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Abstract. In multi-objective optimization, it is important that the ob-
tained solutions are high quality regarding accuracy, uniform distribu-
tion, and broadness. Of these qualities, we focused on accuracy and
broadness of the solutions and proposed a search strategy. Since it is
difficult to improve both convergence and broadness of the solutions at
the same time in a multi-objective GA search, we considered to converge
the solutions first and then broaden them in the proposed search strategy
by dividing the search into two search stages. The first stage is to improve
convergence of the solutions, and a reference point specified by a decision
maker is adopted in this search. In the second stage, the solutions are
broadened using the Distributed Cooperation Scheme. From the results
of the numerical experiment, we found that the proposed search strategy
is capable of deriving broader solutions than conventional multi-objective
GA with equivalent accuracy.

1 Introduction

In the field of multi-objective optimization, the purpose is to find Pareto optimal
solutions. To achieve this, many multi-objective genetic algorithms (MOGAs)
have been developed [1, 2, 3, 4, 5]. Of the many methodologies reported to date,
NSGA-II [4] and SPEA2 [5] are known to show good performance.

When searching for Pareto optimal solutions, it is important that the ob-
tained solutions have high quality with regard to accuracy, uniform distribution,
and broadness. Accuracy is how close the obtained solutions are to the true
Pareto front, and uniform distribution is how evenly located the solutions are
without concentrating in certain areas. Broadness is how widespread the solu-
tions are and is decided by the solutions located at the edge of the Pareto front,
which are optimal solutions of each objective.



Many MOGAs have mechanisms to improve accuracy and uniform distribu-
tion of the solutions. However, only mechanisms to store the obtained broadness
of the solutions are available, with few capable of improving it. Therefore, it is
difficult to improve broadness during the search, and solutions with insufficient
broadness may be obtained in the case of problems with large and complex ob-
jective spaces. In addition, it is difficult to verify whether the obtained Pareto
front is broad or not.

With this background, Okuda et al. proposed the Distributed Cooperation
Scheme [6], which utilizes single-objective GA (SOGA) along with MOGA so
that not only non-dominated solutions but optimal solutions of each objective
are also searched. It was confirmed that the Distributed Cooperation Scheme is
capable of deriving broader solutions than conventional MOGAs. However, pre-
liminary experiments have also indicated that the convergence speed is reduced
because the solutions are broadened from the beginning of the search.

To improve convergence or broadness of the solutions in a MOGA search,
there have been a number of studies of crossover methods, such as neighbor-
hood crossover of NCGA [7] and similarity-based mating scheme [8]. Although
the purpose of our research is to improve the accuracy and broadness of the
solutions, it is difficult to simultaneously improve both qualities. Therefore, we
propose a search strategy composed of two search stages that separately improve
convergence and broadness. The first stage in the proposed search strategy is to
improve convergence of the solutions, and the second is to improve the broadness
of the solutions. A reference point [9] specified by a decision maker is adopted in
the first stage to accelerate convergence speed of the search. In the second stage,
a Distributed Cooperation Scheme is utilized to search for optimal solutions of
each objective and broaden the solutions.

2 Search Strategy for Multi-objective Genetic Algorithm
with Consideration of Accuracy and Broadness

The proposed search strategy consists of two search stages as shown in Fig. 1. The
first stage is a search to improve convergence, and the second is for broadness.
The order of the search is set this way, as the final solutions obtained must be
comparable in accuracy to conventional MOGAs and also be broad. Especially,
in cases where the search time is limited, it becomes important to ensure the
accuracy of the solutions first.

2.1 Convergence Search

In the convergence search, the preference of a decision maker is adopted in forms
of a reference point [9]. This reference point can be located in both feasible or
infeasible regions. Conventional MOGAs base their search on the dominance
relationship of the solutions, but the proposed search method bases its search
on the distance information. That is, solutions closer to the reference point are
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prioritized in the search, which leads to convergence of the solutions around the
reference point. The concept of this search is illustrated in Fig. 2.

The proposed search method is based on the conventional MOGA, and the
distance information is utilized in the selection criterion of mating selection. The
mating selection method is described below, and the archive size here is N .

Step 1: Sort archive solutions in ascending order of the Euclidean distance from
the reference point.

Step 2: Add top N
2 solutions to the search population.

Step 3: Select remaining solutions by tournament selection based on their rank.
If multiple solutions with same rank exist, select solution with smallest Eu-
clidean distance.

N
2 solutions close to the reference point are copied to the search population in

Step 2, because these solutions are not guaranteed to be selected using methods
such as tournament selection. Copying these solutions to the search population
should result in improvement of convergence. In addition, both rank and Eu-
clidean distance are considered in the tournament selection at Step 3, which
allows selection of non-dominated solutions close to the reference point, and the
search is directed toward the reference point while preserving diversity.

2.2 Broadening Search

The Distributed Cooperation Scheme of Okuda et al. [6] is adopted in the broad-
ening search. The search population is divided into subpopulations that search
using MOGA and SOGA in the Distributed Cooperation Scheme. Henceforth,



the subpopulations searched with MOGA and SOGA are called the MOGA
population and SOGA population, respectively. When there are k objectives,
the search population is divided into k + 1 subpopulations: one MOGA popula-
tion and k SOGA populations. The concept of this scheme is illustrated in Fig.
3. As this is a scheme, any MOGA or SOGA methodology can be adopted. In
this study, SPEA2 [5] and DGA [10] were adopted as the MOGA and SOGA
populations, respectively.
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Fig. 3. Concept of Distributed Cooperation Scheme

MOGA and SOGA populations search in a parallel manner in the Distributed
Cooperation Scheme, and best solutions from each population are exchanged
every interval generations; this interval was set to 25 generations in this study.
The best solution of the fi SOGA population is the solution with the best fi

objective value. On the other hand, best solutions of the MOGA population
are non-dominated solutions with best objective value for each objective, and k
solutions exist in a k-objective problem. Migration of solutions in a two-objective
problem is shown in Fig. 4.
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The algorithm of the Distributed Cooperation Scheme with population size
of N in the k-objective problem is shown below.

Step 1: Randomly generate N individuals.
Step 2: Divide the individuals into MOGA and k SOGA populations with N

k+1
individuals in each.



Step 3: Search for non-dominated solutions in the MOGA population and op-
timal solutions of each objective in SOGA populations.

Step 4: Collect solutions from all populations and update archive.
Step 5: Exchange best solutions between MOGA and SOGA populations every

interval generations.
Step 6: End if terminate criterion is met, else go back to Step 3.

2.3 Search Strategy

In the proposed search strategy, the convergence search described in section 2.1
is conducted, followed by the broadening search described in section 2.2. When
to switch the search stage becomes important in this case. It is preferable that
the search be switched when the solutions are at nominal convergence. Therefore,
we adopt a convergence indicator in switching the search stage.

The indicator utilized in MRMOGA [11] was adopted as a convergence in-
dicator. It is an average ratio of non-dominated solutions in the archive that
is dominated by the derived solutions over several generations. This ratio will
be high when the search is advancing and low when converged. In detail, when
non-dominated solutions of the archive at the ith generation is PFknown(i), the
ratio of PFknown(i) that is dominated (dominatedi) can be calculated. Based on
the average ratio over g generations, it can be determined that the search has
converged if criterion (1) is met.

k∑
i=1

dominatedi

g
≤ ϵ (1)

With MRMOGA, the value of ϵ = 0.05. We used ϵ = 0.05 for two-objective
problems and ϵ = 0.025 for three-objective problems. Moreover, the period of g
generations is set to be the same as the migration interval in section 2.2, which
was 25 generations. The process of the search strategy for a k-objective problem
is shown below.

Step 1: Initialize the archive.
Step 2: Conduct convergence search as described in section 2.1.
Step 3: Check criterion (1) every g generations. Go to Step 4 if criterion (1) is

met, else go back to Step 2.
Step 4: Divide solutions stored in archive into k + 1 populations.
Step 5: Conduct broadening search as described in section 2.2.
Step 6: End if terminate criterion is met, else go to Step 5.

3 Numerical Experiment

A numerical experiment was performed to verify the effectiveness of the pro-
posed search strategy by comparison with SPEA2. The MOGA methodology of
the proposed search strategy is SPEA2, and DGA was adopted as the SOGA



population. The test problems used in this experiment were KUR and multi-
objective knapsack problems. KUR is a two-objective continuous problem with
100 design variables [12]. KP500-2 (i.e., 2 objectives, 500 items), KP750-2, and
KP750-3 [3] were selected as multi-objective knapsack problems. Lamarckian re-
pair [13] was adopted as a repair method for the knapsack problems, and the
items to be removed were selected randomly.

Many metrics are available to evaluate the obtained solutions, and we adopted
inverted generational distance (IGD) [14], hypervolume (HV) [15], and spread
[8]: IGD is the average distance from each solution of the Pareto optimal front to
the closest obtained solution, and is a metric of accuracy and broadness; HV is
a metric of overall performance; and spread, calculated as the sum of differences
between maximum and minimum values of each objective within the obtained
Pareto front, is a metric of broadness. The Pareto optimal front must be known
to calculate IGD, but is unknown for KUR, KP750-2, and KP750-3 problems.
Therefore, we obtained near Pareto optimal solutions beforehand using a much
greater population size and generations, which were used in the calculations.

For both the proposed search strategy and SPEA2, population size is set
to 120 and the maximum generations is 1000. Therefore, the number of eval-
uations is the same for both methods. In addition, 2 point crossover is utilzed
with crossover rate of 1.0, and the mutation rate is 1/Chromosome Length. The
parameters specific to the DGA used in the proposed search strategy are as fol-
lows: sub population size is 10, tournament selection with tournament size of 4,
migration rate is 0.5, and migration interval is 5. The topology of migration is
random ring.

In the proposed search strategy, a reference point must be set for each prob-
lem, and is set at (−1000,−400) for KUR, (30000, 30000) for KP500-2 and
KP750-2, and (30000, 30000, 30000) for KP750-3. These reference points were
set in the area close to the center of the expected Pareto front. Further experi-
ments on the placement of the reference points are needed in the future studies.

3.1 Results

Search results of KUR and KP750-2 by the proposed search strategy and SPEA2
in 30 trials are shown in Figs. 5 and 6.
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Fig. 5. Search Results of KUR (30 Trials)
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Fig. 6. Search Results of KP750-2 (30 Trials)

The search results shown in Figs. 5 and 6 indicate that the proposed model
obtained broader solutions than SPEA2. Broader solutions provide more infor-
mation of the shape of the Pareto front, which is important especially in problems
such as KUR and KP750-2 where the optimal front is unknown. In addition, the
solution set of a single run for KP750-2 is shown in Fig. 7. With the search
strategy, the search was switched from convergence search to broadening search
at the 650th generation as shown in Fig. 7(a).
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Fig. 7. Solution Set at Each Generation in a Single Run (KP750-2)

Fig. 7(a) shows that the search strategy is successful in first converging and
then broadening solutions, as the broadness of the converged solutions improved
after switching to the broadening search. On the other hand, solutions of SPEA2
shown in Fig. 7(b) are not broadened much as the search progresses. Similar
results were also observed in other problems.

Second, the mean values and standard deviation of IGD, spread, and HV
values are shown in Tables 1 to 3. For IGD in Table 1, the obtained solutions
were closer to the Pareto optimal front when the value was close to 0. On the
other hand, solutions with greater values of spread and HV are better.

From the mean values of IGD in Table 1, it can be seen that the proposed
model is equivalent to or better than SPEA2. Therefore, the proposed model is
comparable to SPEA2 with regard to accuracy. In addition, IGD also indicates
how close the obtained solutions are to the optimal front regarding broadness.



Table 1. Inverted Generational Distance

KUR KP500-2 KP750-2 KP750-3

Search Strategy: mean 0.08343 0.01498 0.01767 0.03443
SD 0.04859 0.00159 0.00236 0.00233

SPEA2: mean 0.13593 0.02966 0.03086 0.04949
SD 0.01889 0.00198 0.00195 0.00287

Table 2. Spread

KUR KP500-2 KP750-2 KP750-3

Search Strategy: mean 516.22 6271.06 8952.60 6271.06
SD 193.42 355.85 648.39 1455.15

SPEA2: mean 243.62 2545.80 3122.00 2519.06
SD 23.04 264.68 295.57 282.89

Therefore, the obtained solutions of SPEA2 are not sufficiently broad. The spread
values shown in Table 2 also indicate that the proposed model obtained broader
solutions. Therefore, the approach to broaden solutions after converging the
search is capable of obtaining broad solutions. Mean HV values shown in Table
3 also show better results for the search strategy. Next, the transition of mean
IGD values and mean spread values of KUR and KP750-2 are shown in Figs. 8
and 9, respectively, to verify whether the targeted search is achieved.

The mean IGD values in Fig. 8 are better when the obtained solutions are
close to the true Pareto front and broad. With the search strategy, the search was
switched at means of 835 and 543 generations for KUR and KP750-2, respec-
tively. As shown in Fig. 8, IGD values of the search strategy improved greatly
after the search was switched. In addition, the spread values of the search strat-
egy in Fig. 9 also improved after the search was switched. These results confirmed
that the solutions converged and then broadened in the search strategy, and that
the targeted search was achieved.

These results indicated that the proposed search strategy is effective for main-
taining accuracy comparable to conventional MOGAs and deriving broader solu-
tions. However, the variance of the performance by the proposed search strategy
was greater than that of SPEA2. In some trials, the search was switched from

Table 3. Hypervolume

KUR KP500-2 KP750-2 KP750-3

Search Strategy: mean 2.635E+05 3.919E+08 8.461E+08 2.408E+13
SD 18832.6 1.652E+06 4.546E+06 5.425E+11

SPEA2: mean 2.550E+05 3.705E+08 8.013E+08 2.263E+13
SD 7563.9 1.445E+06 3.555E+06 1.233E+11
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the first to the second stage late in the search, because it took many genera-
tions to reach nominal convergence. This resulted in insufficient broadness of
the solutions. Therefore, further studies to determine how to switch the search
are required.

4 Conclusions

In this paper, we focused on the accuracy and broadness of the solutions and
proposed a search strategy for MOGAs. As it is difficult to improve both con-
vergence and broadness of the solutions at the same time in a MOGA search, we
considered converging the solutions first and then broadening them in the pro-
posed search strategy. To accomplish this, the search is divided into two search
stages. The first stage improves the convergence of the solutions, and a reference
point specified by a decision maker is adopted for this purpose. In the second
stage, the solutions are broadened using the Distributed Cooperation Scheme.

The results of numerical experiments indicated that the proposed search
strategy can derive broader solutions compared to conventional MOGA with
comparable accuracy. In future studies, a mechanism to judge when to switch
the search stage must be determined, as it is now controlled by a parameter, and
performance of the search strategy is dependent on this issue.
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