algorithms (GA) with the main 
attributes which are identical to those of the GP used for evolution of the driving rules. 
AS the results, summarized in Table 3 indicate, the driving rules evolved via GP on 
particular circuits performs equally well (and, occasionally even better) than the fixed, 
well-tailored (via GA) values of the driving style parameters. The maximal 
degradation of about 7% of the lap time associated with the driving rules in S-shaped 
circuit indicates the favorable generality of the evolved driving rules. 

The slight superiority of the evolved driving rules over the optimized values of 
driving style parameters in O-shaped and 8-shaped circuits (3.1% and 0.2% faster, 
respectively) can be explained by the reduction size of the evolutionary search of GP 
compared to that of GA. Indeed, as both the O-shaped and 8-shaped circuits feature 
identical turns, way the car negotiates these turns can be naturally expressed by a 
single driving rule. Conversely, GA needs to evolve the values of the driving style 
parameters for each of the turns separately, and the equality of the values of these 
parameters should be explicitly discovered. The presumed implications of the size of 

Time Trial 
Controlling the car according to the concrete values 
of driving style parameters for the current section of 
the circuit. For the currently displayed position of 
the car, the values of the parameters for Turn #1 
(Waypoint # 1) are applied. 

 (a) 
 

Concrete values of parameters of driving style  
for all the turns (waypoints) in the circuit 

(phenotype) 
Turn #0: 
 Approach_angle = <Concrete value evaluated from FA> 
 Straigh_line_speed =<Concrete value evaluated from FSLS> 
 Cornering_line_speed =<Concrete value evaluated from FCS> 
 Braking_zone = <Concrete value evaluated from FBZ> 
Turn #1: Concrete values of the same four parameters 
Turn #2: Concrete values of the same four parameters 
… 
Turn #N-1: Concrete values of the same four parameters 

(b) 



search space in both GP and GA for O- and 8-shaped circuits are illustrated by the 
corresponding fitness convergence characteristics. The fitness of GP converges faster 
(Figure 5a and 5b) than that of GA (Figure 7a and 7b), which suggests that a delaying 
the termination of the evolution (e.g., by setting the termination criteria of GA to 
more than 40 generations) would facilitate the additional improvement of lap times. 
Consequently, the superiority of GP over GA on O- and 8-shaped circuits should be 
acknowledged only in the condition of the considered budget of the evolutionary runs 
of no more than 40 generations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The fitness convergence and the driving line of a sample best-of-run driving rules, 
evolved in 20 independent runs on O-shaped (a), 8-shaped (b), S-shaped (c) and 2S-shaped 
circuits (d), respectively. The results of evolution on all four circuits are shown in (e), and the 
sample best-of-run driving lines are depicted in (f). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. The driving line and the breakdown of velocity of the car controlled by evolved sample 
best-of-run driving rule. The start-finish line of the illustrated 2S circuit is located next to the 
waypoint #0. The running direction is clockwise. The principal points of lap are marked with 

O-shaped (a) 8-shaped (b) S-shaped (c) 

2S-shaped (d) All 4 circuits (e) (f) 
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Average lap distance: 8933mm 

Max velocity: 1675mm/s 

Average velocity: 1296mm/s 



the timestamp information (the time into the lap) and the velocity of the car.  

 Table 2. The values of the driving style parameters, evaluated from sample evolved best-of-
run driving rule. The driving line and the breakdown of velocity of the car controlled by these 
driving style parameters are as illustrated in Figure 6. 

 
 
 
 
 
 
 
 
 
 

Fig. 7. Fitness convergence of 20 independent runs of GA evolving the values of the four 
driving style parameters in O-shaped (a) and 8-shaped (b) circuits respectively.  

Table 3. Comparison of the lap times obtained through a direct optimization of the driving 
style parameters employing GA and the driving rules, evolved via GP. 

Circuit  O-shaped 8-shaped S-shaped 2S-shaped 
Evolutionary 

approach 
Lap 

time, ms Degradation, % 
Lap 

time, ms Degradation, % 
Lap 

time, ms Degradation, % 
Lap 

time, ms Degradation, % 

GA for a particular circuit 3721 --- 5011 --- 3848 --- 6684 --- 
GP for a particular circuit 3604 -3.1 5002 -0.2 4120 7.0 7060 5.6 

GP for all four circuits 4095 13.6 5430 8.4 4725 22.8 7219 8.0 

6  Conclusion 

We presented an approach of automated design of the functionality of driving agent, 
able to operate a software model of fast running car. We verified the ability of the 
employed evolutionary paradigm to automatically discover a single driving rule that is 
general enough to adequately control the car around all the turns in a predefined 
circuit. The optimality of the evolved general driving rules is verified by the favorable 
comparison against the corresponding lap times obtained by direct evolutionary 
optimization of the values of the main driving style attributes. 

# CS Straight-line Gear Turning Gear Approach angle, degrees Throttle lift-off zone, mm 

0 4 1 17 380 

1 4 1 48 460 

2 4 1 44 120 

3 4 1 37 140 

4 4 1 11 370 

5 4 1 17 170 

O-shaped circuit 8-shaped circuit 
(b) (a) 



In our future work we are planning to investigate how well the rules, evolved in 
predefined circuit (or circuits) would perform in a priori unknown circuits. We 
anticipate that the degree of diversity of characteristics of the learning circuits might 
have a significant influence on the generality of such rules. Also, we contemplate a 
possible need of adaptation of the driving agent evolved in predefined circuits to the 
characteristics of unknown ones. The proposed generative representation of the 
driving rules would allow implementing such an adaptation as a direct tuning of the 
evolved values of driving style parameters in a way consonant with the biologically 
plausible model of phenotypic plasticity. 
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