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In this paper, genetic algorithm with a stress-based crossover is improved to solve structural

shape optimization problems. The design domain is well divided by finite element method.

According to one initial topology, the boundary profile elements and the neighboring outside

elements, which are design variables, are randomly set to “0” or “1” to generate the initial

population. To keep the shape deforming gradually, a logical “OR” operation is applied on

each child structure and a “mask” structure. Moreover, the material weight of child is adjusted

dynamically. Three experiments were performed to verify the effectiveness of improved SX for

structural shape optimization.
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1. Introduction

Shape optimization problems consist of finding the

best profile of a structural system, which improves its

mechanical behavior and minimizes some properties of

that structure. The main approaches to shape optimiza-

tion include the basis vector method and traction method
(1, 2), evolutionary structural optimization (ESO)(3, 4),

homogenization-based methods(5), and SIMP method(6, 7).

Recently, there has been researches regarding the appli-

cation of genetic algorithms (GAs)(8, 9) for structure op-

timization because they do not require sensitivity anal-

ysis during optimization. In this paper, we will discuss

application of GAs to shape optimization.

Traditionally, continuum shape is defined by the ori-

ented boundary curves or boundary surfaces of the body.

Tanie and Kita(10) use GAs to optimize the shape of

continuum 2D structures through B-spline. Woon et

al.(11) investigated alternative encodings of GAs for con-
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tinuum shape optimization using the actual coordinates

of boundary nodes. The boundary is represented by b-

spline functions, circles, and polylines, the control points

of which constitute the parameters that govern the shape

of the structure. This requires a large number of design

variables and it is also difficult to maintain an adequate

finite/boundary element mesh during the optimization

process. Moreover, the mesh file should be refreshed once

the node coordination changes.

Another approach of GAs to structure shape optimiza-

tion involves discretising the initial design domain into

a mesh of elements, whereby each element is associated

with a string bit(12, 13). The material constants at the

mesh, such as the density and Young � s modulus, are

taken as the design variables. The mesh with material is

set to “1” and that without material is set to “0.” In this

case, the finite element method is usually employed for

estimating the objective functions and the constraint con-

ditions. By this method, detailed well-designed domain

division is necessary to avoid a zigzag-shaped boundary.

Previous research(14) verified that stress-based crossover

(SX)(15) can perform topology optimization even with

a roughly designed domain division. Then, shape opti-

mization should be used to smooth the structure bound-



ary profile. In this paper, SX is improved to solve shape

optimization problem. In the present scheme, shape opti-

mization starts from an initial topology obtained by SX.

Three stress and displacement constrained experiments

are performed to show the effectiveness of our improved

stress-based crossover (iSX).

2. Shape Optimization using

Stress-based Crossover

2.1 Design Variables and Chromosome Rep-

resentation Before shape optimization, topology

optimization is performed using SX with rough design do-

main division. After that, shape optimization is applied

to further optimize the structure profile. Here, we will

present an example to explain the design variables. First,

the design domain inside the rectangle as shown in Fig.1-

(a) is further divided into small meshes. Each structure

is taken as one chromosome. The material distribution in

each mesh is taken as one gene on the chromosome with

“0” representing void and “1” representing material. The

black part of Fig.1-(b) is the profile meshes of Fig.1-(a).

The grey part of Fig.1-(b) is the “0” neighboring meshes

of profile meshes of Fig.1-(a). These meshes in Fig.1-(b)

are design variables. During GA evolution, the design

variables vary with the structure profile.

(a) initial structure (b) parameter elements

(c) an example individual (d) mask individual pmask

Fig.1 Preparation for Shape Optimization

2.2 Population Initialization For shape op-

timization, the initial population is generated from the

initial structure by randomly setting the design variables

to “0” or “1.”. One example individual is shown in Fig.1-

(c). In order to keep the same topology during shape

optimization, a mask individual as shown in Fig.1-(d),

which is the inner solid elements of Fig.1-(a), is saved. A

logic “OR” operation is applied on the mask individual

and each child individual.

2.3 Procedures of iSX In this section, we will

introduce the procedures of iSX for structural shape op-

timization. The details of step 3 are illustrated in Fig.2.

Firstly, the nomenclatures are explained.

• initial: the initial structure as Fig.1-(a)

• pprofile: the profile elements of structure, the black

part as Fig.1-(b)

• paddition: the neighboring “0” element of pprofile,

the grey part as Fig.1-(b)

• pmask: the inner solid elements as Fig.1-(d)

• pparameter: the elements of pprofile and paddition

• p.weight: the “1” number of individual p

• p.stress[k]: element stress of individual p, k =

1 . . . n, n is equal to the chromosome length

• child
i
.ability[k]: ability value of each gene of child

individual child
i, k=1 . . . n

• P (t) = {parent
i(t)|i = 1 . . . . . . . . . N}: population

of generation - t, N is population size

• P
′(t) = {child

i(t)|i = 1 . . . . . . . . . N}: children pop-

ulation

Procedures of iSX for shape optimization

(1) Randomly generate the initial population P (t) from

structure-initial, save parent
i
mask.

(2) Finite element analysis for each structure to calcu-

late element equivalent stress

(3) SX operation to generate offsprings population P
′(t).

Applying the following steps to generate child in-

dividuals

(3-1) For each individual parent
i, randomly se-

lect the other individual parent
j from P (t) ,

here i 6= j

(3-2) Sum the element stress with same element

number as formula (1)

child
i
.ability[k] = parent

i
.stress[k]

+parent
j
.stress[k]

(1)

(3-3) Sort child
i
.ability[k] from large to small

(3-4) The front m elements with large ability value

is set to “1”. Others will be set “0”. The def-

inition of m will be discussed in the section

2.5

(3-5) Logic “OR” operation for child individual

child
i and parent

i
mask to recover the changed

elements that are not parameter elements

After step (3-1)-(3-4), many other elements may

have their gene values changed. Therefore, step

(3-5) is used to recover these genes. It should be

noted that only one child is generated after the

above operations. Apply the above steps on P (t)

to generate children population P
′(t).



6.0

5.9

4.4

1.5

9.0

7.9

8.4

6.5

(3-1)

parent (t).gene[k]

parent (t).mask[k]

child (t).gene[k]

parent (t).stress[k]

15.0

13.8

12.8

8.0

child (t).ability[k]

parent (t).gene[k] parent (t).stress[k]

P(t)

P'(t)

(3-3)

(3-4)

(3-5)

(3-2)

... 2.2 ... 8.0 ... 20.9

mn-m

logical "OR"

i i i

i

i

j j

Fig.2 Detail of step (3) of iSX Procedures

(4) Finite element analysis for children population P
′(t)

(5) Fitness evaluation for P
′(t) and save the best indi-

vidual

(6) If termination, go to (7); else, generate child
i
parameter

from P
′(t). Randomly reset “0” or “1” to generate

the next population P (t + 1), go to (2)

(7) Finished

Shape optimization starts from an initial structure.

Initially, the profile elements of the structure (width=1)

and the neighbor “0 � elements (width=1) are set param-

eters and all the initial individuals have the same mask

structure. After the first generation, the parameters ele-

ments and mask structures are reset again for each indi-

vidual. From the second generation, each individual has

different parameters and mask structure. The parameter

elements become more and more and the mask structure

becomes thin.

2.4 Multi-constrained Problem Description and

Fitness Definition

In this paper, three experiment problems with stress

and displacement constraints were adopted to show the

effectiveness of iSX. The optimization problem is shown

in formula (2).

min.f(X) =
n

∑

i=1

xi, xi ∈ {0, 1}

subject to : Stressmax < Stressconstraint

Displacement < Displacementconstraint

(2)

For GAs, the fitness function definition that deter-

mines which individuals will be preserved in the next

generation is very important. A penalty function is used

for multi-constrained problems. The fitness function for

feasible individuals is shown in formula (3).

fitness =

n
∑

i=1

xi +
Stressmax

Stressconstraint

+
Displacement

Displacementconstraint

(3)

The first term represents the objective function; the

second and third terms are penalty functions. For fea-

sible individuals the last two terms are less than 1 so

that the fitness function focuses on optimize the objec-

tive function. For infeasible individuals, the first term is

replaced by a constant that is larger than the objective

value of any feasible individual. That is, any feasible in-

dividual is preferred over any infeasible individual. For

infeasible individuals, those with smaller constraint vio-

lations are preferred.

2.5 Violation Handling Strategy

We construct a violation handling strategy for infea-

sible individuals during iSX optimization. In iSX proce-

dure step (3-4), the definition of m is different for feasible

and infeasible parents. In this paper, m is defined as for-

mula 4, where r is a uniform random number between

0 and 1. For infeasible parent individuals, the weight of

child individual is defined as the same as that of the par-

ent. If the parent is a feasible individual, the “1” number

in the child individuals will reduce gradually. However,

the reduction of “1” cannot be greater than half of the

profile element number. It means once a feasible indi-

vidual is searched out, the weight of child individual will

decrease gradually. From this point, the iSX operator is

similar to ESO method that is effective for local searches.

m =

{ p
i
.weight, if p

i
is infeasible

p
i
mask.weight + p

i
profile.weight ∗ r ∗ 0.5,

if p
i
is feasible

(4)



3. Experiment

In this section, three experiments are performed to

show the effectiveness of iSX for shape optimization.

• Example a:

The first example is a single-load Michell MBB

problem. The design domain is 10000×5000 mm as

shown in Fig.3. The two corners at the bottom are

fixed and a downward concentrated load F = 1000

N is applied at mid-span on the lower frame. The

half design domain is divided into 50 × 50 meshes.

The material to occupy the design domain is cho-

sen as steel with modulus of elasticity of 210 GPa

and Poisson � s ratio of 0.3. Due to symmetry, only

half of the structure is analyzed. The objective

function is to minimize weight resulting in maxi-

mal stress less than 0.25 Pa and displacement of

loading point less than 2.0 × 10−9 mm.

1000mm

500mm

F=1000N

Fig.3 Michell MBB Problem

The initial shape and some iteration results shown

in Fig.4 illustrate that the structure shape becomes

smooth. The weight, maximal stress and displace-

ment evolution history are shown in Fig.5, Fig.6

and Fig.7 respectively. The finite element anal-

ysis results of initial shape and final shape are

compared in Table 1. The maximal stress and

displacement iteration histories demonstrate the

global search ability of iSX for shape optimization.

initial shape generation=2 generation=6

generation=10 final shape

Fig.4 Shape Variation of Michell Problem

• Example b:

This example is also an MBB beam problem. As a
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Fig.5 Weight Iteration History of Michell Problem
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Fig.6 Maximal Stress Iteration History of Michell

Problem
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Fig. 7 Displacement Iteration History of Michell

Problem

Table 1 Structure Analysis Results of Initial Struc-

ture and Final Structure

Index Weight Stressmax Displacement

(%) (Pa) (mm) ×10−9

Initial Shape 82.0 0.228 1.72

Final Shape 18.6 0.229 1.97



benchmark example, it has previously been stud-

ied extensively by applying homogenization meth-

ods and traditional boundary variation methods.

As shown in Fig.8, a simply supported beam has a

span L=240 mm, height H=40 mm, and thickness

T=1 mm, with a concentrated load P=1000 N ap-

plied at mid-span. During the computing process,

due to symmetry, only half of the structure is mod-

eled using 120×40 hex quadrilateral elements. The

objective function is to minimize weight resulting

in maximal stress less than 3000 Pa and displace-

ment of loading point less than 2.5 × 10−6 mm.

240mm

40mm

F=1000N

(a) mbb-beam

120mm

40mm

F=1000N

(b) half of mbb-beam

Fig.8 Michell MBB Problem

For this problem, two experiments were performed

with the initial structures shown in Fig.9 and Fig.11.

The results are shown in Fig.10 and Fig.12, respec-

tively. The structure properties are compared in

Table 2 and Table 3.

Fig.9 Initial Shape of Experiment (1)

Fig.10 Final Shape of Experiment (1)

Table 2 Structure Properties of Expeirment (1)

Index Weight Stressmax Displacement

(%) 103 (Pa) 10−6(mm)

Fig.9 52.00 2.516 2.207

Fig.10 41.41 2.520 2.488

Fig.11 Initial Shape of Experiment (2)

Fig.12 Final Shape of Experiment (2)

Table 3 Structure Properties of Experiment (2)

Index Weight Stressmax Displacement

(%) 103 (Pa) ×10−6(mm)

Fig.11 51.00 2.515 2.400

Fig.12 42.60 2.642 2.496

• Example c:

This is a multiple load problem. As shown in

Fig.13, the rectangular design domain is 12 m in

length and 6 m in height, the bottom left corner is

fixed, and the bottom right corner is constrained as

rolling condition. Three forces are applied at the

bottom at equally spaced points with P1=300 N,

P2=P3=150 N . During the optimization process,

only the right half is analyzed and discretized by

60×60 hexahedral elements. The Young � s modu-

lus for “1” material is 200 MPa and Poisson � s ratio

is 0.3. The Young � s modulus for “0” material is

1 MPa and Poisson � s ratio is 0.3.

The initial shape, variations of generations 2, 4

, 6, 8 and the final shape are shown in Fig.14.

The properties of the initial and final structures

are compared in Table 4. The weight, displace-

ment, maximal stress iteration histories are shown

in Fig.15, Fig.16 and Fig.17.

P1
P2 P3

Fig.13 Multi-load Beam Problem

Table 4 Structure Properties of Initial Shape and

Final Shape of Multi-load Beam Problem

Index Weight Stressmax Displacement

(%) (Pa) ×10−8 (mm)

Initial Shape 56.00 1.137 1.681

Final Shape 37.61 1.136 1.596



iteration=2initial shape iteration=4

iteration=6 iteration=8 final shape

Fig. 14 Iteration History Results of Multi-Load

Beam Problem
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Fig. 15 Weight Iteration History of Multi-Load

Beam Problem
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Fig. 16 Displacement Iteration History of Multi-

Load Beam Problem
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Fig.17 Maximal Stress Iteration History of Multi-

Load Beam Problem

Fig.14 shows that the general shape is determined

on generation 6. Subsequently, the objective func-

tion is further optimized according to the fitness

function definition. Due to the global search abil-

ity of iSX, a more optimal solution is searched out

but the topology is changed.

4. Conclusion

This paper introduced an improved stress-based crossover

for shape optimization. This operator begins from an ini-

tial topology with the design domain being well divided

by fixed meshes. During the evolution process, the pro-

file elements of the structure, which are design variables,

varies gradually. A logical “OR” operation is applied on a

mask structure and each new child structure to guarantee

the structure shape optimized gradually. The “1” num-

ber of child individuals is adjusted dynamically. Three

experiments show the effectiveness of iSX for structural

shape optimization. Comparison of the initial and final

structures demonstrated the ability of iSX to produce

optimal shapes based on stress and displacement criteria

through a sequence of steps based on sets of locally opti-

mized structure profile elements. The method was shown

to be able to identify and remove material that effectively

increases the structure’s fitness as well as add material

to gradually contribute to the shape profile. Moreover,

by the dynamic adjustment of the “1” number in child

individuals and fitness function definition, iSX always at-

tempts to perform the optimization process until termi-

nation.
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