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1.   Abstract
This paper proposes a new approach where some of the parameters in genetic algorithms are not necessary to be
predetermined.  The optimization problem is to minimize the volume of truss structures under tensile, buckling,
and displacement constraints.  The whole population is divided into several subpopulations which are called
islands, and a migration scheme which moves some individuals in one island to another island is adopted to mix
various individuals.  In the proposed approach, different values of the mutation rate and the crossover rate are
assigned to different islands, that is, the GA environments of the whole islands are not the same.  The distributed
environment scheme shows a good performance compared to conventional distributed algorithm.  This scheme
does not need to predetermine the GA parameters, and it is very useful for many problems where the proper values
of those parameters are not known.

2.   Keywords
Genetic Algorithms, Parallel Processing, Distributed GA, Distributed Environment

3.   Background
Genetic algorithms[1] are one of the most popular optimization approaches for complicated problems, but they
have some drawbacks.  Firstly, GAs require many iterations of computations, and secondly, they are apt to yield
premature convergence.  Thirdly, they have some difficulty in determining appropriate values of some parameters
such as the crossover rate and the mutation rate.  Parallel and distributed genetic algorithms have a possibility of
overcoming these disadvantages.

In parallel GAs, global population models have a single large population where one processor is assigned to treat
some individuals and each individual has global interaction with each other, while island models have multiple
and smaller populations and exchange information among the subpopulations; this exchange is performed by
moving some individuals from one population to another and is known as migration.  The distributed GAs (DGAs)
have another merit in addition to speedup.  Tanese showed the ability of finding fitter individuals than the
traditional one[2].  Belding extended Tanese's work on DGA to the different fitness functions (the royal road
problem) in order to determine whether her results were specific to the Tanese functions[3].  He showed that DGA
outperformed canonical GAs (CGAs: single population GAs) for the functions which are not easy for canonical
GAs.  From these results, we can conclude that DGAs outperforms CGAs in some sense.

On the other hand, the performance of each GA depends on the good choice of the crossover and the mutation
rates.  However, it is difficult to choose a proper combination of these parameters.  Tuson and Ros[4] showed that
the most suitable crossover rates also depend upon the problem to be solved.  Those results are obtained for
canonical GAs with a single population, and researches that deal with the good choice of the crossover and
mutation rates in distributed GAs which has multiple populations are very few.

This paper presents a good performance of parallel and distributed genetic algorithms for a structural optimization
problem and proposes a new approach where some of the parameters in the algorithms are not necessary to be
predetermined.

4.  Optimization Problems and GA procedures
To investigate the effect of the mutation rate and the crossover rate, the following structural optimum design
problem is considered.  The optimization problem here is the minimum volume problem of a 10-member truss
under the constraints on the tensile strength, compressive buckling and displacement.  The detail of this problem
is described in [5].

The fitness function is as follows:

(1)

where H is a Lagrange function, VT is the total volume of the truss structure, P is the penalty function, the
subscripts d, t, and b represent the displacement, tensile, and buckling constraints, respectively.  Wv represents



the weighting factor for the volume and is set to 600 according to the preliminary experiments.  σ represents the
tensile stress and L represents the buckling load in each truss member.

The design variables are the sectional areas of their members, and they are coded with a 10-bit Gray code yielding
chromosomes.  The length of the chromosomes is, therefore, 100 bits.

5.   Effect  of  Mutation and Crossover Rates
The effect of crossover and mutation rates on the performance of GAs with a single population (SPGA: Single
Population GA) and with a multiple population (MPGA: Multiple Population GA) are described here.  Two SPGAs
and two MPGAs were conducted with different population sizes, 270 and 2430, respectively.  The mutation rates
are 0.1/L, 1/L, and 10/L where L is the length of the chromosome, the crossover rates are 0.3, 0.6, and 1, and the
combinations of these values are used, thus providing 9 cases for each condition.  All the numerical results are the
average of 10 trials out of 12 omitting the highest and lowest ones.

At first, a SPGA is performed to investigate the proper values of the crossover and mutation rates.  Figure 1 shows
the histories of the fitness for SPGA with the population of 270.  The table right to the figure shows the
performance ranking at 1000 generations and the mutation and crossover rates.  It can be found that these GA
parameters affect a remarkable difference in the evolution process.  The similar result is obtained for SPGA with
the population of 2430, where the different combination of the mutation and crossover rates shows a good
performance.
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Fig. 1  Evolution process in the single population GA.

Next, two MPGAs were conducted with 9 subpopulations having different subpopulation sizes, 30 and 270,
respectively.  The overall population sizes are 270 and 2430, respectively, which are the same as those used in the
SPGAs.  Therefore, the comparison between the SPGA and MPGA can be done for the same overall population
sizes.  The parallel computer used is nCUBE-2E with 64 processors.

The migration rate is 0.3 and the migration interval is 20 generations, but these values does not have a large
sensitivity to the results.  The migration scheme used is random-ring, which means that the destination
subpopulations are randomly chosen at every migration under the constraint that the migration is performed from
one subpopulation to one subpopulation.

The performance of the MPGA is remarkably good compared with the SPGA since the MPGA prevents the
premature convergence by maintaining the diversity of individuals due to a certain isolation in the
subpopulations.  The effect of the mutation and crossover rates is also remarkable like the SPGA, but it has the
different tendency.

From these results, it is found that the MPGA outperforms the SPGA, but the appropriate determination of the
mutation and the crossover rates is found to be difficult.

6.   A New Distributed GA with Distributed Environments
A new approach is proposed in the parallel and distributed algorithm where some GA parameters such as the
crossover rate and the mutation rate are not predetermined.  In this approach, different values of those parameters



are assigned to different islands, that is, the GA environments of whole subpopulations are not the same as shown
in Fig. 2.  It can be expected that the solutions would find their proper environments for their evolution.

Fig. 2  Distributed-Environment GA.

Figure 3 shows the overall result comparing the fitness at 1000 generations for the SPGA, MPGA, and the DEGA
(Distributed Environment GA, shown as DE in the figure).  It is clear that the combination of the mutation and
crossover rates affects the performance, the MPGA shows remarkably good performance compared to the SPGA,
and the DEGA shows a excellent performance compared with all the results.  It should be noted that the best
mutation and crossover rates can only be determined after performing various experiments, while in the DEGA,
such preliminary experiments are not necessary.  Therefore, the DEGA can be considered to be the best approach
unless a plenty of time is provided.

1.3

1.4

1.5

1.6

1.7

1.8

SPGA MPGA DEGA

Schemes

DE

1.0/10/L0.6-10/L0.3-10/L

1.0-1/L0.6-1/L0.3-1/L

1.0-0.1/L0.6-0.1/L0.3-0.1/L

Fig. 3  Overall performance of SPGA, MPGA, and DEGA.

7 .   C o n c l u s i o n s
The following results were obtained from numerical experiments.
(1)  The multiple population GA yields better solutions than the single population GA because the diversity of
individuals are maintained in the multiple population GA during the evolutional process.
(2)  The distributed environment scheme in the multiple population GA shows a good performance compared to
other conventional GAs.  This scheme does not need to predetermine the GA parameters, and it is very useful for
many problems where the proper values of those parameters are not known.

8.   References
[1] Holland, J.H.(1975.) Adaptation in Natural and Artificial Systems, University of Michigan Press.
[2] Tanese, R. (1989), "Distributed Genetic Algorithms", Proceedings of the International Conference on

Genetic Algorithms, pp. 434-439.
[3] Belding, T. C. (1995), Proceedings of the International Conference on Genetic Algorithms, pp. 114-

121.
[4] Tuson, A. & Ross, P.(1996) Cost Based Operator Rate Adaptation: An Investigation, Proc. 4th

Conference of Parallel Problem Solving from Nature, Springer.
[5] Miki, M. (1995) Object-Oriented Optimization of Discrete Structures, AIAA Journal, Vol. 33, No. 10,

pp. 1940-1945.


