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1. INTRODUCTION 
  Since improving accelerating operation frequency 
of general purpose needs huge cost of consuming 
power, general purpose processors have tried to 
improve their performance by parallel processing on 
multiple processing cores since 2002.  At the same 
time, many approaches to apply conventional 
dedicated multimedia processing devices to general 
purpose computing. Multimedia processing devices 
generally have many numbers of cores and if these 
cores can be used for calculation, it is very easy to 
improve computational performance using multimedia 
processing devices.  Graphical Processing Unit 
(GPU) is one of the most famous dedicated 
multimedia processors in a personal computer 
[3][5][9].  GPU can be regarded as a type of many-
core processor which has hundreds of processing cores. 
One of the reasons why GPU has many numbers of 
cores is that the real-time rendering for 3D model 
requires vast amount of quite simple arithmetic 
including massively parallelism [5]. 
  Large scale PC cluster Nebulae in China ranked 
second at Top500 [7], the supercomputer ranking 
project at June, 2010. The performance of 1.271 
PFlops is marked by the hybrid system of Intel's Xeon 
processors and NVIDIA's GPUs called Tesla. 
Moreover, utilization of GPU as a low-cost and high-
performance accelerator is expanding including 
TSUBAME, a campus grid in Tokyo Institute of 
Technology and GPU cluster in Nagasaki University 
[10][11]. 

  The information and technologies executing 
General Purpose computing on GPU (GPGPU) is 
opened to public and development environment is 
provided by primary GPU vendors, such as NVIDIA 
and ATI. While promoting improvement of the 
environment, difficulty of implementing software 
codes for GPGPU remains as a one of serious 
problems. High and unique programming skill is 
required to exploit performance of the hybrid system 
consist of CPU and GPU.  When program developers 
have conventional sequential codes and they would 
alter their codes into parallel version, they have to 
change implementing codes for GPU and exploiting 
parallelism in the code one by one.  Several 
researches to reduce developers' liability are 
progressing. For example, there are a framework to 
judge operation and executing device through 
specifying codes which can be executed as stream 
operation [12], and a compiler which generates 
binaries executed on GPU and CPU automatically by 
injecting directives to codes including parallelism [4].  
Even when these parallel tools help program 
developer to create parallel programs automatically, 
defects of GPU programming still exists.  Since 
network performance between CPU and cores of GPU 
is different and cache size of GPU is small, some parts 
of program should be performed in CPU and the 
others in GPU.  Thus, when program is performed in 
parallel using CPU and GPU, the optimized 
parallelism should be obtained.  This is very difficult 
task. 



 

  To solve this problem, we propose a system called 
GPU Parallel Optimization Tool (gPot), which 
accelerates general C-code used GPU partially.  gPot 
optimizes computing time by circulating searching 
code regions which should be executed on GPU 
reducing the developing cost. This paper also 
discusses tuning technique for gPot based on 
quantitative performance derived by preliminary 
evaluation of Genetic algorithm. The structure of this 
paper is as follows: First of all, Section 2 describes the 
overview of GPU computing which this study focused 
on. Section 3 introduces a proposal procedure called 
gPot to optimize program codes for GPU. Test 
benches to evaluate the affectivity of gPot are 
explained in Section 4, and the results are discussed in 
Section 5. Finally this preliminary study is concluded 
in Section 6. 
 
2. OVERVIEW OF GPU COMPUTING 

2.1 Graphical Processing Unit (GPU) 
  GPU stands for Graphical Processing Unit, is well 
known hardware as an accelerator for 3D or 2D 
graphics applications. Fig.1 shows the structure of 
general architecture for NVIDIA’s GPU consists of 
following components: 
• Texture Processor Cluster(TPC) 
• Thread Execution Manager 
• Device Memory 
• L2 Cache 
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Fig.1 Outlines of GT200 series architecture 

  As shown in Fig.1, Texture Processor Clusters 
(TPCs) are arithmetic processing units, which have 
some internal computation cores. GTX280 has 10 
TPCs each of which provides Texture Filtering 
Unit(TF) and some Streaming Multiprocessor(SM). 
Each SM consists of: 

• 8 Streaming Processors(SPs):  
single floating-point processing pipelines 
• 2 Special Function Units(SFUs):  

processing pipelines for transcendent function 
• A shared memory: 

an on-chip memory shared by 8 SPs 
 

2.2 CUDA Programming and PGI Accelerator 
  CUDA stands for Compute Unified Device 
Architecture provided by NVIDIA is typical 
development environment for GPU.  CUDA is 
accessible to software developers though variants of 
industry standard programming languages: C language 
[2]. 
  Program developers using GPU accelerator must 
have various skills of GPU programming: controls to 
send data between Device and Host, invoking the 
kernel function to process on Device, C programming 
skill of high level. To reduce developers’ liability, 
there is a compiler which generates binaries executed 
on GPU and CPU automatically by injecting directives 
to codes including parallelism. Here, we introduce the 
PGI Accelerator. 
  PGI analyzes holistic program structure and data 
automatically, and separates codes for GPU and CPU 
based on directives injected to codes including 
parallelism [4]. 
  Fig.2 shows the example of how to use PGI 
directive. When we set “#pragma acc region” on a 
loop code including parallelism and compile this 
source-code with PGI, PGI generates optimal binaries 
executed on GPU. 
 

 

Fig.2  The example of how to use PGI directive 

3. gPot: PROPOSAL OF AN ACCELERATING  
APPROACH BY GPU 

3.1 Proposal method 
  gPot is a system to produce optimized parallel 
binary on the calculation environment using CPU and 
GPU.  Program developers prepare their C codes and 
gPot optimize codes region processing on GPU by 

1 #pragma acc region 
2 for( i=0;i<N;i++){ 
3  for( j=0;j<N;j++ ){ 
4    for( k=0;k<N;k++ ){ 
5      c[i*N+j]=c[i*N+j]+a[i*N+k]*b[k*N+j]; 
6 }}} 



 

evaluating a variation of execution times and produce 
binaries shown in Fig.3. 

 

Fig.3 Overvier of gPot 

3.2 Algorithm of gPot 
  gPot optimizes codes area processing on GPU as 
following sequences: 
 
1. gPot loads source code.  
2. Code analyzer finds the candidates of blocks which 

can be performed in Parallel. 
3. Optimizer chooses the blocks which is suitable for 

performing to run on CPU and GPU 
 

  Current version of gPot only supports C language. 
Code analyzer only extracts "for" sentence from code, 
and makes a list of "for" sentence.  In the future work, 
other parallel way will be performed.  As optimizer, 
Genetic Algorithm (GA) is utilized.  GA is one of 
strong optimization methods and GA simulates 
mechanisms of heredity and evolution of creatures. 
GA operation is a process generating child-codes by 
"Select", "Crossover", and "Mutation" of Genetic 
Algorithm (GA). As the number of combinatorial 
pattern of "for" getting larger according to the number 
of "for" sentences in an input program, gPot finds an 
optimum pattern of combination by GA. gPot intends 
the list of "for" for bit-vector as GA's genetic 
information. Fig.4 shows an example of injecting PGI 
directives.  The genetic information of gPot is 
"[1,0,1]" when gPot inject directives to "for" of 1 and 
5 line's in Fig.4 program. 

 

Fig.4 	 Example of genetic information when gPot 
injects PGI directives 

3.3 gPot implementation 
  gPot is developed by CUDA run on Host and 
Device: Host is CPU, and Device is GPU. In CUDA, 
we need to invoke Device’s process as the kernel 
function from Host. When we invoke this function, we 
assign the number of threads which process on Device 
using Grid and Block defined on the basis of CUDA 
[3]. Fig.5 shows an example of invoke the kernel 
function. In actuality, we need to describe instruction 
word allocating memory and sending data at 9 lines in 
Fig.5 because we must send data to Device’s memory. 
 

 

Fig.5  Example of invoke the kernel function 

 
4. TEST SUITE 
  To evaluate gPot, a test program including 28 loops 
is examined computational time with various 
parameters in it. 
 

1 /* function processing on GPU */ 
2 __global__ void vecAdd(float *a,float *b,float *c){ 
3    int tid=threadIdx.x;   /* Getting thread ID */ 
4    c[tid]=a[tid]+b[tid]; 
5 } 
6 
7 /* main function on CPU */ 
8 int main(void){ 
9    … 
10   vecAdd <<< 1, 256 >>> (dA,dB,dC); 
11   … 
12} 
 

1   0   1 

Genetic information 

   #pragma acc region 
1  for( ){ 
2    for( ){ 
3    … 
4  } } 
   #pragma acc region 
5  for( ){ 
6    … 
7  } 



 

4.1 Evaluation environment 
  The evaluation environment with GeForce 8400 GS 
and AMD Opteron P1210 shown in Table.1 is used for 
evaluation. 

Table.1 Specification of evaluation platform 
The number of CPU core 2 
Core clock of CPU(GHz) 1.0 

Memory size (GM) 2.5 
The number of SM/SP in GPU 1 / 8 

Core clock of GPU(MHz) 450 
 

4.2 Test program adapted to gPot 
  Test program consists of 28 loop sentences shown 
in Fig.8 from Fig.10. Fig.7 shows a pseudo code of the 
test program. In Fig.8 from Fig.10, INDI, N, and 
GENIC are parameters of the test program. 
  In this evaluation, Fig.6 shows a genetic 
information which depends on loop structure of the 
test program. In genetic information, “1” means 
setting PGI directive on loop in relation to this potion. 
 
 

 

Fig.6  Genetic information in this evaluation 

 

Fig.7  Simple code of test program 

 

Fig.8  Program of loop A 

 

Fig.9  Program of loop B 

 

Fig.10  Program of loop C 

Table.2 Parameters of the test program 
N 10 

INDI 400 
GENIC 100 

 
Table.3 Pattern 1 of gPot’s parameters 

Mutational rate 0.1, 0.5, 0.8 
Population size 30 

 
Table.4 Pattern 2 of gPot’s parameters 

Mutational rate 0.1 
Population size 20,30,40 

 
4.3 Turning parameter of gPot 

  gPot has three parameters; a mutation rate, a 
population size, and a maximum step size. A 
population size shows P mentioned in section 3.1. The 
location of injected PGI directive is randomized 
according to mutation rate. 
In this section, target program with parameters shown 
in Table.2 is evaluated by gPot with parameters; 
mutation rate, population size and maximum step are 
set as 0, 0 and 30, respectively. 

1  FOR i=0 to INDI 
2  	 	 FOR j=0 to GENIC 
 

1  FOR i=0 to INDI 
2  	 	 FOR j=0 to 4 
3  	 	 	 	 FOR k=i to j 
4  	 	 FOR j=0 to 4 
5  	 	 FOR j=0 to GENIC 
 
 

1  FOR i=0 to INDI 
2  	 	 FOR j=0 to GENIC 
3  	 	 FOR j=0 to 10 
4  	 	 	 	 FOR k=0 to GENIC/N 
5  	 	 FOR j=0 to 10 
 

 
Loop A 
 
FOR 世代=1 to 500  
	 	 Loop B 
	 	 Loop C 
	 	 Loop C 
	 	 Loop A 
	 	 Loop C 
 
 

Loop A Loop B Loop C  Loop A 

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 

Loop C     Loop C 



 

Fig.11 and Fig.12 show a history of execution time of 
elite-code with parameters shown in Table.3 and 
Table.4. 
 

 

Fig.11  History of execute time with parameters of 
pattern 1 

 

Fig.12  History of execute time with parameters of 
pattern 2 

4.4 Change parameter of the test program 
  Here, we introduce an environment where we 
examined advancement of elite-file’s execution time 
when we change parameters of the test program. 
Table.5 shows parameters of the test program, and 
Table.6 shows parameters of gPot. 
  Fig.13 shows an advancement of elite-file’s 
execution time with each parameters of the test 
program when we change its parameters. Legends in 
Fig.13 show GENIC, and an abscissa axis in Fig.13 
shows INDI. 
 

Table.5 Parameters of the test program 
N 10 

INDI 20, 40, 60, 80, 100 
GENIC 50, 100 

Max trial number 500 

 
Table.6 Parameters of gPot 

Mutational rate 0.1 
Population size 30 

Max number of step 20 
  

 

Fig.13  Advancement of execution time with each 
parameters of test program 

5. DISCUSSION 
5.1 Discussion of gPot parameters 

  As a mutation rate in gPot getting smaller, gPot 
requires more number of steps until the convergence. 
Fig.11 shows the execution time when  mutation 
rates are 0.8 and 0.5[ms] is later than 0.1 and 0.5, 
respectively. Table.7 shows genetic information in 
elite-code with mutation rate of 0.1, 0.5, and 0.8. A 
elite-code with mutation rate of 0.8 parallelizes loop 
sentence of third line in Fig.9. A cause of larger 
computational time is the number of circulation as this 
loop circulates up to 10 times, while its external loop 
is repeated 400 times. It indicates that an extracting 
advantage from parallelization is more serious than 
time to data communication CPU and GPU to call 
kernel function. As a mutation rate of 0.8 changes 
quite a lot of the genetic information, gPot is not able 
to preserve appropriate location of loop. This is almost 
same with random selecting. In this case, a mutation 
rate of 0.5 shows the best performance.  

Table.7 Genetic information of elite-file 
Mutational Genetic length 

0.1 
0.5 
0.8 

0110000000100001010100000000 
0010000000100000010100000001 
0110000000100000010001000000 

 
As shown in Fig.12, A number of step to 

convergence makes small according to a population 
size in gPot is getting larger. It caused that the number 
of evaluation in a step is larger compared to execution 
with smaller size of population. In this case, the 



 

smaller size of population is preferable such as 20. It 
is because the number of steps to convergence 
required almost same among various size of 
population. 
  

5.2 Influence of parameters in the test program 
  Fig.13 shows that the fastest elite-code has 
parameters whose INDI and GENIC are 20 and 50, 
respectively. On the other hand, the slowest one has 
parameters whose INDI and GENIC are 60 and 50. 
Their genetic information are shown in Table.8. “A” 
in Table.8. is the fastest elite-code, and “B” is the 
latest one. Fluctuations of execution time of “A” and 
“B” are shown in Fig.14. 
 

Table.8 Genetic information 
Elite-file Genetic information 

A 
B 

0110001000100000010100000000 
0000000000000000010000000000 

 

 

Fig.14  Execution time’s history of A and B elite-
files 

  As shown in Fig.14, genetic information of “A” is 
similar to the mutation rate of 0.1 and 0.5 in Table.7,  
while  “B” parallelizes only one loop sentence. This 
result shows that “B” did not operate “Selection” in 
GA operation appropriately. Fig.14 also shows that 
history of execution time in “B” unchanged from the 
beginning. As a result, recent version of gPot has been 
sensitive for an execution time of elite-code at first 
step. 
 
6. CONCLUSTION 
  We propose a system called GPU Parallel 
Optimization Tool (gPot), which accelerates general 
C-code using GPU partially. A test program including 
28 loops is examined with various parameters of test 

program and gPot as a preliminary evaluation. We 
found that gPot has a possibility to accelerate the 
general C-code. At the same time, several types of 
problems of gPot are made cleared.  In the future 
work, we will work on solving these problems. 
 

REFERENCES 
[1] V. Volkov and J. W. Demmel, “Benchmarking 

GPUs to Tune Dense Linear Algebla”, SC’08, 
2008. 

[2] NVIDIA, “CUDA Technical Traning Volume I”, 
2008. 

[3] NVIDIA, “CUDA Programming Guide 2.3”, 
2009 

[4] The Portland Group, “PGI Fortran & C 
Accelerator Programing Model”, ver 12, Mar. 
2010 

[5] Fujimoto.N, “Dense Matrix-Vector 
Multiplication on the CUDA Architecture”, 
Parallel Processing Let- ters, Vol. 18, No. 4, pp. 
511–530, 2008 

[6] Akihiro Shitara, “Implementation and Evaluation 
of Self-organizing Map Algorithm on a Graphic 
Processor”, Parallel and Distributed Computing 
and Systems, track:668-027, 2009 

[7] “Top 500”, http://www.top500.org (accesed Jul 
21, 2010) 

[8] Paul R. Dixon, “Harnessing graphics processors 
for the fast computation of acoustic likelihoods 
in speech recognition”, Computer Speech & 
Language, vol. 23, no. 4, pp. 510–526, Oct. 
2009 

[9] Patrick Cardinal, “GPU Accelerated Acoustic 
Likelihood Computations,” in Proc. of 
INTERSPEECH, 2008 

[10] Satoshi Matsuoka, “GPU accelerated computing–
from hype to mainstream, the rebirth of vector 
computing”, Journal of Physics: Conference 
Series, vol. 180, no. 1, 2009 

[11] Ali Cevahir, “High performance conjugate 
gradient solver on multi-GPU clusters using 
hypergraph partitioning”, Computer Science - 
Research and Development, vol. 25, no. 1-2, pp. 
83-91, Apr. 2009 

[12] Buck, I., et al., “Brook for GPUs : Stream 
Computing on Graphics Hardware”, ACM 
Transactions on Graphics, vol. 23, no. 3, pp. 
777-786, Aug. 2004  


