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Abstract—We propose a method for extracting the most similar
subsequences from two time series data by quantizing them and
performing a homology search. The homology searches, such as
BLAST and SW, are string search algorithms. Therefore, time
series data should be quantized. SAX and EIAD were applied as
quantization methods, and their effectiveness was examined by
experiment. According to the experiments, time series data sets
were classified into four types of time series data set, and we
discuss the characteristics of SAX and EIAD.

Index Terms—Time Series Data, Smith-Waterman Algorithm,
Homology Search, Similarity Search, Requantization

I. INTRODUCTION

Recently, new medical imaging techniques that can obtain
biological information, such as functional magnetic resonance
imaging (fMRI), optical topography, etc., have come into
widespread use. Analysis of the data obtained by these methods
will be helpful in investigating brain function. If we can in-
vestigate the function of the brain, we can visualize a human’s
image in the brain and apply it into various devices. Optical
topography measures changes in blood flow and visualizes
brain function. For example, this method can be used to
visualize the regions of the brain activated when singing or
watching TV. We can understand which parts of the brain
operate the feelings of happy by analyzing the experimental
data that a man ”listening music happily” and ”eating lunch
happily”. However, optical topography outputs more than 300
time series data in a single experiment. With such large
amounts of data, it is difficult to determine on which data
to focus. The time series data from optical topography require
searching to allow time warping. It is good way for the analysts
to reduce task to search for similar parts allowing time warping
automatically from multiple time series data. Here, we propose
a method for extracting the most similar subsequences from
two time series data by quantizing the data and performing a
homology search.

Active Search is a method of detecting objective patterns
from large data that achieves high speed and accuracy and

is used for visual or acoustic patterns. Time series Active
Search (TAS) [1] and DTW (Dynamic Time Warping) [2]
are examples of Active Search algorithms. Interval-Free Time
series Active Search (RIFTAS) [3] and Interval-Free Continu-
ous Dynamic Programming (RIFCDP) [4] are algorithms for
searching similar parts of two time series data. These algo-
rithms repeat TAS or DTW by changing the window size and
subsequences. However, these algorithms incur tremendous
calculation costs for dealing with actual data. Toyoda proposed
a function to recognize the similarity between subsequences
for data streams using DTW [5]. This function is efficient and
works well but requires a threshold value. Keogh proposed a
method to find frequently occurring patterns called ”motifs” in
time series data [6]. This method cannot be applied to more
than two time series data. Discrete Fourier Transform (DFT)
and Cross Correlation Function [7] cannot compare similarity
allowing time warping. Thus, there are several ways to search
for similar parts of multiple time series data allowing time
warping. However, processing of multiple time series data
requires large computational resources. Thus, It is effective to
use parallelized algorithms to process large and multiple time
series data quickly. In addition, it is better to use the algorithm
in the field that already has many parallelized algorithms.

In this paper, we propose a method for extracting the
most similar subsequences of two time series data by ho-
mology search that the program library has many parallelized
algorithms. It is necessary to quantize time series data as
strings because homology search algorithms are string search
algorithms. SAX and EIAD are typical algorithms used to
quantize time series data. Here, we propose a method for
extracting the most similar subsequences of two time series
data by quantizing the data and then using homology search
to determine similar regions between the two sequences. SAX
and EIAD were applied and the results of these methods were
compared by experiment.
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Fig. 1. the outline of our proposed method

II. METHOD FOR EXTRACTION OF SIMILAR
SUBSEQUENCES FROM TWO TIME SERIES DATA BY

HOMOLOGY SEARCH

A. Concept of the proposed method

In this paper, we propose a method for extracting the most
similar subsequences from two time series data by quantizing
time series data and performing a homology search. Fig.1
shows the outline of our proposed method.

First, we quantize the time series data. For example, the
upper and lower time series data sets in Fig.1 are converted
to”BAABCCB” and ”ABCCBAA,” respectively. There are
several methods for quantizing the data. Here, we focus on
SAX and Equal Intervals Area Division (EIAD) as quan-
tizing methods. Second, we apply homology search to the
quantized time series data. The homology search algorithm
is an algorithm for performing sequence alignment. Finally,
this algorithm can extract ”ABCCB” as a similar section of
”BAABCCB” and ”ABCCBAA”. In this way, we can extract
part of time series data with similarity by quantizing the time
series data and extracting similar sections. In addition, we
applied the Smith-Waterman (SW) algorithm for homology
search. The SW algorithm, described in the following section,
can perform time warping search by the gap parameter.

B. Quantization of time series data

This algorithm needs to provide the relation between
numerical value and character. For example, a time series
T = {1.0, 1.5,−0.5} is symbolized as ”BAC”. To perform
this transformation, breakpoints should be defined. SAX and
EIAD are typical algorithms used to quantize time series
data. In SAX, the time series data histogram is assumed to
have a normal distribution. On the other hand, in EIAD, the
time series data histogram is assumed to have a uniform
distribution. The number of breakpoints is very important and
this parameter affects the results of similar sequence extraction.

1) SAX(Symbolic Aggregation Approximation): SAX is a
method proposed by Keogh to represent time series data
[8]. This algorithm assumes that time series data have a
normal distribution and symbolizes the time series data. As
SAX assumes a Gaussian distribution, time series data must
be normalized before converting to a string. Standardization
means to convert the averages of certain data to 0 and standard
deviation to 1. For example, a time series T = t1, . . . , tM will
be converted to T = (t1−µ)/σ, . . . , (tM −µ)/σ, where µ and
σ are the average and standard deviation of T, respectively.

Fig.2 illustrates the concept of normalization and sym-
bolization of SAX. In step 1 of Fig.2, we normalize the
time series data. In step 2, we symbolize the time series
data to a string. Normalized subsequences have a highly
normal distribution. Therefore, we can simply determine the
”breakpoints” that will produce equal-sized areas under the
normal curve [8]. Breakpoints are a sorted list of numbers
B = (β1, . . . , βn). These breakpoints may be determined by
referencing a statistical table. Table.I gives the breakpoints
for values of α from 2 to 7. In Fig.2, data that are below
the smallest breakpoint are mapped as the symbol ”c”. Data
greater than or equal to the smallest breakpoint and less than
the second smallest breakpoint are mapped as the symbol ”b”.
Other data are mapped as the symbol ”a”. Consequently, the
time series data in Fig.2 are mapped as ”aaabcc”.
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Fig. 2. the concept of Symbolic Aggregation approXimation

TABLE I
BREAKPOINTS THAT DIVIDE A NORMAL DISTRIBUTION IN AN

ARBITRARY NUMBER FROM 2 TO 7 OF EQUIPROBABLE REGIONS

α 2 3 4 5 6 7 8
β 1 0 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15
β 2 0.43 0 -0.25 -0.43 -0.57 -0.67
β 3 0.67 0.25 0 -0.18 -0.32
β 4 0.84 0.43 0.18 0
β 5 0.97 0.57 0.32
β 6 1.07 0.67
β 7 1.15

2) EIAD(Equal Intervals Area Division): The EIAD as-
sumes a uniform distribution of the time series data histogram.
Breakpoints divide the minimum and maximum values of
the time series into equal areas. This method has different
breakpoints and it is not necessary to standardize the time
series data. Fig.3 shows the concept of the EIAD.

For example, time series data with maximum and minimum
values of 1.0 and -1.0 would be symbolized as three characters
with the breakpoints (0.34, -0.34). The width of the area
becomes 0.68. The following equations show how to determine
the width of the area

w =| MAX − MIN | ÷NUM (1)
breakpoints = MAX − W × N(1 ≤ n ≤ NUM − 1) (2)

where MAX and MIN are the maximum and minimum values
of time series data, respectively. W is the width of the area,
and NUM is the number of characters.



-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

b

a
a a

c c

breakpoints

a

b

c

sine wave

step1

symbolization

step2

max

min

Fig. 3. the concept of Equal Intervals Area Division

III. HOMOLOGY SEARCH AND THE SMITH-WATERMAN
ALGORITHM

Homology search is performed by string search algorithms
to examine the homology of the living things. These algorithms
are used to determine regions of similarity between two or
more nucleotide or protein sequences. Nucleotide and protein
sequences are normally very long, and searching them requires
huge computational resources. Use of parallelized algorithms
is a very effective means to reduce computational time. As it is
necessary to deal with long sequences in bioinformatics, many
parallelized program libraries for homology searching have
been developed. Use of these parallelized algorithms allows
searching of time series data quickly.

SW, BLAST, and FASTA are well-known homology search
algorithms. SW focuses on accuracy, while FASTA and
BLAST focus on speed. Here, we adopted SW because the
time series data set used for accuracy validation was limited.

The SW algorithm is used for local sequence alignment.
SW is a dynamic programming algorithm and compares seg-
ments of all possible lengths and optimizes the similarity
measure.The similarity measure is evaluated by scoring a two-
dimensional matrix. There is one column for each character in
sequence A and one row for each character in sequence B in
this matrix. If we are aligning sequences of sizes n and m, the
order of this algorithm is O(mn). The SW algorithm allows
time warping search by the gap parameter.

A. Parameters of score

This algorithm needs scoring, match, mismatch, and gap
penalty parameters. Gap means insertion or deletion of spaces.
The result will be affected by changes in these parameters.
The parameters match = 1, mismatch = -1, and gap = -1 are
standard settings. The results for match = 1, mismatch = -1,
and gap = -0.5 will have more spaces than the standard setting.
In addition, the results for match = 1, mismatch = -2, and gap
= -2 will have higher similarity than the former but the result
will be shorter in length. The best parameters will be changed
according to the required similarity. Here, we used the standard
setting: match = 1, mismatch = -1, and gap = -1.

B. Algorithm

The process of obtaining the optimum local alignment
is illustrated as follows. First, we initialize two-dimensional
matrix then score a match or a mismatch of each cell. If we
finished scoring untill the end of matrix, we start backtracing
from maximum cell score. Backtracing means to obtain the

optimum local alignment by walking back to the zero cell score
from the maximum cell score.

Fig.4 shows the SW algorithm. Fig.6, Fig.7, Fig.8, and Fig.9
show the process of obtaining the optimum local alignment
between ”BBC” and ”CBC”.� �

step1 Initializing two-dimensional matrix(Fig.6)
step2 Scoring a match or a mismatch of each cell(Fig.7)
step3 Scoring until the end of the matrix(Fig.8)
step4 Backtracing from maximum cell score(Fig.9)� �

Fig. 4. Smith-Waterman algorithm

Equations (3) and (4) show formulas for calculating the
scores for aligned characters in the matrix. Each cell’s score
is calculated from the left, right, and upper cells’ scores,
and match or mismatch of aligned characters. For example,
the (1,1) cell ’s score will be calculated by equation (4)
because of the alignment shows a mismatch (Fig.7), SW(1,1) =
max{SW(0,1) - 1, SW(0,0) - 1, SW(1,0) - 1, 0} = 0. The (1,2)
cell ’s score will be calculated by (3) because the alignment
shows a match (Fig. 6), SW(1,1) =max{SW(0,1) - 1, SW(0,0)
- 1, SW(1,0) - 1, 0} = 0. If the calculated score is 0, the cell
is assigned a score of 0.

To obtain the optimum local alignment, we start with the
highest score in the matrix and walk back to the zero score.
Each cell has the previously calculated path. In Fig.8, the
highest score corresponds to the cell in position (3,3). The
walk back corresponds to (3,3), (2,2), (1,1). We reiterate the
process until we reach a matrix cell with zero score or the
score in position (0,0). Once we have finished, we reconstruct
the alignment. The upper character of the (3,3) cell is ”B” and
the left character is ”C”. The upper character of the (2,2) cell
is ”B” and the left is ”B”. Then, the optimum local alignment
of ”BBC” is ”BC” and that of ”CBC” is ”BC”. Fig.5 shows
the example of SW algorithm alignment.

[h]SW (y, x) = max


SW (y − 1, x − 1) + match
SW (y − 1, x) + gap
SW (y, x − 1) + gap
0

(3)

[h]SW (y, x) = max


SW (y − 1, x − 1) + mismatch
SW (y − 1, x) + gap
SW (y, x − 1) + gap
0

(4)

IV. EXPERIMENTAL EVALUATION

A. Goal of the experiment

We applied our proposed method to several types of data
set to compare the similar parts of time series data using SAX
and EIAD and to confirm the types of data to which use our
method is appropriate.



� �
”PELICAN” → ”ELICAN”
”PAWHEAE” → ”AW HE”

”COELACANTH” → ”ELACAN”
”HEAGAWGHEE” → ”AWGHE”� �
Fig. 5. Example of SW algorithm alignment
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Fig. 7. Scoring a match or a mismatch of each cell
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Fig. 8. Scoring until the end of the matrix
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Fig. 9. Backtracing from maximum cell score

B. Data set

We used the time series data set prepared by UCR [9].
This data set includes some type of numerical time series data
in multiple classes. In this experiment, we assumed that two
time series data in the same class were similar. We extracted
the whole time series data belonging to the same class as the
similar part. Figures 10 to 17 have two time series data and
the similar part is shown in black, with the rest shown in gray.
For the sake of simplicity, the strings of each time series data
are not shown. The figures of SAX are different from those
of EIAD because the former standardizes the time series data.

We used 5 breakpoints based on the results of preliminary
experiments. We set the parameters as follows: match = 1,
mismatch = -1, and gap = -1.

C. Evaluation method

The similar parts of SAX and those of EIAD are different.
To compare the two different subsequences, the length and
coincidence of the sequences were examined. To examine the
coincidence, DTW (Dynamic Time Warping) distance was
performed. DTW is an algorithm for measuring similarity
between two sequences, which may vary in time or speed. That
is, DTW is a distance measure that allows time warping. For
example, similarities in speaking patterns would be detected
even if one person is talking slowly and another is speaking
more quickly. DTW distance is defined as follows:

DTW (P, Q) = f(np, nq) (5)

f(i, j) = |pi − qj | + min

 f(i, j − 1)
f(i − 1, j)
f(i − 1, j − 1)

f(0, 0) = 0, f(i, 0) = f(0, j) = ∞
(i = 1, . . . , npj = 1, . . . , nq)

We can define a margin of error by DTW distance/length. By
the margin of error we can judge which way extract better
similarity part. This is because low margin of error means
high similarity.

TABLE II
DTW DISTANCE OF SIMILAR SUBSEQUENCES IN EACH FIGURE

Figure Name Distance Length Dis/Len
Fig.10 41.6 114 0.36
Fig.11 53.3 118 0.45
Fig.12 32.2 112 0.29
Fig.13 16.3 67 0.24
Fig.14 10.6 63 0.17
Fig.15 23.2 222 0.10
Fig.16 1.1 1 1.09
Fig.17 42.6 4 10.65

D. Experimental results

We tested several types of time series data by SAX and
EIAD. Here, four typical data sets are shown. Table.II sum-
marizes the results of DTW distance of similar subsequences.

Fig.10 and Fig.11 show the good results of SAX and EIAD.
In this case, two time series data with different phases were
used and even each time series data’s phase are shifted, the
similar data is properly extracted. Thus, the proposed method
can be used to extract similar subsequences from time series
data with shifted phases.

Fig.12 and Fig.13 show the good results of EIAD but poor
results of SAX. In this case, SAX partially extracted similar
subsequences from those expected to be similar. Fig.13 shows



that the breakpoints were not set properly. The similar part
appears difficult to extract if the data increase and decrease
intermittently on the breakpoints.

Fig.14 and Fig.15 show the poor results of EIAD but good
results of SAX. This case had the outliers in the data, which
prevented EIAD from extracting similar subsequences.

Fig.16 and Fig.17 show the poor results of SAX and
EIAD. Fig.16 had outlier in data, which prevented EIAD from
extracting similar subsequences. Fig.17 shows an example in
which the scale was changed by normalization. This changed
the breakpoints and prevented extraction working properly.
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Fig. 10. Leaf all dataset:EIAD
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Fig. 11. Leaf all dataset:SAX
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Fig. 12. CBF dataset:EIAD

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 21 41 61 81 101 121

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 21 41 61 81 101 121

Fig. 13. CBF dataset:SAX
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Fig. 14. Trace dataset:EIAD
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Fig. 15. Trace dataset:SAX
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Fig. 16. Q8Humid dataset:EIAD

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

1 6 11 16 21 26 31 36 41 46

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

1 6 11 16 21 26 31 36 41 46

Fig. 17. Q8Humid dataset:SAX

As shown in Table.II, the margins of error of SAX and
EIAD are almost the same. In this experiment, we focused
on two factors, the length and error of the derived sequences.
As the errors of the extracted sequences were the same, the
sequences with the longer length are better. Here, the four
types of time series data set are shown, and SAX and EIAD
each have advantages and disadvantages depending on the time
series data. If the time series data have no outliers, EIAD is
better for extraction because of the longer width of breakpoint
area. The converse is true if the time series data have some
outliers, and SAX appears to be better for extraction. It is
difficult for SAX and EIAD to extract the similar part if the
data increase and decrease intermittently on the breakpoints.
Both methods can extract similar subsequences from two time
series data of different phase. These results indicate that the
proposed method needs prior processing of time series data,
such as removing outliers or smoothing. The proposed method
can extract similar subsequences from two time series data of
different phase by prior processing.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method for extracting the most
similar subsequences from two time series data by quantizing
the time series data and using homology search. Several good
parallel implementations are available for the homology search,
such as BLAST and the SW algorithm. When these parallel
algorithms are used, the computational time can be reduced.
At the same time, we aim to extract similar parts using partial
rather than exact matches. The SW algorithm allows extraction
of partial matches by time warping search. However, it is
necessary to quantize the time series data because SW is
a string search algorithm. In this paper, we compared two
quantized algorithms, SAX and EIAD. Both SAX and EIAD
were applied in the experiments and the results were evaluated
with four types of time series data set. In the first data set,
both methods could extract similar subsequences from two
time series data of different phase. In the other data sets, we
presented cases in which SAX was better than EIAD and others
in which EIAD was better than SAX. There were also data sets
where neither EIAD nor SAX could find appropriate similar
parts.



In future work, the parameters of the SW algorithm and the
optimal number of breakpoints should be defined. Pretreatment
of the data, such as removing the outliers and smoothing,
should be discussed. In this paper, only two time series data
sets were described, but more than three data sets should be
applied.

REFERENCES

[1] KASHINO Kunio,SMITH Gavin A,MURASE Hiroshi, ”A Quick Search
Algorithm for Acoustic Signals Using Histogram Features”, The trans-
actions of the Institute of Electronics, Information and Communication
Engineers. D-II pp.1365-1373 19990925

[2] SAKURAI Yasushi YOSHIKAWA Masatoshi, ”A Similarity Search
Method for Dynamic Time Warping”, Information Processing Society of
Japan pp.23-36 20040315

[3] NISHIMURA Takuichi,MIZUNO Michinao,OGI Shinobu,SEKIMOTO
Nobuhiro,OKA Ryuichi, ”Same Interval Retrieval from Time-Sequence
Data Based on Active Search : Reference Interval-Free Time : Series
Active Search (RIFAS)”,The transactions of the Institute of Electronics,
Information and Communication Engineers. D-II pp.1826-1837 20010801

[4] ITOH Yoshiaki,KIYAMA Jiro,KOJIMA Hiroshi,SEKI Susumu,OKA
Ryuichi ”Reference Interval-free Continuous Dynamic Programming for
Spotting Speech Waves by Arbitrary Parts of a Reference Sequence
Pattern”, The Institute of Electronics, Information and Communication
Engineers pp.1474-1483 19960925

[5] TOYODA Machiko,SAKURAI Yasushi, ICHIKAWA Toshikazu ”Stream
Matching based on Dynamic Programming”

[6] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, Brandon
Westover, ”Exact Discovery of time series Motifs”, SDM 2009: 473-484

[7] KATAYAMA Erika,YAMADA Yoshio,TSUZUKI Shinji ”A Method for
Peak Position Estimation of Cross Correlation Functions Using Neural
Network”, The Institute of Image Information and Television Engineers
pp.21-24 20010302

[8] Lin J, Keogh E, Lonardi S, Chiu B, A Symbolic Representation of time
series, with Implications for Streaming Algorithms. In proceedings of the
8th ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery.

[9] Eamonn Keogh, Xiaopeng Xi, Li Wei, and Chotirat (Ann) Ratanama-
hatana, ”Welcome to the UCR time series Classification/Clustering Page”,
http://www.cs.ucr.edu/∼eamonn/time series data/


