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Appropriate interpolation and extrapolation search methods are important in evolutionary 
computation. This paper presents a discussion of interpolation and extrapolation search methods in 
continuous optimization problems. First, we defined interpolation and extrapolation searches 
determined from the search domains, and introduce the stochastic multiple point search algorithm, 
which is based on simulated annealing, as an interpolation and extrapolation search algorithm. The 
effectiveness of interpolation and extrapolation search are discussed through numerical test functions. 
The results showed that interpolation search increases accuracy of the search for optimum solutions 
and extrapolation search increases the discovery rate of optimum solutions. 
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1.  INTRODUCTION 
Sakuma introduced the distance scale into the domain of design variables for genetic algorithms (GA), 

defined a crossover method for generating children between parents as interpolation crossover method, and 
defined a crossover method for generating children toward a direction away from parents as extrapolation 
crossover method [1]. 

Here, we propose simulated annealing (SA) with introduction of a mechanism of interpolation and 
extrapolation crossover, and introduce the two-point search algorithm, which is based on SA, as an 
interpolation and extrapolation search algorithm. The effectiveness of interpolation and extrapolation 
search was discussed through numerical test functions. 

2.  SIMULATED ANNEALING 
By simulating annealing—a process employed to obtain a perfect crystal by the gradual cooling of a 

melted solid—SA obtains the minimum energy value. This energy is equivalent to the objective function 
value in conventional optimization problems. 

The SA algorithm consists of three operations: generation, acceptance, and cooling. The generation 
operation changes the current solution  and generates the next solution  using a probability distribution. 
The acceptance operation decides whether the change is acceptable. This acceptance is determined from the 
difference  of the current energy  and energy of the next solution 

 as well as the temperature parameter . Metropolis et al. introduced a simple algorithm 
(shown in (1)) to provide efficient simulation. 

  (1) 

That is, if , the change is accepted. Otherwise, the modification is accepted at a certain 
probability. The cooling operation generates the temperature of the next state from the temperature of the 
current state. If the temperature parameter  is large, the probability of accepting the solution with energy 
larger than that of the previous solution increases, while the probability of accepting the solution with 
smaller energy decreases if  is low. Therefore, at the beginning of the simulation, both the temperature 
and the acceptance levels must be high. As the simulation proceeds and temperature decreases, the search 
point attains the global optimum solution. 



3.  RELATIONSHIP BETWEEN LOCAL SEARCH AND GLOBAL SEARCH 
It is important for neighborhood of SA to become large when search points exist near suboptimal 

solutions, and become small when search points exist near optimal solution. The design space can be 
divided into two domains: the interpolation domain and the extrapolation domain. Given a distance 
measure d, the interpolation domain Din and the extrapolation domain Dex are defined as (2) (3), where S 
denotes the design space. The interpolation domain and the extrapolation domain are illustrated in Fig.1.  
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Fig. 1 Concept of interpolation and extrapolation domains 

 
When a suboptimal solution lies between two search points, it is not possible to find the suboptimal 

solution unless we search between the two points creating an interpolation domain. On the other hand, 
When a suboptimal solution does not lie between two search points, it is not possible to find the suboptimal 
solution unless we search between the two points creating extrapolation domain. Therefore, it is necessary 
for SA to switch the search between interpolation and extrapolation domains according to the situation. 

4.  PROPOSED ALGORITHM 
To define the interpolation and extrapolation domains in SA, we propose an algorithm that explores the 

design space with two search points. First, the algorithm sets two search points in the design variable 
domain at random. Second, the algorithm searches using the distance between the two points as a threshold 
value. We describe the search point with highest evaluation as the best search point, and the search point 
with lower evaluation as the sub-best search point. When the distance is shorter than the threshold value, 
the algorithm considers that the suboptimal solution does not exist, and then switches the search into the 
extrapolation domain. If the distance between two points is large, the algorithm considers that the 
suboptimal solution will exist and then switches the search into the interpolation domain. In this way, the 
algorithm switches the search between interpolation and extrapolation domains according to the situation. 

4.1 Interpolation search 
In this section, we discuss how to explore the design space using the interpolation search. The 

algorithm generates search points in the interpolation domain, which lies between two points as shown in 
Fig. 1. Then, we defined two interpolation domains: one domain considered the correlation between design 
variables, while the other did not. The former is a hypercube as in Fig. 2(a), while the latter is a 
hypersphere as in Fig. 2(b). The interpolation search is as follows. 
      -------------------------------------------------- 

[Algorithm of interpolation search] 
Step 1: Generate N search points between the best search point and sub-best search point. 
Step 2: The energy of the best point of N search points is compared with the energy of sub-best search   
            point. In addition, the sub-best search point is selected if it meets the requirement of Metropolis.  
            If there is no point meeting the requirement of Metropolis, the point at the shortest distance   
            from the best search point is selected. 
Step3: Return to Step 1 if the distance between the best search point and the sub-best search point is  
           outside the threshold value Z.            
Step4: Perform extrapolation search if the distance between the two search points is shorter than Z. 

      -------------------------------------------------- 



 

    
Fig. 2 Interpolation domain between two points 

4.2 Extrapolation search 
Extrapolation search proceeds in a direction away from a certain search point. Therefore, the search 

will restart if searching stops in interpolation search. 
 Extrapolation search is as follows. 

      -------------------------------------------------- 
[Algorithm of interpolation search] 
Step 1: Generate M search points in extrapolation domain created by dividing design value   
            in neighborhood R. 
Step 2: The energy of the best point of M search points is compared with the energy of the best point  
            among M search points. The sub-best search point is selected if it meets the requirement of  

Metropolis. If there is no point meeting the requirement of Metropolis, the point at the shortest 
distance from the best search point is selected. 

Step 3: Return to Step 1 if annealing step is less S times. 
Step 4: Perform interpolation search if annealing step is more S times. 

      -------------------------------------------------- 

5.  PERFORMANCE VERIFICATION OF THE PROPOSED ALGORITHM 

5.1 Optimization problems 
Three functions were used as the optimization problems in this study: the Rastrigin function, Schwefel 

function, and Rosenbrock function. The Rastrigin function and Schwefel function are multi-peak functions 
with no correlations between design variables. The Rosenbrock function is a single-peak function in which 
there are correlations between design variables. We chose the Rastrigin function and Schwefel function to 
verify the global search performance of the proposed SA. We chose the Rosenbrock function to verify the 
local search performance of the proposed SA. These three functions are shown below. 

 
○Rastrigin function 

     

 

○Schwefel function 

     

 
○Rosenbrock function 

     

 



5.2 Numerical simulation 
The parameters of the proposed SA are shown in Table I with reference to Ono[2]. We compared the 

proposed algorithm with “Simulated Annealing with Advanced Adaptive Neighborhood (SA/AAN)”[2], 
because we verified the performance of the proposed algorithm. The dimension number was 5. We 
performed 20 trials with the proposed SA and SA/AAN. The results of rearranging optimum solutions in 
ascending order are shown in Fig. 3. The vertical axis in Fig. 3 shows the values and the horizontal axis 
shows trial step. 

We verified the search in the interpolation domain with a hypercube in Fig. 2(a) and hypersphere in 
Fig. 2(b) to verify the interpolation domain in interpolation search. The optimization functions were the 
Rastrigin function and Rosenbrock function in 5 dimensions. The results are shown in Fig. 4. 

To verify the availability of the extrapolation search in the proposed algorithm, we evaluated two 
methods: (1) changed Step 4 in the algorithm of interpolation search to “random sub-best search point 
search,” and (2) the proposed algorithm explained in section 4. We call (1) “interpolation and random 
search” and (2) “interpolation and extrapolation domain.” The optimization function is each Rastrigin 
function and Schwefel function in 5 dimensions. The results are shown in Fig. 5. 

Table I.  Parameters of the proposed algorithm 

Annealing steps 320000 
Cooling steps 32 
Max (initial) temperature 10 
Min (final) temperature 0.01 
Search number in interpolation domain 10 
Threshold value 1.E-05 
Step of search in extrapolation domain 10 
Search number in extrapolation domain 10 
Neighborhood in extrapolation search 5 

6.  RESULTS AND DISCUSSION 

6.1 Verification of algorithm performance 
With the exception of the Rosenbrock function, the proposed algorithm showed better performance 

than SA/AAN (Fig. 3). We consider that it is bad for the solution accuracy of the proposed algorithm in the 
Rosenbrock function to form a hypercube interpolation domain. The interpolation domain of the proposed 
algorithm is a hypercube in Fig. 2(a). Therefore, interpolation search is dependent on treatment of the 
coordinate axes. In fact, the solution accuracy of proposed algorithm was poorer in the Rosenbrock 
function because interpolation search does not consider correlations between design variables. 

6.2 Determination of interpolation domain 
The solution accuracy of the hyperspherical domain was better than that of the hypercube domain 

shown in Fig. 4(a), and the solution accuracy of the hypercube domain was better in Fig. 4(b). 
We consider that interpolation search with a hypercube domain is effective to search in the coordinate 

axes as the Rastrigin function because interpolation search searches each design variable in dimension. The 
Rosenbrock function, in which there are correlations between design variables, is effective to search design 
variables in all domains. As a result, the Rosenbrock function is effective to search the interpolation 
domain as shown in Fig. 2(b). 

6.3 Effectiveness of extrapolation search 
The solution accuracy of “interpolation and extrapolation search” was better than that of “interpolation 

and random search” as shown in Fig. 5(a), and the solution accuracy of “interpolation and random search” 
was better as shown in Fig. 5(b). 

We consider that the differences in the results were caused by the differences in the search number in 
interpolation and extrapolation domains between the two methods. To verify this suggestion, we counted 
the search number in the interpolation and extrapolation domains. The results are shown in Table II. 



 
                  (a) Rastrigin function        (b) Schwefel function                (c) Rosenbrock function 

Fig. 3 Distribution of optimum solution with the proposed algorithm and SA/AAN 
 

 
                                          (a) Rastrigin function                      (b) Rosenbrock function 

Fig. 4 Distribution of optimum solutions in hypercube domain and hyperspherical domain 
 
 “Interpolation and extrapolation domain” required fewer searches in the interpolation domain than 

“interpolation and random search” in the Rastrigin function (Table II). When we investigated the situation 
of search, two methods has found valley of optimal solution. The accuracy of the solutions obtained by the 
Rastrigin function in “interpolation and extrapolation search” was lower because of the reduction in 
number of searches in the interpolation domain that have local search capability. 

The Schwefel function has optimal solutions separated from the sub-optimal solutions, and finding the 
turning point in the optimal solution was easy by performing a global search. The accuracy of the solutions 
obtained by the Schwefel function in “interpolation and extrapolation search” was better because of the 
extensive search in the extrapolation domain that has global search capability. 

From the above observations, we consider the solution accuracy of the proposed algorithm to be better 
than those of SA/AAN in multi-peak functions shown in Fig. 3 because of the effective search in the 
extrapolation domain. 

 
                                            (a) Rastrigin function                          (b) Schwefel function 

Fig. 5 Distribution of optimum solutions in  
“interpolation and extrapolation search” and “interpolation and random search” 

 
Table II.  Search numbers in interpolation domain and extrapolation domain 

 Rastrigin Schwefel 

  
Search number 
in interpolation 

Search number 
in extrapolation  

Search number 
in interpolation  

Search number 
in extrapolation  

Interpolation and 
extrapolation search 174100 125900 161880 138120 
interpolation and 
random search 316963 3037 316479 3521 



6.3 Extrapolation search parameters  
In this section, we consider the parameters of extrapolation search: “Search number in extrapolation 

domain” and “Neighborhood in extrapolation search.” The average, maximum, and minimum evaluated 
values of 20 trials are shown in Fig. 6 when we changed the parameter “search number in extrapolation 
domain” from 5 to 50.The solution accuracy of the proposed algorithm decreased as search number in 
extrapolation domain increased. This was due to a reduction in the search number in the interpolation 
domain because of the increased search number in the extrapolation domain. In the Schwefel function, the 
solution accuracy of the proposed algorithm was poorer with extrapolation search number below 10. This 
was because the proposed algorithm cannot find the turning point of optimal solution because the algorithm 
cannot perform a sufficient extrapolation search. On the other hand, the solution accuracy of the proposed 
algorithm with extrapolation search number of more than 15 was better. Therefore, it was efficient for 
functions with optimal solutions separated from sub-optimal solutions, such as the Schwefel function, to 
generate many extrapolation search points.The average, maximum, and minimum evaluated values of 20 
trials are shown in Fig. 7 when we changed the parameter “Neighborhood in extrapolation search” from 1 
to 9. Solution accuracy was related to “Neighborhood in extrapolation search” in the Rastrigin function as 
shown in Fig. 7. In addition, the solution accuracy of the proposed algorithm with a change in the 
neighborhood parameter from 5 to 3 was better in the Schwefel function (Fig. 7). In addition, the solution 
accuracy improved in the Rosenbrock function as the neighborhood increased (Fig. 7). Therefore, the 
neighborhood of the extrapolation search differs among optimization problems. 

                (a) Rastrigin function                             (b) Schwefel function                              (b) Rosenbrock function 
Fig. 6 Results with changes in neighborhood in the extrapolation domain 

 

 
                         (a) Rastrigin function                              (b) Schwefel function                             (b) Rosenbrock function 

Fig. 7 Results with changes in search number in the extrapolation domain 

7.  CONCLUSION 
In this paper, we proposed an SA with a mechanism of interpolation and extrapolation crossover. To 

verify the availability of the proposed algorithm, we performed comparisons with SA/AAN. The results 
indicated that functions with correlations between design variables are effective to search design variables 
in all domains.  
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