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Parameters Discussion of SX for Structural Topology Optimization
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Stress-based crossover (SX) is a genetic operator for structural topology optimization using

the information of stress. This paper discusses three types of SX parameter. First, generation

alternation models are used to improve the search ability of genetic algorithms. Second, several

different meshes are used to study the mesh dependency of SX. A comparison of evolutionary

structural optimization (ESO) and SX is performed on the MBB beam problem. Third, element

stress ranking method is adopted to study the impact of element stress on final topology. In

addition, different domain division strategy for GA and FEM is introduced to further discuss

the element stress influence in SX.
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1. Introduction

Major approaches to continuum structure topology

optimization include homogenization (1), solid isotropic

microstructure with penalization (SIMP) (2), level-set

method (3), evolutionary structural optimization (ESO)
(4), and bidirectional evolutionary structural optimiza-

tion (BESO) (5). Evolutionary computation methods,

such as genetic algorithms (GA), multiobjective genetic

algorithms (MOGA), and cellular methods, as flexible

methods to address various complicated problems, have

been extended to solve structure optimization problems.

With regard to application of GA to structural topol-

ogy optimization problems, checkerboard like material

distribution or disconnected structures in resulting topol-

ogy are the most common problems for structural topol-

ogy optimization. To solve the disconnected phenom-

ena on geometric solutions, graph representation (6) and

morphological representation (7) have been proposed. A

number of techniques have been adopted to prevent checker-

board like material distributions, such as smoothing (8, 9),

higher-order finite elements (10, 11), and filtering (12).

However, smoothing is based on image processing, which
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ignores the underlying problem (8). Experiments indi-

cated that only higher-order finite element methods with

simple GA operators can eliminate the checkerboard like

material distribution in the solution (13). However, it is

obvious that using higher-order finite element methods

will substantially increase computation cost. Filtering

methods, which are variations of image-processing tech-

niques, involve modification of the design sensitivities

used in each generation of the algorithm. For filtering

methods, the design sensitivities of specific elements de-

pend on a weighted average over the element itself and its

eight direct neighbors and are very efficient in removing

checkerboards (8). However, when filtering methods are

applied to three-dimensional problems, realization will be

very complicated.

In a previous study, we introduced a stress-based crossover

(SX) operator (14) in which the connections of neighbor-

ing elements are considered during the procedure. Exper-

iments demonstrated that this operator can easily obtain

a solution without the checkerboard phenomena. How-

ever, there are a number of parameters and choices of

genetic operators the effects of which on the solutions

have not been discussed. Therefore, this paper discusses

three types of SX parameter.

First, the generation model of GA is discussed. Appli-

cation of GA to real problems always has the drawbacks

of a large seach space, complicated solution landscape,



and long computation time. Generation alternation mod-

els are used to speed up convergence. Second, sensitivity

of element size is described. Mesh dependency, which

refers to that it cannot obtain qualitatively the same so-

lution for different mesh-sizes or discretizations, is one

numerical instability occuring in applications of many

topology optimization methods. It is also discussed the

mesh dependency of SX for structure topology optimiza-

tion.

Thirdly, SX uses element stress to decide which ele-

ments will be material and which will be void. Therefore,

the impact of element stress on final resulting topology

is discussed using element stress ranking method. For

GA to structural topology optimization problems, GA

search space and FEM space are often divided with same

numbered meshes. On one hand, a good design needs

sufficient accuracy of the FEM for precise evaluation of

stress and displacement, which means large number of el-

ements are needed for structure analysis results accuracy.

On the other hand, the GA search space increases greatly

with large number of meshes. For GA, large search space

needs large population and long evolution iteration times

to do a global exploration that is not affordable for de-

signers. Therefore, different domain division strategy is

introduced for GA and FEM space to further study the

influence of element stress in SX.

This paper is organized as follows. Section 2 intro-

duces application of SX to structural topology optimiza-

tion. Section 3 defines a penalty fitness function. Section

4 presents the generation alternation models. Section 5

discusses the mesh dependency of SX. In Section 6, ele-

ment stress ranking method and different domain division

strategy for GA and FEM are used to study the impact

of element stress to final resulting topology. Finally, our

conclusions are presented in Section 7.

2. SX to Structural Topology

Optimization

For application of GA to structural topology optimiza-

tion, the GA search space is divided by fixed regular

meshes. The whole search space is taken as one chro-

mosome and each mesh represents one gene on the chro-

mosome. GA uses “1” and “0” on each gene to describe

the material distributions, where “1 � represents material

and
�
0 � represents void.

On structure analysis side, the material is divided by

linear hexahedron that is called “element” in finite el-

ement method (FEM). The objective of this method is

to obtain rough design configuration and accurate stress

evaluation is not required. Therefore, void elements are

not really
�
no material � but assigned a small Young

�
s

modulus to evaluate the stress. In this paper, the Young
�

s modulus for void elements is one thousand of Young
�

s modulus for solid elements. The VonMises equivalent

stress of each element is alaysed by ADVENTURE(15).

The materials distribution of elements is used to describe

the approximate topology.

The initial population is generated randomly. After

selection, SX, and mutation operations, offspring indi-

viduals are generated. In this section, the procedures of

SX are listed in detail. First, the nomenclature used in

this operator is explained.

• P (t)={pi(t)|i ∈ {1 . . . n}} is population of genera-

tion t, n is the population size.

• pi(t).weight is number of
�
1 � in chromosome.

• pi(t).code[k]∈{0, 1} is genotype of individual, where

k∈{1 . . . N}, N is chromosome length.

• pi(t).stress[k] is stress of element k.

• p′

i(t).ability[k] is ability of gene k of child individ-

ual p′

i(t).

1. Two individuals are selected randomly without con-

sidering the fitness value, pi(t), pj(t) from popula-

tion P (t).

2. Sum the stress at each gene of pi(t) and pj(t) by

formula(1). This value is designated as the ability

of each gene of child individual p′

i(t).

p′

i(t).ability[k] = pi(t).stress[k] + pj(t).stress[k],

k = 1 . . . N

(1)

3. Sort the ability values of p′

i(t).ability[k] from large

to small.

4. According to p′

i(t).ability[k] , divide the genes into

two groups, U1 and U0. The front m genes belong

to U1, and the remaining genes belong to U0. Here,

m is defined by formula (2). A child individual,

p′

i(t), is generated by formula (3).

m = [pi(t).weight + pj(t).weight]/2 (2)

p′

i(t).code[k] =

{

1, if p′

i(t).ability[k] ∈ U1

0, if p′

i(t).ability[k] ∈ U0
(3)

Step 4 is the most important of the four steps. There

are two key points for generating new individuals. The

first is which elements will be set to
�
1, � and the second

is how many elements will be set to
�
1. � This oper-

ator defines that elements with large ability value will

be set to
�
1. � With regard to the second question, be-

cause the initial GA population is generated randomly,

it will inevitably include some infeasible individuals; in-

deed, it is even possible that the whole population will



be comprised of infeasible individuals. Therefore, at the

beginning of evolution, the SX focuses on searching for a

feasible individual. Hence, we define
�
1 � elements num-

ber of offspring individuals is equal to the average of that

of the parent individuals. These four steps are applied

on population P (t) to generate offspring individuals.

3. Problem Description and Fitness

Function

The objective function of all the examples in this pa-

per is to minimize weight subject to constrained stress

and constrained displacement, which can be expressed in

formula (4).

min.weight =
N

∑

k=1

code[k], code[k] ∈ {0, 1}

subject to : Stressmax ≤ Stressallowable

Displacement ≤ Displacementallowable

(4)

For feasible individuals, the fitness function is defined

as formula (5). In this function, each of the last three

terms is less than or equal to
�
1. � The first term, which

is the objective function, is much larger than other terms

such that the fitness function focuses on weight. The last

three terms are penalty functions.

fitness = weight +
Stressmax

Stressallowable

+
Displacement

Displacementallowable

+ ε
(5)

In formula (6), ε is defined to indicate the geometric

topology influence.

ε =
perimeter

4 × weight
(6)

where perimeter is the length of the geometric topol-

ogy profile as shown in Fig.1. To reduce the influence of

this term, it is divided by 4 × weight.

(a) perimeter=16 (b) perimeter=12

Fig.1 Mesh Connection and perimeter Definition

For infeasible individuals, the first item of formula (5)

is replaced by a constant, C, which must be larger than

weight of any feasible individual. In this paper, C is

equal to meshes number of GA search space.

4. Generation Alternation Models

In a simple GA model (SGA), there is no competition

between the parents and the children, so the children

(b)  ER Model

Parent Children

pi(t) p'i(t)

pj(t) p'j(t)
crossover

mutation

best two

(a)  SGA Model

Generation Parent Children

t

t+1

pi(t) p'i(t)

pj(t) p'j(t)

crossover

mutation

Fig.2 Generation Alternation Model

replace the parents irrespective of their fitness. This se-

lection scheme steers the tendency of the algorithm ac-

cording to the information obtained in previous steps.

Therefore, various generation alternation models have

been proposed to improve the search ability of GA, in-

cluding minimal generation gap (MGG) (16) and elitist

recombination (ER) (17). In this study, the ER model is

adopted for comparison with the SGA model to speed up

convergence and improve the search ability of GA. The

SGA model and ER model are shown schematically in

Fig.2.

The SGA model is defined such that the child popula-

tion replaces the parent population. The child population

will be transmitted to the next generation. In contrast,

the ER model is defined such that the better of two indi-

viduals among parents and children will be transmitted

to the next generation.

4.1 Experiment and Discussion The 2D

cantilever problem, as shown in Fig.3, is a benchmark

problem of structural topology optimization that has been

used extensively in experiments. Here, this problem is

also adopted to allow comparison of the SGA model with

the ER model. The dimensions are 20 (mm) × 10 (mm).

The thickness is 1 (mm). The beam is simply fixed at

its left and a downward concentrated load F = 1.0 times

1010 (N) is aplied at the mid-span on the right frame.

The design domain is divided into 20 × 20 meshes. The

constraints are Stressallowable = 3.5 × 107 (Pa) and

Displacementallowable = 7.0 (mm).

In this paper, the following material properties are as-

sumed: Young’s modulus E = 206 GPa, Poisson’s ratio



F

10mm

20mm

Fig.3 2D cantilever problem

ν = 0.3, and density ρ = 1000 kg/m3.

SGA model result ER model result

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

Fig.4 Results of SGA and ER model
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Fig.5 Comparison of weight evolution history

For each model, it is run with five trials using differ-

ent random numbers. The final resulting topologies are

shown in Figs. 4. These figures show that there are no

marked differences between the results obtained with the

SGA model and those with the ER model. For five trials,

the average weights of best solution by the SGA and ER

models are 190 (47.5%) and 185 (46.2%), respectively.

The evolution histories of average weight of best solution

for five trials are compared in Fig.5. The beginning 5000

individual evaluation times of evolution histories is de-

tailed in Fig.6. At the beginning of evolution, the ER
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Fig.6 Part of weight evolution histories of Fig.5

model is found to search the design domain more widely

than SGA model. The convergence speed by the ER

model is faster than that by the SGA model.

5. Mesh Dependency Discussion

In this section, several different meshes are examined

experimentally to discuss the mesh dependency of SX.

For application of GA to real-world engineering prob-

lems, different researchers define different fitness func-

tions to evaluate the individuals, which makes it dif-

ficult to decide which solution is the optimum. Espe-

cially for application of evolutionary computation algo-

rithms to multi-constrained problems, many fitness eval-

uation approaches have been proposed (18). According

to the above analyses, for application of GA to multi-

constrained problems, different geometric topologies may

be searched. Hence, for each mesh size, the experiment

is run with six trials using the same parameters.

5.1 Example: MBB Beam Problem The

MBB beam with dimensions of 2000×400 (mm) is shown

in Fig.7. The thickness is 10mm. The design domain is

a simple beam supported at its ends, with a downward

concentrated load F=5.12 × 109(N) applied at the mid-

span on the upper frame.

2000mm

400mm

F

Fig.7 MBB Beam Problem

For this example, the constraints are Stressallowable =

3.3 × 107(Pa) and Displacementallowable = 0.33 (mm).

5.2 Mesh Size In this paper, four meshes are

used: (100, 100), (100, 50), (50, 50) and (50, 25) (mm).

With these meshes, the mesh numbers are 20× 4, 20× 8,

40 × 8, and 40 × 16, respectively.

5.3 Experiments on Different Mesh Size

• Mesh Size (100, 100) (mm)



Geometric solutions of six trials for mesh size (100,

100) (mm) are shown in Fig.8.

( i ) ( ii )

( iii ) ( iv )

( v ) ( vi )

Fig.8 Results of Mesh= 20 × 4

• Mesh size (100, 50) (mm)

Geometric solutions of six trials for mesh size (100,

50) (mm) are shown in Fig.9.

(i)

(iii) (iv)

(v) (vi)

(ii)

Fig.9 Results of mesh = 20× 8

• Mesh size (50, 50) (mm)

For a mesh size of (50, 50) (mm), the resulting

topologies are shown in Fig.10.

( i ) ( ii )

( iii ) ( iv )

( v ) ( vi )

Fig.10 Results of Mesh = 40× 8

• Mesh size (50, 25) (mm)

The resulting topologies of six trials with a mesh

size of (50, 25) (mm) are shown in Fig.11.

.

5.4 Results Discussion Topology similarity

evaluation is a difficult problem, which refers “hole” num-

ber, position and shape in a structure. In this paper,

we only study the “hole” number to evaluate the topol-

ogy similarity. According to this definition, if two struc-

tures have the same “hole � numbers they are taken as

having the same topology. Comparisons of Fig.8, Fig.9,

( i ) ( ii )

( iii ) ( iv )

( v ) ( vi )

Fig.11 Results of Mesh = 40× 16

Fig.10 and Fig.11 show most of the topologies are similar.

Comparison of Fig.8 and Fig.10 demonstrates by square

meshes SX can search out a simple topology without well

domain division.

5.5 Comparison of SX with ESO ESO, as

an effective approach to structural topology optimization

problems, has been widely used to solve various engineer-

ing problems. As this method is also based on stress, a

comparison of ESO and SX is performed to further ex-

amine the mesh dependency of SX.

One solution of SX for different mesh sizes and ESO

results are shown in Fig.12. Accordingly, the numerical

properties of each solution are compared in Table 1.

mesh=(100,100)

mesh=(50 , 50)

mesh=(50 , 25)

mesh=(100,100)

mesh=(50 , 50)

mesh=(50 , 25)

(a) SX solutions (b) ESO solutions

mesh=(100, 50) mesh=(100, 50)

Fig.12 Solution Comparison of SX and ESO

The geometric results comparison of SX and ESO in

Fig.12 demonstrates that SX searched out the same topol-

ogy with different meshes. The numerical results shown

in Table 1 indicate that with decreasing mesh size, the

structure weight became progressively smaller. In con-

trast, for ESO, different mesh size yielded different re-

sulting topologies. Furthermore, the structure weight

does not decrease with decreasing mesh size. SX re-

sults demonstrated that a certain mesh size is sufficient

to obtain a feasible solution, and subsequent reductions

in mesh size do nothing to derive a more optimal solu-

tion. For this MBB beam problem, geometric topology

with mesh size (100, 100) (mm) is approximate with ge-



Table 1 Numerical Properties Comparison of Fig.12

Method Mesh (mm) Weight(%) Stressmax (Pa) Displacement (mm)

SX (100,100) 55.0 1.576e+07 0.310

(100,50) 51.8 2.589e+07 0.325

(50,50) 47.5 2.621e+07 0.326

(50,25) 47.2 2.569e+07 0.325

ESO (100,100) 48.1 3.145e+07 0.327

(100,50) 55.0 2.347e+07 0.307

(50,50) 62.5 1.587e+07 0.271

(50,25) 50.3 3.292e+07 0.328

ometric topology with mesh size (50, 50) (mm).

6. Discussion of Element Stress in

SX

During SX procedures, element stress is used to pro-

duce child individuals. In this section element stress

ranking method is adopted to discuss the impact of ele-

ment stress on the resulting topology.

It is well-known that the structure analysis results ac-

curacy is related to finite element size, especially for

stress. A good design needs sufficient accuracy of the

FEM for precise evaluation of stress and displacement.

On the other hand, if the GA search space is divided

with detailed meshes the chromosome becomes much long

that means large design variables. Usually large design

variables need large population and many evolution iter-

ation times to do a global exploration. Actually, because

designers cannot afford the long analysis time small pop-

ulation size and short iteration times are often prefered.

In this section, the element stress impact of SX is further

discussed by different domain division strategy for GA

and FEM for the purposes of both reducing GA design

variables and increasing the accuracy of FEM.

6.1 Element Stress Ranking Method After

finite element analysis, the elements are ranked according

to element stress value. The element with big stress value

is assigned a big rank number as shown in Fig.13. During

SX procedures, the element stress vaue is replaced by this

rank number. The modified SX procedures 1 and 2 are

listed as follows.

1. Randomly select two individuals, pi(t), pj(t) from

population P (t). Applying element stress ranking

method on pi(t), pj(t). The rank number of each

element is named pi(t).rank[k].

2. Sum the pi(t).rank[k] at each gene of pi(t) and

pj(t) by formula(7) to calculate p′

i(t).ability[k].

element stress ranking number

 N

N-1

3

2

1

large

small

Fig.13 Element Stress Ranking Method

p′

i(t).ability[k] = pi(t).rank[k]

+pj(t).rank[k],

k = 1 . . . N

(7)

6.1.1 Experiment The example is the MBB

beam problem with height:length=40 mm:240 mm. The

load is 1000N . Due to symmetry, only half of the struc-

ture is modeled. The half structure is discretized with

40 × 120 hexahedrons. The object is to minimize the

weight subjected to maximal stress Stressmax ≤ 2500

Pa and maximal displacement Displacementmax ≤ 2.0×

10−6mm.

The results by initial SX and element stress ranking

method are shown in Figs.14, 15. The numerical proper-

ties are listed in Table 2.

Fig.14 SX Solution

The resulting topology shown in Fig.15 has serious

checkerboard-like phenomena. However, the general out-

line profile is similar to Fig.14. About the checkerboard-

like phenomena, we suppose it is caused by the lost of



Table 2 Numerical Properties Comparison

Index Weight(%) Stressmax (Pa) Displacement (mm) Average Stress (Pa) Variance Stress

Fig.14 48.2 2452.10 1.97e-06 554.23 125.10

Fig.15 46.9 2499.23 1.99e-06 550.31 155.57

Fig.15 Solution of Element Stress Ranking

detail difference of elements.

Therefore, we can give these conclusions: the element

rank number can determine the general outline profile

and the checkerboard-like phenomena are related to the

difference of elements.

6.2 Different Domain Division Strategy for

GA and FEM In this section, element stress in-

fluence to the final solution is further discussed through

different GA and FEM domain divisions. For example,

each GA mesh corresponds to four finite elements in

Fig.16. This different domain division strategy for GA

and FEM produces two mapping processes, GA→FEM

and FEM→GA, between GA domain and FEM domain

as the big arrows in Fig.17.

(a)  GA Domain Division (b)  FEM Domain Division

1 2

3 4 3 4

21

gene element

1.1 1.2

1.3 1.4

Fig.16 Example of Different Domain Division strat-

egy for GA and FEM

FEA

110001110

chromosome

GA domain FEM domain

structure

element stress values

GA->FEM

FEM->GA
values for GA 

evaluation

SX

crossover

Fig.17 Mappping Processes between GA and FEM

6.2.1 GA→FEM Each gene of GA domain is

mapped to several elements of FEM domain to prepare

for finite element analysis(FEA) for each structure. For

this mapping technique, it is defined that : If one gene

of chromosome is “1” the corresponding FEM elements

are all set materials. On the contrary, if one gene of

chromosome is “0” the corresponding FEM elements are

all set void.

6.2.2 FEM→GA By this different domain di-

vision strategy the gene evaluation value pi(t).stress[k]

must be prepared before SX operation. Discussion in

section 6.1 demonstrates element stress ranking number

can determine the general boundary profile and the detail

differences of elments have influences on the inner struc-

ture of the final solution. According to this observation,

max-map and avg-map are defined for FEM→GA to

prepare pi(t).stress[k].

• max-map

Gene evaluation value pi(t).stress[k] is defined by

formula (8), where each gene corresponds to M el-

ements. For example, in Fig.16, the GA design

domain is divided into 4 meshes and the FEM do-

main is divided into 16 meshes. pi(t).stress[1] is

evaluated by the maximum of element[1.1].stress,

element[1.2].stress, element[1.3].stress and element

[1.4].stress.

pi(t).stress[k] = max.{element[k.m].stress

|m = 1 . . . M}

(8)

• avg-map

For this method, each gene is defined as the average

of the corresponding FEM elements stress, which

can be stated by formula (9). For this method,

both the element stress ranking number and influ-

ences of neighboring elements are considered.

pi(t).stress[k] = (
M
∑

m=1

element[k.m].stress)/M

(9)

6.2.3 Experiment The experiment problem is

same with section 6.1. The GA domain and FEM domain

are divided into 30 × 10 and 120 × 40 meshes, respec-

tively. The resulting topology by max-map and avg-map

method are shown in Fig.18 and Fig.19.



Fig.18 Resulting Topology by max-map Method

Fig.19 Resulting Topology by avg-map Method

Comparison of Fig.18 and Fig.19 shows the resulting

topology by max-map has checkerboard-like phenomena

but the topology by avg-map is much simple. These re-

sults further verify the differences of elements is the key

for suppressing checkerboard-like phenomena. In addi-

tion, the results also show it is practical to use different

domain division strategy for GA and FEM to reducing

GA design domain and increasing the accuracy of FEM.

7. Conclusion

In our previous study, a SX was introduced to solve

structural topology optimization problems. In this pa-

per, three types of SX parameter are discussed. First,

generation alternation models are used to speed up con-

vergence. Comparison of the SGA model and ER model

showed that the latter can quickly search a more optimal

solution. Second, four different meshes are adopted to

discuss the mesh dependency of SX through a number

of experiments for an MBB beam problem. The exper-

iments yielded certain square mesh size is sufficient for

SX to do structural topology optimization. Finally, a

stress ranking method was used to discuss the impact of

element stress on the final topology. Experiments demon-

strated that element stress rank number can determine

the general outline profile but with serious checkerboard-

like phenomena in inner structure. To reduce GA design

variables and obtain a good design a different domain di-

vision strategy was used for GA and FEM. Max-map and

avg-map methods are introduced to map several elements

of FEM to one gene of GA. Experiment results showed

avg-map was practical for obtainning a simple topology

with small GA search space. In addition, results com-

parison further verified differences of elements is the key

for suppressing checkerboard-like phenomena.
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