

gPot: Intelligent Compiler for GPGPU
using Combinatorial Optimization Techniques

Yuta TOMATSU, Tomoyuki HIROYASU, Masato YOSHIMI, Mitsunori MIKI
Graduate Student of School of Ewngineering, Faculty of Department of Life and Medical Sciences, Faculty of

Department of Science and Engineering
Doshisha Univ., Kyoto

ytomatsu@mikilab.doshisha.ac.jp

Key words : GPU, Optimization, High Performance Computing

1. INTRODUCTION
 Since improving accelerating operation frequency
of general purpose needs huge cost of consuming
power, general purpose processors have tried to
improve their performance by parallel processing on
multiple processing cores since 2002. At the same
time, many approaches to apply conventional
dedicated multimedia processing devices to general
purpose computing. Multimedia processing devices
generally have many numbers of cores and if these
cores can be used for calculation, it is very easy to
improve computational performance using multimedia
processing devices. Graphical Processing Unit
(GPU) is one of the most famous dedicated
multimedia processors in a personal computer
[3][5][9]. GPU can be regarded as a type of many-
core processor which has hundreds of processing cores.
One of the reasons why GPU has many numbers of
cores is that the real-time rendering for 3D model
requires vast amount of quite simple arithmetic
including massively parallelism [5].
 Large scale PC cluster Nebulae in China ranked
second at Top500 [7], the supercomputer ranking
project at June, 2010. The performance of 1.271
PFlops is marked by the hybrid system of Intel's Xeon
processors and NVIDIA's GPUs called Tesla.
Moreover, utilization of GPU as a low-cost and high-
performance accelerator is expanding including
TSUBAME, a campus grid in Tokyo Institute of
Technology and GPU cluster in Nagasaki University
[10][11].

 The information and technologies executing
General Purpose computing on GPU (GPGPU) is
opened to public and development environment is
provided by primary GPU vendors, such as NVIDIA
and ATI. While promoting improvement of the
environment, difficulty of implementing software
codes for GPGPU remains as a one of serious
problems. High and unique programming skill is
required to exploit performance of the hybrid system
consist of CPU and GPU. When program developers
have conventional sequential codes and they would
alter their codes into parallel version, they have to
change implementing codes for GPU and exploiting
parallelism in the code one by one. Several
researches to reduce developers' liability are
progressing. For example, there are a framework to
judge operation and executing device through
specifying codes which can be executed as stream
operation [12], and a compiler which generates
binaries executed on GPU and CPU automatically by
injecting directives to codes including parallelism [4].
Even when these parallel tools help program
developer to create parallel programs automatically,
defects of GPU programming still exists. Since
network performance between CPU and cores of GPU
is different and cache size of GPU is small, some parts
of program should be performed in CPU and the
others in GPU. Thus, when program is performed in
parallel using CPU and GPU, the optimized
parallelism should be obtained. This is very difficult
task.

 To solve this problem, we propose a system called
GPU Parallel Optimization Tool (gPot), which
accelerates general C-code used GPU partially. gPot
optimizes computing time by circulating searching
code regions which should be executed on GPU
reducing the developing cost. This paper also
discusses tuning technique for gPot based on
quantitative performance derived by preliminary
evaluation of Genetic algorithm. The structure of this
paper is as follows: First of all, Section 2 describes the
overview of GPU computing which this study focused
on. Section 3 introduces a proposal procedure called
gPot to optimize program codes for GPU. Test
benches to evaluate the affectivity of gPot are
explained in Section 4, and the results are discussed in
Section 5. Finally this preliminary study is concluded
in Section 6.

2. OVERVIEW OF GPU COMPUTING

2.1 Graphical Processing Unit (GPU)
 GPU stands for Graphical Processing Unit, is well
known hardware as an accelerator for 3D or 2D
graphics applications. Fig.1 shows the structure of
general architecture for NVIDIA’s GPU consists of
following components:
• Texture Processor Cluster(TPC)
• Thread Execution Manager
• Device Memory
• L2 Cache

Texture
 L2

TPC

Geometry
Shader

Vertex
Shader

Setup /
 Raster

Pixel
Shader

TPC TPC TPC TPC

TPC TPC TPC TPC TPC

Texture
 L2

Texture
 L2

Texture
 L2

Texture
 L2

Texture
 L2

Texture
 L2

Texture
 L2

Mem Mem Mem Mem Mem Mem Mem Mem

Fig.1 Outlines of GT200 series architecture

 As shown in Fig.1, Texture Processor Clusters
(TPCs) are arithmetic processing units, which have
some internal computation cores. GTX280 has 10
TPCs each of which provides Texture Filtering
Unit(TF) and some Streaming Multiprocessor(SM).
Each SM consists of:

• 8 Streaming Processors(SPs):
single floating-point processing pipelines
• 2 Special Function Units(SFUs):

processing pipelines for transcendent function
• A shared memory:

an on-chip memory shared by 8 SPs

2.2 CUDA Programming and PGI Accelerator
 CUDA stands for Compute Unified Device
Architecture provided by NVIDIA is typical
development environment for GPU. CUDA is
accessible to software developers though variants of
industry standard programming languages: C language
[2].
 Program developers using GPU accelerator must
have various skills of GPU programming: controls to
send data between Device and Host, invoking the
kernel function to process on Device, C programming
skill of high level. To reduce developers’ liability,
there is a compiler which generates binaries executed
on GPU and CPU automatically by injecting directives
to codes including parallelism. Here, we introduce the
PGI Accelerator.
 PGI analyzes holistic program structure and data
automatically, and separates codes for GPU and CPU
based on directives injected to codes including
parallelism [4].
 Fig.2 shows the example of how to use PGI
directive. When we set “#pragma acc region” on a
loop code including parallelism and compile this
source-code with PGI, PGI generates optimal binaries
executed on GPU.

Fig.2 The example of how to use PGI directive

3. gPot: PROPOSAL OF AN ACCELERATING
APPROACH BY GPU

3.1 Proposal method
 gPot is a system to produce optimized parallel
binary on the calculation environment using CPU and
GPU. Program developers prepare their C codes and
gPot optimize codes region processing on GPU by

1 #pragma acc region
2 for(i=0;i<N;i++){
3 for(j=0;j<N;j++){
4 for(k=0;k<N;k++){
5 c[i*N+j]=c[i*N+j]+a[i*N+k]*b[k*N+j];
6 }}}

evaluating a variation of execution times and produce
binaries shown in Fig.3.

Fig.3 Overvier of gPot

3.2 Algorithm of gPot
 gPot optimizes codes area processing on GPU as
following sequences:

1. gPot loads source code.
2. Code analyzer finds the candidates of blocks which

can be performed in Parallel.
3. Optimizer chooses the blocks which is suitable for

performing to run on CPU and GPU

 Current version of gPot only supports C language.
Code analyzer only extracts "for" sentence from code,
and makes a list of "for" sentence. In the future work,
other parallel way will be performed. As optimizer,
Genetic Algorithm (GA) is utilized. GA is one of
strong optimization methods and GA simulates
mechanisms of heredity and evolution of creatures.
GA operation is a process generating child-codes by
"Select", "Crossover", and "Mutation" of Genetic
Algorithm (GA). As the number of combinatorial
pattern of "for" getting larger according to the number
of "for" sentences in an input program, gPot finds an
optimum pattern of combination by GA. gPot intends
the list of "for" for bit-vector as GA's genetic
information. Fig.4 shows an example of injecting PGI
directives. The genetic information of gPot is
"[1,0,1]" when gPot inject directives to "for" of 1 and
5 line's in Fig.4 program.

Fig.4 	 Example of genetic information when gPot
injects PGI directives

3.3 gPot implementation
 gPot is developed by CUDA run on Host and
Device: Host is CPU, and Device is GPU. In CUDA,
we need to invoke Device’s process as the kernel
function from Host. When we invoke this function, we
assign the number of threads which process on Device
using Grid and Block defined on the basis of CUDA
[3]. Fig.5 shows an example of invoke the kernel
function. In actuality, we need to describe instruction
word allocating memory and sending data at 9 lines in
Fig.5 because we must send data to Device’s memory.

Fig.5 Example of invoke the kernel function

4. TEST SUITE
 To evaluate gPot, a test program including 28 loops
is examined computational time with various
parameters in it.

1 /* function processing on GPU */
2 __global__ void vecAdd(float *a,float *b,float *c){
3 int tid=threadIdx.x; /* Getting thread ID */
4 c[tid]=a[tid]+b[tid];
5 }
6
7 /* main function on CPU */
8 int main(void){
9 …
10 vecAdd <<< 1, 256 >>> (dA,dB,dC);
11 …
12}

1 0 1

Genetic information

 #pragma acc region
1 for(){
2 for(){
3 …
4 } }
 #pragma acc region
5 for(){
6 …
7 }

4.1 Evaluation environment
 The evaluation environment with GeForce 8400 GS
and AMD Opteron P1210 shown in Table.1 is used for
evaluation.

Table.1 Specification of evaluation platform
The number of CPU core 2
Core clock of CPU(GHz) 1.0

Memory size (GM) 2.5
The number of SM/SP in GPU 1 / 8

Core clock of GPU(MHz) 450

4.2 Test program adapted to gPot
 Test program consists of 28 loop sentences shown
in Fig.8 from Fig.10. Fig.7 shows a pseudo code of the
test program. In Fig.8 from Fig.10, INDI, N, and
GENIC are parameters of the test program.
 In this evaluation, Fig.6 shows a genetic
information which depends on loop structure of the
test program. In genetic information, “1” means
setting PGI directive on loop in relation to this potion.

Fig.6 Genetic information in this evaluation

Fig.7 Simple code of test program

Fig.8 Program of loop A

Fig.9 Program of loop B

Fig.10 Program of loop C

Table.2 Parameters of the test program
N 10

INDI 400
GENIC 100

Table.3 Pattern 1 of gPot’s parameters

Mutational rate 0.1, 0.5, 0.8
Population size 30

Table.4 Pattern 2 of gPot’s parameters

Mutational rate 0.1
Population size 20,30,40

4.3 Turning parameter of gPot

 gPot has three parameters; a mutation rate, a
population size, and a maximum step size. A
population size shows P mentioned in section 3.1. The
location of injected PGI directive is randomized
according to mutation rate.
In this section, target program with parameters shown
in Table.2 is evaluated by gPot with parameters;
mutation rate, population size and maximum step are
set as 0, 0 and 30, respectively.

1 FOR i=0 to INDI
2 	 	 FOR j=0 to GENIC

1 FOR i=0 to INDI
2 	 	 FOR j=0 to 4
3 	 	 	 	 FOR k=i to j
4 	 	 FOR j=0 to 4
5 	 	 FOR j=0 to GENIC

1 FOR i=0 to INDI
2 	 	 FOR j=0 to GENIC
3 	 	 FOR j=0 to 10
4 	 	 	 	 FOR k=0 to GENIC/N
5 	 	 FOR j=0 to 10

Loop A

FOR 世代=1 to 500
	 	 Loop B
	 	 Loop C
	 	 Loop C
	 	 Loop A
	 	 Loop C

Loop A Loop B Loop C Loop A

0 , 0

Loop C Loop C

Fig.11 and Fig.12 show a history of execution time of
elite-code with parameters shown in Table.3 and
Table.4.

Fig.11 History of execute time with parameters of
pattern 1

Fig.12 History of execute time with parameters of
pattern 2

4.4 Change parameter of the test program
 Here, we introduce an environment where we
examined advancement of elite-file’s execution time
when we change parameters of the test program.
Table.5 shows parameters of the test program, and
Table.6 shows parameters of gPot.
 Fig.13 shows an advancement of elite-file’s
execution time with each parameters of the test
program when we change its parameters. Legends in
Fig.13 show GENIC, and an abscissa axis in Fig.13
shows INDI.

Table.5 Parameters of the test program
N 10

INDI 20, 40, 60, 80, 100
GENIC 50, 100

Max trial number 500

Table.6 Parameters of gPot

Mutational rate 0.1
Population size 30

Max number of step 20

Fig.13 Advancement of execution time with each
parameters of test program

5. DISCUSSION
5.1 Discussion of gPot parameters

 As a mutation rate in gPot getting smaller, gPot
requires more number of steps until the convergence.
Fig.11 shows the execution time when mutation
rates are 0.8 and 0.5[ms] is later than 0.1 and 0.5,
respectively. Table.7 shows genetic information in
elite-code with mutation rate of 0.1, 0.5, and 0.8. A
elite-code with mutation rate of 0.8 parallelizes loop
sentence of third line in Fig.9. A cause of larger
computational time is the number of circulation as this
loop circulates up to 10 times, while its external loop
is repeated 400 times. It indicates that an extracting
advantage from parallelization is more serious than
time to data communication CPU and GPU to call
kernel function. As a mutation rate of 0.8 changes
quite a lot of the genetic information, gPot is not able
to preserve appropriate location of loop. This is almost
same with random selecting. In this case, a mutation
rate of 0.5 shows the best performance.

Table.7 Genetic information of elite-file
Mutational Genetic length

0.1
0.5
0.8

0110000000100001010100000000
0010000000100000010100000001
0110000000100000010001000000

As shown in Fig.12, A number of step to

convergence makes small according to a population
size in gPot is getting larger. It caused that the number
of evaluation in a step is larger compared to execution
with smaller size of population. In this case, the

smaller size of population is preferable such as 20. It
is because the number of steps to convergence
required almost same among various size of
population.

5.2 Influence of parameters in the test program
 Fig.13 shows that the fastest elite-code has
parameters whose INDI and GENIC are 20 and 50,
respectively. On the other hand, the slowest one has
parameters whose INDI and GENIC are 60 and 50.
Their genetic information are shown in Table.8. “A”
in Table.8. is the fastest elite-code, and “B” is the
latest one. Fluctuations of execution time of “A” and
“B” are shown in Fig.14.

Table.8 Genetic information
Elite-file Genetic information

A
B

0110001000100000010100000000
0000000000000000010000000000

Fig.14 Execution time’s history of A and B elite-
files

 As shown in Fig.14, genetic information of “A” is
similar to the mutation rate of 0.1 and 0.5 in Table.7,
while “B” parallelizes only one loop sentence. This
result shows that “B” did not operate “Selection” in
GA operation appropriately. Fig.14 also shows that
history of execution time in “B” unchanged from the
beginning. As a result, recent version of gPot has been
sensitive for an execution time of elite-code at first
step.

6. CONCLUSTION
 We propose a system called GPU Parallel
Optimization Tool (gPot), which accelerates general
C-code using GPU partially. A test program including
28 loops is examined with various parameters of test

program and gPot as a preliminary evaluation. We
found that gPot has a possibility to accelerate the
general C-code. At the same time, several types of
problems of gPot are made cleared. In the future
work, we will work on solving these problems.

REFERENCES
[1] V. Volkov and J. W. Demmel, “Benchmarking

GPUs to Tune Dense Linear Algebla”, SC’08,
2008.

[2] NVIDIA, “CUDA Technical Traning Volume I”,
2008.

[3] NVIDIA, “CUDA Programming Guide 2.3”,
2009

[4] The Portland Group, “PGI Fortran & C
Accelerator Programing Model”, ver 12, Mar.
2010

[5] Fujimoto.N, “Dense Matrix-Vector
Multiplication on the CUDA Architecture”,
Parallel Processing Let- ters, Vol. 18, No. 4, pp.
511–530, 2008

[6] Akihiro Shitara, “Implementation and Evaluation
of Self-organizing Map Algorithm on a Graphic
Processor”, Parallel and Distributed Computing
and Systems, track:668-027, 2009

[7] “Top 500”, http://www.top500.org (accesed Jul
21, 2010)

[8] Paul R. Dixon, “Harnessing graphics processors
for the fast computation of acoustic likelihoods
in speech recognition”, Computer Speech &
Language, vol. 23, no. 4, pp. 510–526, Oct.
2009

[9] Patrick Cardinal, “GPU Accelerated Acoustic
Likelihood Computations,” in Proc. of
INTERSPEECH, 2008

[10] Satoshi Matsuoka, “GPU accelerated computing–
from hype to mainstream, the rebirth of vector
computing”, Journal of Physics: Conference
Series, vol. 180, no. 1, 2009

[11] Ali Cevahir, “High performance conjugate
gradient solver on multi-GPU clusters using
hypergraph partitioning”, Computer Science -
Research and Development, vol. 25, no. 1-2, pp.
83-91, Apr. 2009

[12] Buck, I., et al., “Brook for GPUs : Stream
Computing on Graphics Hardware”, ACM
Transactions on Graphics, vol. 23, no. 3, pp.
777-786, Aug. 2004

