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Abstract—Interactive Genetic Algorithms (iGAs) are optimiza-
tion techniques used to estimate customers’ Kansei (Japanese
term for computing that relates to human characteristics such as
sensibility, perception, affection or subjectivity) because human
subjective evaluations are replaced with the objective function
of Genetic Algorithms (GAs). Applying iGAs to recommend a
product to a customer is examined in our study. One of the
requirements is to estimate multiple preferences of a user and
reflect preferences in the recommended products shown to him or
her. When users select their preferred products within a specific
category, they might like various kinds of products. In our study,
these preferences are defined as multimodal preferences. When
searching products a user would want, the recommendation
method displays the more favored products by considering this
multimodal preference.

Therefore, in this study, we discuss using an iGA to generate
offspring by estimating and searching multiple peaks. Our
proposed method estimates multiple peaks by clustering the
parents that the customer has evaluated more favorably and
generates the appropriate offspring by constructing the proba-
bilistic model based on the distribution of parents within a cluster.
We performed two experiments. In the first experiment, we
confirmed that the participants of the experiment had multimodal
preferences. In the second experiment, the participants operated
one of two systems which implemented either the proposed
method or conventional method. The comparison of results
showed that the system that implemented the proposed method
searched the participants’ multimodal preferences more diversely
than the system that implemented the conventional method.

I. INTRODUCTION

Interactive Genetic Algorithms (iGAs) is one of interactive
evolutionary computations [1]. These methods optimize the
objects based on a customer’s Kansei by replacing a human
subjective evaluation with the objective function of Genetic
Algorithms (GAs) [2]. Fig. 1 shows the flow of the algorithm.
At first, an iGA system user evaluates the displayed solutions
according to their preferences. The iGA system selects the
parents using the evaluation values and generates a new
population by the crossover method. One generation comprises
these steps. By repeating these steps for each generation, the
displayed choices increasingly become more closely matched
to the user’s preferences. iGAs are used in the design problems
that need human Kansei such as fashion design [3], hearing
aid fittings [4], [5], and so on [6], [7].

Fig. 1. Overview of iGA system

In our study, applying an iGA system to product recom-
mendations on an online shopping site is examined. Online
shopping sites need to effectively display the products that
a customer really wants to buy because many sites offer a
multitude of products but can only display a small number of
them at one time. When customers want to buy something but
cannot understand their needs by themselves, a site that uses
an iGA as the product recommendation algorithm can display
the products that most closely match their preferences. One of
the problems in performing iGA is how to make product rec-
ommendations that take into account the customers’ multiple
preferences [8], [9]. A customer might like various products
that belong to the same category. For example, in the case of
determining T-shirt color preferences, a user might like not
only white but also blue. Therefore, the product recommen-
dation needs to reflect the customers’ multiple preferences
(multimodal preference) instead of focusing products based
on one of preferences. However, conventional iGAs were
designed to search for an optimized solution. This means that
an iGA is not adequate to search for each of the multiple
peaks. In this study, we discuss a crossover method that
estimates multimodal preferences using a clustering method
and searches for each peak using principal component analysis
(PCA).

II. CROSSOVER METHOD FOR SEARCHING MULTIPLE
PEAKS

A. Problems

We assume that human Kansei is modeled as a function
that uses parameters of the object as inputs and the degree



Fig. 2. Kansei landscape

Fig. 3. Search process using the conventional method with a landscape
having multiple

of matching to a customer’s Kansei as outputs. Fig. 2 shows
an example of the function. The parametric space treats the
design variables such as T-shirt color and pattern as the axes.
Each point of the parametric space shows one design. The
hypersurface that maps the evaluation values of the customer’s
Kansei as the height (y axis) is called the Kansei landscape
[10], which is the model of human Kansei used in our study.
The product recommendation algorithms should determine
the top of peaks on the Kansei landscapes. Therefore, we
examined an iGA that interactively searches the tops of peaks.

In some cases, the Kansei landscape has multiple peaks
that are almost of the same height when the user selects the
products because the user might have multiple preferences
within the same product category. However, conventional iGAs
are designed to search for a single optimized solution. Fig.
3 shows an example. When there are multiple peaks in the
Kansei landscape that are almost of the same height, the
conventional methods focus the search area on only one peak
searching not only the peaks but also the low evaluation area
between them. In the case of such a multimodal landscape,
we thought that the iGA’s performance could be improved by
extracting multiple peaks and searching them individually.

Furthermore, the presentation of multiple preferences in-
creases the user’s satisfaction. Conventional iGAs are not able
to detect multiple preferences during one operation because
they converge the population to a single peak, and if they
are repeated, they cannot always find all multiple peaks.

In addition, repeating the evaluation from the initial state
is impossible in the domain of product recommendations.
Therefore, it is necessary to search several peaks at a time.

B. Proposed Method

In this study, we discuss a crossover method that estimates
the multiple peaks and searches their tops using a clustering
method and PCA.

1) Estimation of the multiple peaks by the clustering
method: First, to estimate the location of multiple peaks,
we use the clustering method. When the clustering method
is used on the design variable space, the parents selected
from the population get divided into several dense groups as
clusters. Each cluster is considered as a candidate location
for a preference peak. Incidentally, the number of clusters is
determined automatically according to the parents’ distribution
because the number of a user’s preference peaks was unknown
beforehand. For example, there are clustering methods that
have a function to determine the best number of clusters
[11], [12]. Alternatively, indicators of the accuracy of the
clustering result such as gap statistics [13], [14] or silhouette
statistics [15], [16] are used. These indicators are obtained
from the results of inputting the various numbers of clusters
into clustering methods, which used these numbers to select
the proper number of clusters based on the indicators.

In the experiment described in IV, we used k-means as the
clustering method and silhouette statistics as the indicator. The
details are described in IV-C1.

2) Searching for solutions within the peaks using principal
component analysis: Next, to search within each peak, a
probabilistic model is constructed on the basis of the parents’
distribution within a peak. The proposed method constructs
the multidimensional normal distribution from the positions
of the parent solutions that belong to a cluster and generated
the children using a normal random number based on the
distribution. Then, PCA [17] is conducted to embed the
correlations among design variables into the distribution [18],
[19].

When the number of design variables is n and a cluster has
m parents, they are represented as an m∗n matrix X . Then, the
matrix T is obtained by translating X so that the mean of each
of the design variables becomes zero. We refer to the variance-
covariance matrix of T as the matrix S. The eigenvalues
and eigenvectors of matrix S are obtained by conducting
PCA, and the rotation matrix A is constructed by ranking
the eigenvectors in a column in the descending order of the
absolute values of eigenvalues. The parents are mapped into
the space where they have no correlation among dimensions
by multiplying the rotation matrix A to the translated parents
matrix T .

Y = TA (1)

The multidimensional normal distribution is constructed
from Y , and then, the children solutions Yoffspring are
generated. When children are generated, their positions are



converged near the origin of space if the raw distribution
is used. To avoid excessive convergence, each variance of
axis of the multidimensional normal distribution is multiplied
by α and the offspring are generated in a wider space. By
multiplying Yoffspring by A−1 that is the inverse matrix of
A, Yoffspring are mapped into the original space from the
space with a basis matrix of A.

Xoffspring = YoffspringA
−1 (2)

The mean vector of X are added to Xoffspring , and the
offspring are added to the next generation population. By
applying these operations to all clusters, the next generation
population is generated. Incidentally, it is necessary to define
the number of offspring in each cluster so that the sum is
coincident with the population size. In the implementation
shown in IV-C, the number of offsprings in each cluster is
determined on the basis of the number of parents that belong
to a cluster.

In this study, we performed two experiments to confirm the
effectiveness of the proposed method. The first experiment
verified the existence of the multimodal preference in the
Kansei landscape. Then, on the basis of this result, the second
experiment confirmed that the proposed method was able to
search multiple peaks.

III. EXPERIMENT FOR CONFIRMING MULTIPLE PEAKS ON
KANSEI LANDSCAPE

A. Outline

To verify that a user has a multimodal preference, we
obtained the experiment participants’ approximate Kansei
landscapes for each of three applications. The experiment
participants comprised eight males and four females in their
20s. In the experiment, each design variable was divided
evenly by the grids, and the grid points were treated as the
sample points. The participants evaluated how much they liked
these samples. The evaluation values of the samples were used
to estimate an approximate landscape, and we determined the
number of peaks that were present.

B. Experimental System

Three patterns were used as the experimental applications.
Table I shows these design variables. To easily visualize the
results, only two design variables, i.e., color and size were used
to make minute changes. Colors were selected from a color
space based on hue, saturation, and brightness (HSB) [20].
Saturation and brightness values were kept static, and only
hue was used as the design variable. The radius of dot was
defined by multiplying the distance between neighboring dots
by the parameter “Rate of dot size”. Fig. 4 shows examples
of the solutions that were shown to the participants.

Fig. 5 shows the experimental interface. Each of design
variables was divided into 10 points. We created 100 unique
solutions by combining each point of one variable with each
point of the other variable and displayed them on the exper-
imental interface. Under each solution, there are seven radio

TABLE I
DESIGN VARIABLES

Application Design variable 1 Design variable 2
Dotted Hue of dot Rate of dot size
Arabesque Hue of front color Hue of background color
Plaid Hue of first color Hue of second color

(a) Dotted (The
number of dot
was static and the
size of dot was
parameterized.)

(b) Arabesque (The
color of arabesque
pattern was treated
as front color.)

(c) Plaid (Two
colors except
white were
parameterized.)

Fig. 4. Examples of displayed solutions

Fig. 5. Experimental interface for confirming multiple peaks in the Kansei
landscape

buttons and participants chose the level of button to evaluate
how much they liked each solution.

C. Experimental Procedure

If a participant’s evaluation criterion changes during a trial
run, it is difficult to obtain accurate landscapes. To address
this problem, we selected the participants’ preferences of
upholstery patterns for furniture as the evaluation criterion
because the fluctuation in those preferences was thought to be
small. The participants were instructed to evaluate how much
they preferred each solution as a fabric pattern that was used
for a curtain, bed cover, and sofa cover when renovating a
room. The participants operated three trial runs using Dotted,
Arabesque or Plaid. The operation order of trial runs was
counterbalanced among participants.

D. Result

Fig. 6 shows examples of landscapes obtained by the exper-
iment. The axes are the design variables of the applications.
The areas evaluated as the most preferred are colored red, and
those evaluated as the least preferred are colored yellow. The



(a) Landscape with multiple peaks
(Application: Dotted)

(b) Landscape with a single peak
(Application: Plaid)

Fig. 6. Examples of the estimated Kansei landscapes
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Fig. 7. Multimodal landscape shown in Fig. 6(a) showing only the peaks

areas that the participants did not evaluate are interpolated by
the bilinear interpolation method using the evaluation values
of the sample points. Fig. 6(a) is a landscape that has multiple
peaks, and Fig. 6(b) is a landscape that has a single peak.

To define the peaks within a landscape, we made a fre-
quency histogram from the evaluation values and calculated
the threshold value dividing the upper 25% of each landscape.
Any area that has an evaluation value higher than the threshold
value is defined as a preference peak. Fig. 7 is the landscape
image created by coloring all areas except the peaks in Fig.
6(a) white.

We examined the multiple preferences of the participants’
Kansei by counting the number of these peaks in all land-
scapes. Fig. 8 shows a graph of the frequency of the number
of peaks. The horizontal axis is the number of peaks and the
vertical axis is the number of landscapes for each peak number.
This graph includes the results for all three applications. In
the graph, 27 of 36 landscapes have more than 2 peaks. This
result proved that the majority of the Kansei landscapes were
multimodal. Therefore, it is thought that a method is needed
to search the landscapes for multiple peaks.

IV. EXPERIMENT FOR VERIFYING THE EFFECTIVENESS OF
THE PROPOSED CROSSOVER METHOD

A. Outline

This experiment aimed at confirming that the proposed
method was able to estimate the multiple peaks and search
for better solutions within a peak. The experiment participants
operated the following two systems to compare their results.
The proposed system implements the proposed method as a
crossover method and conventional system implements BLX-
α [21] as a conventional crossover method. We analyzed the

Fig. 8. Frequency graph of the number of landscapes for every number of
peaks

Fig. 9. Experimental interface for the analysis of the proposed method

search results of both systems using the approximate land-
scapes obtained in the first experiment (hereafter referred to
as the preliminary experiment) and focusing on the following
items.

1) The improvement of the evaluation values along with
the change of generations.

2) The performance of searching for multiple peaks.
The participants were the same as the preliminary experi-

ment, and they used the same three experimental applications.

B. Experimental Interface

Fig. 9 shows the experimental interface. The system dis-
played 25 solutions, and the participants chose their favorites
by clicking these images. When the user clicked on an image,
the frame color of the image changed to red. After evaluating
all displayed solutions, the participant clicked the Next Page
button at the bottom of the interface, and 25 new solutions
were displayed. Each sequence of these evaluations is called a
page. The participants evaluated the solutions repeatedly until
a pop up was displayed that notified the participant of the end
of the trial.

C. Experimental System

Table II represents the parameters that are shared in the
proposed and conventional methods. Both systems have the
same parameters, except for their crossover methods. The fol-
lowing are the details of the implementation of the proposed,
conventional, and selection methods.



TABLE II
EXPERIMENTAL PARAMETERS

Atribute Value
Population Size 25
Generation Size 12
Selection Size 13
Crossover Rate 1.0
Mutation Rate 0.2
Mutation Method Uniform mutation

1) The proposed method: The proposed system used k-
means as the clustering method. The k-means calculation
needs the prepared number of clusters. However, as described
in II-B1, the proper number of peaks, i.e., the proper number of
clusters is unknown because a user’s landscape has not been
obtained yet when the user uses an iGA system. Therefore,
silhouette statistics [16] were introduced to automatically
determine the number of clusters. When the sum of the
distances between solutions within the same cluster is smaller
and the sum of the distances between solutions that belong
to a neighbor cluster is bigger, the statistics are bigger. The
proposed system changes the number of clusters that is given
to the k-means method from 2 to 8. Then, the number when
the silhouette statistics were the largest was adopted.

In order to avoid excessive convergence of offspring as
mentioned in II-B2, the each dimensional standard variance
of the normal distribution were magnified 1.4 times.

2) The conventional method: The conventional system ran-
domly selects two of the selected parents and applies the BLX-
α process to them repeatedly, using an α of 0.2.

3) The selection method: The selection method selected the
parents from the solutions that were chosen by the participant.
This means the number of selected solutions might not meet
the number needed by the crossover method in the earlier
pages. In this experiment, the minimum number of parents
for the crossover method was defined as 13, which was half
of the population size. Until the defined number of selected
solutions was stored, the random solutions were generated, and
the generation was not changed. After the second generation,
until the number of parents became greater than 13, the system
selected the solutions that were clicked on the latest and newer
pages.

D. Experimental Procedure

The participants were instructed to select the fabric patterns
that they would prefer to use as upholstery on furniture or
as the cloth for a curtain, bed cover, and sofa cover when
renovating their rooms. Each participant performed the six
trial runs, combining each of the two systems and the three
applications, such as Dotted, Arabesque, and Plaid. We varied
the order of the applications and that of the two systems for
each of the participants.

E. Result

1) Discussion of the search results: Fig. 10 and Fig. 11
show examples of the search results. The axes are the design
variables of the applications. The points are the selected

(a) Search result by the proposed
system

(b) Search result by the conventional
system

Fig. 10. Search results in the last generation of a participant generating a
multimodal landscape for the Plaid

(a) Search result using the proposed
system

(b) Search result using conventional
system

Fig. 11. Search results in the last generation of a participant who generated
a unimodal landscape for Dotted

parents in the last generation. In particular, in Fig. 10(a) and
Fig. 11(a) that show the search results using the proposed
system, the points that have the same color belong to the same
cluster. The landscapes behind the points were obtained in the
preliminary experiment.

Fig. 10 represents one participant’s search results in the last
generation when the application was the Plaid. There are two
peaks on this landscape because each design variable is joined
end-to-end. While the conventional system searched only one
peak, the proposed system was able to search two peaks using
different clusters separately, as shown by the circle in Fig.
10(a).

Fig. 11 shows the search results of a participant who
generated a unimodal landscape for the Dotted. The solutions
searched by the conventional system were converged at the
top of a peak, whereas those searched by the proposed
system were widely halfway up a peak. This means that the
performance of the proposed method was worse compared to
that of the conventional method. Fig. 11(a) demonstrates that
small, multiple areas were searched by the proposed system
because the parents were divided into too many clusters.
The excessive classification is considered the reason that the
proposed system distributed the offspring broadly and failed
the convergence at the top of the peak. The performance of the
proposed method was affected heavily by the algorithm that
automatically determined the number of clusters. Therefore,



(a) Results from landscapes with
a single peak (average of the 9
trials)

(b) Results from landscapes with
multiple peaks (average of 27
trial runs)

Fig. 12. Averages of evaluation values estimated for each generation from
the landscapes obtained in the preliminary experiment

we need to study the benchmark of setting the number of
clusters, including the silhouette method, both of which were
used in this experiment.

2) Improvement of the evaluation values with each change
of generation: To confirm that the proposed method searches
better with each change of generation, we examined whether
the generational average of the evaluation values progressively
increased. However, the detailed evaluation values could not be
obtained in this experiment because the evaluation performed
on the experimental interface was binary. To examine the
transition of the evaluation values in detail, we estimated
an evaluation value of the solutions from the outline of the
landscapes obtained in the preliminary experiment.

Fig. 12 shows a graph of the generational average of the
estimated evaluation values. Fig. 12(a) shows the average of
the unimodal landscapes, and Fig. 12(b) shows the average
of the multimodal landscapes. The horizontal axis indicates
the number of generations, and the vertical axis indicates the
average of the estimated evaluation values. The solid red line
represents the results of the proposed method and the dotted
blue line represents those of the conventional method.

Fig. 12(a) shows that the conventional method garnered
higher averages than the proposed method on the unimodal
landscapes. On the other hand, the averages of both methods
on the multimodal landscapes are nearly equal, as shown in
Fig. 12(b). These results show that the search performance
of both methods are almost the same if a landscape has
multiple peaks. However, the conventional method searches
more effectively when a user has a unimodal landscape.

3) Performance of searching for multiple peaks: To con-
firm that the proposed method searched multiple peaks, we
measured the differences between the number of solutions
expected to be generated in a peak (the ideal size) and the
number actually generated in the peak. The ideal size is
defined as follows. First, the area of each peak obtained in
the preliminary experiment is measured. Then, the ratio of
the area to the total peak area is calculated, and the ratio is
multiplied by the population size. This value is treated as the
ideal size for the peak.

Fig. 13 shows the generational average of the sums for
each peak of the differences between the ideal size and actual
generation size for landscapes having 2, 3, and 4 peaks.

(a) The average of 11 landscapes
with 2 peaks

(b) The average of 7 landscapes
with 3 peaks

(c) The average of 5 landscapes
with 4 peaks

Fig. 13. Generational average of sums of differences of each peak between
the ideal size and actual generation size

The horizontal axis represents the number of generations,
and the vertical axis represents the averages of the sums of
the differences. The smaller the averages were, the more the
diverse search was thought to be effective. We did not graph
the averages of the landscapes with more than 5 peaks because
there were less than 5 landscapes for each number of peaks.
The graph shows the averages of the proposed system are
small in the landscapes having 2 or 3 peaks. On the other
hand, the averages of the conventional system are small in the
landscapes with 4 peaks. According to the results shown in
III-D, the participants who generated landscapes with two or
three peaks made up half of all the participants. Therefore,
because the difference of the proposed method is smaller and
better in the results of these participants, the proposed method
is considered useful.

To determine the reason for the conventional method to
be superior for landscapes with 4 peaks, we examined the
search results from the participant who generated the 4 peak
landscape, as shown in Fig. 14. The central area of this
landscape is treated as the widest peak. Naturally, the ideal
size assigned to this peak is large. The conventional system
searched only the right side of this area for most solutions.
However, the proposed system searched both the right and
left sides separately using the other cluster. Therefore, the
proposed system searched more widely and tended to suggest
many solutions that were out of the defined peak area. As a
result, the averages of the differences of ideal sizes of the pro-
posed system were bigger than those of the the conventional
system. In fact, Fig. 14 indicates that the proposed system
searched the domain of the peaks correctly and displayed a
diverse selection of items.

F. Summary of the experimental results

In this experiment, we verified the effectiveness of the
proposed method by examining (1) the improvement of the
evaluation values with each change of the generation and (2)



(a) Search result using the pro-
posed method

(b) Search result using the con-
ventional method

Fig. 14. Examples of search results on the landscape having 4 peaks

the performance of searching for multiple peaks. In terms
of the improvement of the estimated evaluation values, the
conventional method was superior at the case of unimodal
landscapes. However, for multimodal landscapes, both meth-
ods increased the evaluation values in almost the same way.
The analysis of how each method searched multiple peaks
showed that the proposed method searched more peaks than
the conventional method. These results showed that the pro-
posed method displays a more diverse selection of items and
reflects the user’s multiple preferences by searching peak-by-
peak.

V. CONCLUSION

To apply iGA to make product recommendations, we pro-
posed a crossover method that searches according to multiple
preferences. The proposed method estimates the multiple
peaks in a user’s Kansei landscape using the clustering method
and searches the top of each peak using PCA. Two experiments
were performed for this study. The first experiment proved
that multiple preferences exist by extracting multiple peaks
from the landscapes that the participants generated on each
of the three applications. The second experiment showed
the effectiveness of the proposed method in contrast with
the conventional method using BLX-α. The search results
showed that the proposed method searches more peaks than
the conventional method. However, the proposed method tends
to estimate too many peaks when a landscape has a single
wide peak. This tendency was also shown on the transition
of the evaluation values. For the unimodal landscapes, the
averages of the estimated evaluation values of the conventional
method were higher than those of the proposed method.
Conversely, with the examination of the diversity of the
performance, the proposed method searched more peaks than
the conventional method and covered the area of the peaks
with the solutions. In the future, we need to study the technique
that determines the number of clusters because it affected the
accuracy of the search process significantly, as shown in the
second experiment. Also, only two design variables were used
for each application discussed in this study to visualize the
experimental results more easily. Therefore, it is necessary to
examine the performance of the proposed method when the
number of design variables is increased.
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