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Abstract—A novel lighting control system using the Actor
- Critic algorithm was developed, in which users can set the
brightness of the system through sensory operation, such as
”much brighter” or ”slightly darker”. During development, this
system must learn two states, i.e., the demands of the user and
the brightness around the user. The Actor - Critic algorithm
was applied for this purpose, and a simplified algorithm was
developed. The effectiveness and usefulness of the proposed
algorithm are discussed here through numerical simulations.

Keywords-Lighting; Sensory scale; Reinforcement learning;
Actor-Critic

I. INTRODUCTION

Traditional lighting systems control multiple banks of
lights at once. In the near future, new devices such as light-
emitting diodes (LEDs) and organic light-emitting diodes
(OLED) will change lighting environments, and the number
of lights to be controlled will increase dramatically. At
present, it is difficult to control lights in such numbers
using conventional control systems. The development of
methods to control these new devices on an individual
basis will allow the system to perform intelligent actions
and achieve various lighting environments[1][2]. It will be
necessary to change the lighting system user interface (UI)
to address this increase in number of lights. Adjusting the
brightness of many lights on an individual basis places a
large burden on the user[3][4]. The development of a UI
capable of interpreting users’ sensory indications, such as
”much brighter” or ”slightly darker”, will be very convenient
for users[5][6]. However, the definitions of the sensory scale,
such as ”much” or ”slightly”, differ for each user[7]. To
address this issue, we have developed a learning mechanism
consisting of an Actor - Critic algorithm[8], which is a rein-
forcement learning method, to allow the system to learn the
users’ sensory lighting requirements. This system changes
the illuminance according to two states: the user’s sensory
indications and the degree of change in illuminance. The

amount of brightness is changed corresponding to the users’
sensory indications. However, the amount of brightness
change can be varied relative to the present level even with
the same sensory indication.

This is because the users’ perceptions differ with variation
in the brightness of the surrounding environment[9][10].
Thus, the Actor - Critic algorithm should learn two states:
the user’s sensory indications and the degree of change in
brightness. When there are m choices for sensory indication
and n choices for the degree of change in brightness, the
total number of conditions is mn. The conventional Actor
- Critic algorithm should learn all of these states and
conditions[11][12]. However, the target is a lighting system,
which we assume will have many possible conditions. This
increases the number of possible states and results in huge
computational costs. The time required for learning should
be as short as possible, and an efficient learning algorithm
is necessary for this system. To make learning of the users’
sensory scale more efficient, we propose a Two-Actor -
Critic algorithm in this paper, which is an Actor - Critic
algorithm with two types of Actor applying to the two types
of state.

II. LIGHTING CONTROL SYSTEM
USING SENSORY OPERATION

As described in the previous section, it is efficient that
users can operate a lighting system by sensory order, such as
”much brighter” or ”slightly darker”[5][6]. In this section,
the overview and the requirements of the lighting control
system using sensory operation are described.

A. Overview

An overview of the proposed system is shown in Fig. 1.
This system consists of a control computer, control de-

vices, lights, and illuminance sensors. Each light can be con-
trolled by the control computer on an individual basis. The
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Fig. 1. Overview of the Lighting Control System through Sensory
Operation

user conveys the required amount of change in brightness
to the system via the Graphical User Interface (GUI) on the
computer, as shown in Fig. 1, or using voice input, etc. The
user then selects the required change from the eight decision
branches presented in the GUI: ”very much brighter”, ”much
brighter”, ”brighter”, ”slightly brighter”, ”slightly darker”,
”darker”, ”much darker”, and ”very much darker”. The
system changes brightness in the room according to the user
input. This process is repeated until the user is satisfies with
the ambient lighting conditions.

B. Requirements

The requirements of this system are as follows:
• Control of Illuminance

Conventionally, users used to adjust the luminance [i.e.,
the index of the brightness illuminating an object in
units of candela per square meter (cd/m2)] of lighting
by a switch. However, users want a change of the
illuminance [i.e., the index of the brightness emitted by
the light in units of lux (lx)] around them. Therefore,
this system operates brightness in the room based not
on luminance, but on illuminance. The system achieves
the illuminance control by using a illuminance sensor,
because it can control only the luminance of lighting
directly. The control algorithm of the system described
here is the same as the references [13][14].

• Learning of the Sensory Scale
As the sensory scale, such as the definitions of ”very”
and ”slightly”, differs for each user, the system learns
the sensory scale for each user[7]. Even if a user gives
the same instructions to the system, the changes in
illuminance by the system will vary in relation to the
illuminance around the user[9][10]. Therefore, the sys-
tem should learn the amount of change in illuminance
according to both the user’s instructions and also the
illuminance around the user. The number of learning

cycles of the system is equal to the number of user
demands on this system. Therefore, the system requires
an efficient algorithm to reduce the time for learning by
the system.

The precise learning of the sensory scale is described in
the following section.

III. LEARNING OF THE SENSORY SCALE

This section describes reinforcement learning and the
Actor - Critic algorithm. The proposed method, i.e., the Two-
Actor - Critic Algorithm, is also described.

A. Reinforcement Learning

Reinforcement learning is a method to learn action policy
with adaptation to the various states of an environment by
trial and error[15][16]. Reinforcement learning includes the
concept of the environment, which is the target problem on
learning and has several states, and the concept of an agent,
which plays a learning role and decides on the appropriate
action in relation to the state of the environment based on
its own policy. Because the agent needs a guidepost to
learn, the environment provides the agent with a reward
as an evaluation of the action. In this problem, users are
included in the environment, and reward is determined
according to changing of users’ demand. The agent updates
the policy to maximize the eventual sum of rewards. In
reinforcement learning, the Markov Decision Process (MDP)
is used to model the dynamics of the environment. MDP is
the probability process model in which the probability that
an event will occur in the future is determined according
not to the past states but is based only on the current state.
Therefore, the sum Rt of rewards is eventually expressed as
(1)[16].

Rt =
∞∑

k=0

γkrt+k+1 (1)

rt is the reward in discrete time t. γ is the discount rate,
which fulfills 0 ≤ γ ≤ 1. The value V π(s) of the state s is
formulated as (2)[16].

V π(s) = Eπ{Rt|st = s} = Eπ{
∞∑

k=0

γkrt+k+1|st = s} (2)

st is the state in discrete time t, and π is the policy.
Eπ{} is the expected value given when the agent follows
the policy π. The purpose of learning is the acquisition of
the policy that maximizes the value V π(s) for every state s.
In the problem addressed by this system, two types of state,
i.e., the illuminance around the user and the demands of
the user, are decided from within discrete spaces (the state
of the illuminance around the user is delimited with some
intervals). The action is decided from within a consecutive
space, which is the amount of change in illuminance.



B. Actor - Critic Algorithm

In the target system, states of actions are defined as
consecutive values. Thus, this system uses an Actor - Critic
algorithm, which is a type of reinforcement learning and is
suitable for learning under such conditions[8][16]. In this
algorithm, the agent consists of an Actor that selects the
action and a Critic that evaluates the action. The Actor
decides the action a according to the probabilistic policy
π(s). The Critic has the state value function V (s), which
indicates by how much each state is a good state. An
overview of the Actor - Critic algorithm is shown in Fig.
2.
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Fig. 2. Overview of Actor - Critic Algorithm

The processes shown in Fig. 2 can be explained as
follows:

(1) State Observation
The agent observes the state of the environment st .

(2) Action
The Actor decides on the action at according to
the probabilistic policy π(st).

(3) Reward
The state of the environment changes to the state
st+1 by the action at . Then, the environment gives
the reward rt to Critic as the evaluation of the
action.

(4) Reinforcement Signal
The Critic observes the reward rt and the next state
of the environment st+1 . The Critic then calculates
the Temporal Difference error (TD error) δt as the
reinforcement signal for the Critic and the Actor.
TD error δt is expressed as (3)[16].

δt = rt + γV (st+1) − V (st) (3)

γ is the discount rate, which fulfills 0 ≤ γ ≤ 1.
According to TD error δt , the Critic updates the
state value function V (st) and the Actor updates
the probabilistic policy π(st). Updating of the state
value function V (st) is expressed as (4)[16].

V (st) ← V (st) + αδt (4)

α is the learning rate, which fulfills 0 ≤ α
≤ 1. At the same time, the probabilistic policy
π(st) updates its parameters so that the selection
probability of at is increased if TD error δt is
positive. In addition, if TD error δt is negative,
it is updated such that the selection probability of
at is decreased. Then, if the system uses a normal
distribution as the probabilistic policy, the mean
and the standard deviation of the probabilistic
policy π(st) are updated.

C. Two-Actor - Critic Algorithm

In this system, there are two types of discrete state,
i.e., the illuminance around user and the demands of the
user. In a conventional Actor - Critic algorithm, the system
must learn all of the states and conditions[11][12]. However,
as discussed in the previous section, efficient learning is
required in this system to reduce the user operation burden.
Therefore, we discuss the Two-Actor - Critic algorithm,
which learns two types of state separately with two types of
Actor, i.e., the Actor on illuminance around the user and the
Actor on user demands. The amount of illuminance change
perceived by the user is proportional to the height between
lightings and users[9][10]. Therefore, in this system, the
Actor on illuminance around the user plays a role in deciding
the parameters for tuning the scale of the Actor on user
demands. The relation between the two types of Actor is
shown in Fig. 3. This system uses a normal distribution as
the probabilistic policy of the Actors.
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Fig. 3. Relation between the two types of Actor

As shown in Fig. 3, the Actor on illuminance around
the user first decides the action, which is the parameter



to tune the Actor on user demands, by the probabilistic
policy πi(st). The tuning parameter should be larger when
the illuminance around the user is high. Second, the Actor
on user demands fixes the mean of the normal distribution
by the tuning parameter and the foundation value of the
mean, and decides the amount of change in illuminance as
the action according to the probabilistic policy πd(st). In this
way, the system uses the learning algorithm with two types
of Actor. The overview of this Two-Actor - Critic algorithm
is shown in Fig. 4.
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Fig. 4. Overview of Two-Actor - Critic Algorithm

As shown in Fig. 4, although there are two types of Actor
(the Actor on illuminance around the user and the Actor on
user demands), there is only one type of Critic; the Critic
on user demands. This is because the role of the Critic is
to evaluate the action of the Actor and the evaluation guide
is only how much the action brings the user demand close
to the satisfactory state. The processes shown in Fig. 4 are
explained below.

(1) State Observation
The agent observes the state of the environment
[s i

t , sd
t ].

(2) Action of Actor on Illuminance around the User
The Actor on illuminance around the user decides
the action ai

t according to the probabilistic policy
πi(si

t).

(3) Action of Actor on user demands
The Actor on user demands decides the action ad

t

according to the probabilistic policy πd(sd
t, a

i
t).

The function of ai
t on πd(sd

t, a
i
t) is shown in

Fig. 3.

(4) Reward
The state of the environment changes to the state
[s i

t+1 , sd
t+1 ] by the action ad

t , the environment
gives the reward rt to Critic as the evaluation of
the action.

(5) Reinforcement Signal
The state value function V d(sd

t) of Critic and the
probabilistic policy πi(si

t) and πd(sd
t, a

i
t) of Ac-

tors are updated according to TD error δt which are
also updated. These updating steps were described
in paragraph III-B. As the scales of values in the
two probabilistic policies differ, the learning rates
of each policy should be set separately.

IV. NUMERICAL EXPERIMENT

This section describes the numerical experiments per-
formed to verify the effectiveness of the Two-Actor - Critic
algorithm.

A. Target Problem

To confirm the basic characteristics of the proposed
method, a virtual user was constructed and applied in this
experiment instead of a human user. An example of the
virtual user’s sensory scale is shown in Fig. 5.
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Fig. 5. Example of the Sensory Scale of the Virtual User

The horizontal axis in Fig. 5 shows the illuminance around
the user. The virtual user has a target illuminance, and the
vertical axis shows the sensory amount of illuminance to
change to the target illuminance. In conclusion, the demands
of the user, such as ”Very much brighter” or ”Slightly
darker”, are decided by the illuminance around the user and
the difference between the illuminance around the user and
the target illuminance. For the virtual users, threshold values
(lx) were specified for the borders of each user demand in
Fig. 5 as the sensory scale. The threshold values of Virtual
User 1 used in this experiment are shown in Table I, where
the border between ”Slightly brighter” and ”Brighter” is
given a threshold value of 1, that between ”Brighter” and
”Much brighter” has a threshold value of 2, and that between
”Much brighter” and ”Very much brighter” has a threshold
value of 3.



Table I
THRESHOLD VALUES OF VIRTUAL USER 1

Threshold

value 1

3000-∞ lx

2000-3000 lx

1000-2000 lx

+1280 lx+640 lx+320 lx

+320 lx+160 lx+80 lx

0-1000 lx +80 lx+40 lx+20 lx

Threshold
value

Illuminance
around user

Threshold

value 2

Threshold

value 3

+5120 lx+2560 lx+1280 lx

Table Ishows only the ”Brighter” user demands. However,
if the illuminance obtained by subtracting the illuminance
around the user from the target illuminance is negative, the
threshold values in Table I also become negative. Virtual user
1 was designed such that the difference between learning
accuracies in two cases was large. The first is where the
conventional Actor - Critic algorithm is not applicable to
the two types of state. Application of the Actor - Critic
algorithm to one type of state judges the amount of change in
illuminance according only to the user demands, and learns
only eight states related to user demands. The second case is
where the Actor - Critic algorithm is applied to two types of
state but these two states are converted into one state.. The
Actor - Critic algorithm applied to two types of state judges
the amount of change in illuminance according to the user
demands and the illuminance around the user, and learns 32
states (8 states × 4 states; 0 - 1000 lx, 1000 - 2000 lx, 2000
- 3000 lx, 3000 - ∞ lx).

Fig. 6 shows the results learned for Virtual User 1 by
Actor - Critic algorithms applied to one and two types of
state. In this experiment, the discount rate was 0.95 and the
learning rates for both Critic and Actor were 0.5. As the
reward, the environment gave a score of 800 if the user
demand changed to ”satisfaction” and a score of -50 if it
changed to other state.

Fig. 6. Comparison of Actor - Critic Algorithms Applied to 1 and 2 Types
of State

One step represents the period between the time that
the illuminance around the user was set to the default

value and that at which the user demand reached the state
”satisfaction”. The number of failures is the number of times
that the user reentered the input during the simulations. The
graphs in Fig. 6 show the median values of 30 trials. As
shown in Fig. 6, the learning accuracy of the Actor - Critic
algorithm applied to two types of state was higher than that
applied to only one type of state. Therefore, in learning
for Virtual User 1, the results indicated that applying the
algorithm to two types of state yielded better results.

B. Experimental Results of Two-Actor - Critic Algorithm

Experiments were performed to verify the effectiveness of
the Two-Actor - Critic algorithm. Fig. 7 shows that the Two-
Actor - Critic algorithm learned the sensory scale of Virtual
User 1, and presents the results obtained by applying the
normal Actor - Critic algorithm to two types of state. In the
Two-Actor - Critic algorithm, the discount rate was 0.95, the
learning rates of the Critic and the Actor on user demands
were 0.5 and 0.1, respectively, and the learning rate of the
Actor on illuminance around the user was 0.0005. As the
reward, the environment gave a score of 300 if the user
demand changed to ”satisfaction” and a score of -50 if it
changed to other state.

Fig. 7. Comparison of Two-Actor - Critic Algorithm and Conventional
Actor - Critic Algorithm for Virtual User 1

As shown in Fig. 7, the learning accuracies of the two
algorithms were equivalent at the time of convergence, and
the Two-Actor - Critic algorithm yielded better results than
the conventional Actor - Critic algorithm with regard to the
speed of convergence.

C. Considerations

In the case where there were 8 states for the user demands
and 4 states for illuminance around the user, the conventional
Actor - Critic algorithm had to optimize 32 (8 × 4) normal
distributions. On the other hand, the Two-Actor - Critic
algorithm had to optimize only 12 (8 + 4) normal distri-
butions. Thus, the Two-Actor - Critic algorithm was better
than the conventional Actor - Critic algorithm with regard to
the speed of convergence. To verify this consideration, we
carried out an experiment with a virtual user, called ”Virtual



User 2”, in which we increased the number of states for
illuminance around the user. Although the threshold values
of Virtual User 1 were delimited at intervals of 1000 lx,
Virtual User 2 had threshold values delimited at intervals of
500 lx (0 - 500 lx, 500 - 1000 lx, 1000 - 1500 lx, 1500 -
2000 lx, 2000 - 2500 lx, 2500 - 3000 lx, 3000 - 3500 lx,
3500 - ∞ lx). The experimental results are shown in Fig. 8,
and the parameters of each algorithm were the same as those
in the experiments described in sections IV-A and IV-B.

Fig. 8. Comparison of Two-Actor - Critic Algorithm and Conventional
Actor - Critic Algorithm for Virtual User 2

As shown in Fig. 8, the difference in speed of conver-
gence between the Two-Actor - Critic algorithm and the
conventional Actor - Critic algorithms was larger than that in
Fig. 7. The results of this experiment indicated that learning
efficiency can be improved by applying two types of Actor
to two types of state in the Two-Actor - Critic algorithm.

V. CONCLUSIONS

Here, we proposed a lighting control system through sen-
sory operation to minimize the operation burden associated
with a lighting system. To realize sensory operation, this
system learns the users’ sensory scale, such as ”very” or
”slightly”, using an Actor - Critic algorithm. This system
must learn efficiently to decrease user burden. There are
two types of state in the target environment of this system,
and the conventional Actor - Critic algorithm has to learn all
states combined with two types of state. To improve learning
efficiency, a learning algorithm involving the application of
two types of Actor to two types of state was proposed, i.e., a
Two-Actor - Critic algorithm. We verified the effectiveness
of this algorithm by experiments using virtual users. The
results indicated that this algorithm has learning accuracy
equivalent to that of the conventional Actor - Critic algo-
rithm. In addition, the proposed algorithm was shown to
have a faster learning speed than the conventional Actor -
Critic algorithm. Further studies are required to verify the
effectiveness under different environments and experiments
with real human users should also be performed.
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