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ABSTRACT 

This paper discusses the effect of randomization of migration rate 
in distributed genetic algorithms (DGAs). DGAs are extended al- 
gorithms of GAS that can be performed in parallel. In DGAs, the 
total population of genes is divided into subpopulations called is- 
lands. In each island, a simple GA is performed and some of the 
individuals in each island are moved to another island after a cer- 
tain migration interval. The number of genes in the DGA is deter- 
mined by the migration rate. Although DGAs can find optimum 
solutions even when there are several peaks in objective functions, 
they require more parameters than simple GAS and are therefore 
more time intensive. In this study, we describe a new DGA in 
which the migration rate is randomized (DGA/rmr). This algo- 
rithm is evaluated using two numerical simulations: the Rastrigin 
function and the Rosenbrock function. We show that optimal pa- 
rameters exist in these systems and obtain solutions with the pro- 
posed approach. The solutions are not optimal, but are better than 
those obtained using a DGA with fixed migration rate. DGA/rmr 
may therefore be a less time intensive alternative to conventional 
DGAs. 

1. INTRODUCTION 

The genetic algorithm (GA) is an optimization method that mim- 
ics the process of evolution [ 11. This method has recently received 
much attention because of its suitability in optimization problems 

involving discrete factors. GAS, for example, can find optimum 
solutions even when there are several peaks in objective functions. 
The utility of GAS, however, suffers from the number of iterations 
required to find a solution. 

One solution to this problem is to conduct GAS in parallel. 
Generally, each genetic operations besides selection can be per- 

formed parallel and it is said that GAS have intrinsic parallelisms 
[2]. The Distributed Genetic Algorithm (DGA) is one common 
method of running GAS in parallel. 

In DGAs, the total population is divided into subpopula- 
tions called islands. After a predetermined number of generations 
(the migration interval), some genes are moved to another island 
at a predetermined migration rate (defined as the number of genes 
migrating per migration event). It is reported that the DGA can be 
performed in parallel but also can derived the good solutions with 
small calculations [3],[4]. The populations size of each island is 
smaller than that of a GA, so that local solutions can be reached 
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quickly. However, because of the existence of islands and the op- 

eration of migration, the variety of solutions are kept in DGAs. 
One disadvantage of GAs is that there exist several param- 

eters. These parameters affect both the accuracy of the solutions 
and the calculation time. To overcome this problem, many research- 
ers have determined these parameters using an adaptive method. 
Hasser [5], for example, introduced a GA in which the mutation 
rate is changed with respect to the time schedule. In another study, 
Srinivas [6] described GAS whose crossover rate and mutation rate 
are determined with adaptive stochastic numbers. Miki et al. [7] 
introduced a new method call Distributed Environmental Genetic 
Algortihms in which the crossover and mutation rates are different 
in each island. Using this method, the best solutions are derived 
automatically in each environment. 

DGAs have two additional parameters than GAS: the mi- 
gration interval and the migration rate. These parameters are also 
affect to the accuracy of the solutions and the calculation time. It 
is also very useful if these parameters can be determined automati- 
cally. However, there are very few studies are concerned with the 
adaptive method or automatically determination method of these 

parameters. 
In this study, we introduce DGAs in which the migration 

rate is random and called this algorithm Distributed Genetic Algo- 
rithm with Randomized Migration Rate (DGA/rmr). We apply this 
algorithm to two test functions and compare the effectiveness of 
DGA/rmr with a traditional DGA. 

2. DISTRIBUTED GENETIC ALGORITHMS 

The genetic algorithm (GA) is an optimization method that de- 
rives its behavior from a metaphor of same of the mechanisms of 
evolution in nature. In GAS, there is only one population but there 

are some sub populations that are called islands in distributed ge- 
netic algorithms (DGAs). On the other hand, the normal GAS that 

have one population can be called Canonical GAS (CGAs). In 
DGAs, normal GAS’ operations are performed in each island. In 
some period, some of individuals are chosen from islands and move 
to another islands. This performance is called migration. The pe- 
riod of migration is fixed or selected randomly and this period of 
migration is called migration interval. The number of genes that 
migrate to another sub population is determined with migration 
rate. Migration period and migration rate are parameters for DGAs. 
The conceptual flow of the DGAs is shown in Fig. 1. 

There are several models for migration in DGAs, includ- 
ing the stepping stones population model and the random migra- 



Fig. 1 Flow of DGA 
tion model [S]. In the stepping stones model, the target island to 
which the individuals migration is determined in advance, as shown 
in Figure 2. This model is design for use with massive parallel 
computing networks. 

Fig. 2 Stepping stone model 

In the random migration model, the target island is chosen 
randomly at every migration event, as shown in Figure 3. This 
model is suited for PC cluster parallel machines. In this study, the 
latter model is used. 
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Fig. 3 Random migration model 

There are also several methods of migration in DGAs [9], 
including a model where only elite individuals migrate and one 

where individuals are chosen randomly and selected by tourna- 
ment method [lo]. In this study, both the target island and the 
individuals that migrate are chosen randomly. In this case, the 
elites are not considered. 

DGAs are the algorithms that fit to the parallel machines. 
DGAs can, in general, derive better solutions with smaller num- 
bers of iterations compared to GAS since the population of each 
island is smaller in DGAs. Fewer iterations are required to con- 
verge upon a local optimum for each island. Usually the number 

of call of the fitness function decreases when the solutions are con- 
verge. However, because each island converged to the different 
local optima, there are a variety of solutions from a global point of 
view. After the information of these different optima is exchanged 

by migration, the global optimum is achieved. 

3. DISTRIBUTED GENETIC ALGORITHM WITH 
RANDOMIZED MIGRATION RATE 

In this study, we introduce an extended DGA in which the migra- 
tion rate is not fixed but determined randomly. This strategy is 
called Distributed Genetic Algorithm with Randomized Migration 
Rate (DGA/rmr). 

In DGA/rmr, the migration is operated synchronously at 
each migration interval. The migration island is determined ran- 
domly at each migration event. Individuals that migrate are also 
determined randomly with uniform numbers ranging from 0.0 to 
0.5. The process of migration in DGA/rmr is illustrated in Figure 

4. 

island island... island 

Fig. 4 Flow of DGAhmr 

Since the number of individuals that migrates to other is- 
lands is determined randomly, the number of individuals that come 
from a given island may be different from the number of individu- 
als that leave that island. Therefore, the population size of each 
island changes with each migration event. 

In the following chapter, the DGA/rmr is applied to the 
typical test functions and discuss the effect of the solutions. In the 
following chapter, it is also make clear that one of the parameters, 
the migration rate, is not needed to determined precisely by the 

DGA/rmr. 

4. NUMERICAL SIMULATIONS 

4.1 Test functions 
To evaluate the performance of DGA/rmr, this algorithm was used 
to maximize two standard test functions, the Rastrigin function 
and the Rosenbrock function [ 111. These functions are expressed 
by equations (1) and (2), respectively, and the landscapes of these 
functions with two design variables are shown in Figure 5 and Fig- 
ure 6. The optimum solutions of both functions exist on the origin 
and have values of 0. 
Rastrigin function is 

f =-lOn-;& (X’- 1ocos (2-a). . . . . . . . . . . . . . . . . . . 

Rosenbrock function is 

f=-.&( 100(x, -.;)*+(x;- I)*) . . . . . . . . . . . . . . . . . (2) 

Although the Rastrigin function has a relatively large area 
of local optima, GA can find global optima easily because each 
design variable is independent to objective. The Rosenbrock func- 
tion, on the other hand, has only one peak in the design fields, but 
it is very difficult to find an optimum using DGA because the each 
design variable is not independent to objective. 
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Fig. 5 Rastrigin function 
_ 
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Fig. 6 Rosenbrock function 
In this study, only two types of test functions are treated 

but those are the type of functions whose optima can be found 
easily and not easily by GA. Therefore, it can be said that the 
effectiveness of DGA/rmr can be described by these two types of 
test functions. 

4.2 Maximization of the Rastrigin function 
Below we describe the use of DGA and DGAkmr for the maximi- 
zation of the Rastrigin function and compare the solutions found 
by the algorithms. The parameters for the DGA are shown in Table 
1. Simulations were terminated when the differences of maximum 
and minimum values for an island were less than 0.001. We define 
this condition as convergence. Each value reported is an average 
of 20 trials. 

Table 1 Parameters of GA 

total population size 1 400.640 and 800 
crossover rate 0.6 
mutation rate 0.0 
island number 
migration interval From 1 to 20 
migration rate 0.1,0.2,0.3,0.4,0.5 and random 

To evaluate the effect of population size, migration rate 
and migration interval on optima, we used DGA to find the opti- 
mum of the Rastrigin functions. In this experiment, we examined 
population sizes of 400,640, and 800. Figure 7 and Figure 8 show 
the final fitness values with respect to migration intervals when 
the migration rate is 0.1 and 0.5. 

The data in Figure 7 and Figure 8 show that a population 

size of 800 is sufficient to find an optimum for the Rastrigin kmc- 
tion. Similar results were obtained when the migration rate was 
set to 0.2,0.3, or 0.4. Solutions to the function for this population 
size were independent of both the migration rate and the migration 

interval. 
When the population size is 400, DGA can find only local 

optima for the Rastrigin function. Under these conditions, the 
maximum fitness value of the function is affected by both the mi- 
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Fig. 7 Fitness value with respect to migration interval 
( migration rate = 0.1) 
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Fig. 8 Fitness value with respect to migration interval 
( migration rate = 0.5) 

gration rate and the migration interval. When the migration rate is 
0.1, for example, a migration interval of 8 produces the maximum 
value. When the migration rate is 0.5, a migration interval of 11 
derives the maximum value. Therefore, when the total population 
is not enough to find the optimal, the maximum value is depend on 
migration rate and migration interval. This optimum migration is 
not fixed. 

When the simulation is converged, sometimes every is- 
land is not converged at the same solution. Figure 9 illustrates the 
maximum, minimum, and average values of maximum value in 
each island of the Rastrigin function at a migration rate of 0.1. 
When the migration interval is less than 5, the maximum and mini- 
mum values for each island converge. When the interval is greater 
than 5, however, the local maxima and minima do not converge to 
the same solution. Similar results were obtained with migration 
rates of 0.2,0.3, 0.4,or 0.5. Therefore, there is no guarantee that 
specific value is found. Sometimes found bigger and sometimes 
smaller values are found. These data also suggest that it is diffr- 
cult for DGA to determine the optimal migration rate and migra- 
tion interval when the population size is too small. 
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Fig. 9 Max, min and ave values of fitness function 
(migration rate = 0.1) 

We next used DGA/rmr to determine the maximum values 

of the Rastrigin function. The migration rates were randomly se- 
lected values between 0.0 and 0.5. Figures 10, 11, and 12 show 
fitness values with respect to migration rate. Migration intervals 
of 3, 6, and 9 were used for Figures 10, 11, and 12, respectively. 
These data show that DGA/rmr derives better values than DGA 
for each migration interval tested and suggest that both migration 
rate and migration rate can be random in DGAkmr. 

From Fig. 10, 11 and 12, it is found again that the best 
migration rate that derives best value is different when the migra- 
tion interval is different. On the other hand, DGAkmr that uses 

randomized migration rate derives the better values compared to 
the other values. Therefore, it can be said that not only the migra- 
tion rate but the migration interval is not determined in DGA/rmr. 

Figure 13 depicts the total number of function calls with 
respect to migration interval and migration rate. The number of 
function calls in DGA/rmr is similar to that of DGA with fixed 
migration rates for low migration intervals, but is slightly higher 
than that of DGA at higher migration intervals. One explanation 
for this trend is that the population size in DGA/rmr the population 
size is not fixed, but fluctuates with every migration event. When 
there is a large difference between populations of islands, a wast- 
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Fig. 10 Maximum fitness values of population size=400 
(migration interval = 3) 

Fig. 11 Maximum fitness values of population size=400 
(migration interval = 6) 
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Fig. 12 Maximum fitness values of population size=400 
(migration interval = 9) 
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ing of synchronous waiting time occurs. This concept is illus- 
trated in Figure 14, where the population of two islands (island 0 
and island 4) is shown with respect to generation. Each island 

maintains a population of 50 in DGA, but changes population with 
each migration event in DCiA/rmr. This difference wastes syn- 
chronous waiting time. 

80 

bU- ______________________________________________________ 

+* 
l 

5o_._~___________*~_____~_~____~~~_~_____________ 

l !I 0 
* 

4o_.____~_6_________~____~_~_~*~________*~________, 

0 

30 
0 

I I I I 
0 20 40 60 

Generation 

-I 
80 100 

Fig. 14 Number of population in each island 

One solution to this problem is to perform the migration 
operation asynchronously. This topic is the subject of future work. 

4.3 Maximization of the Rosenbrock function 
DGA and DGAIrmr are also implemented for the problem 

where the value of the Rosenbrock function is maximized. The 
following results that are very similar to the results that are de- 
rived from the rastrigin function. The parameters of GA are the 
same to Table 1 and all results are the average of 20 trials. 

We also used DGA and DGAIrmr to find maximum values 
for the Rosenbrock tin&on. The following results are very simi- 
lar to the results that are derived from the rastrigin function. For 

this study, we used the parameters listed in Table 1. All results are 

the average of 20 trials. 
Figure 15 shows the maximum fitness value found by DGA 

with respect to the migration interval and population size. It is 
clear from these data that DGA cannot find an optimal value for 
this function, even though there is only one peak value. This 

result is not unexpected, however, since there is a relationship be- 
tween the design variables in this function. It is very difficult for 
GAS to find the optimum of this type of functions. 

The maximum values of the Rosenbrock function are shown 
with respect to migration rate in Figure 16 and Figure 17. In these 
figures the population size is 320, and the migration interval is 6 
and 9, respectively. 

These data show that the values produced by DGAkmr are 
very good compared to the results from DGA with fixed migration 
rate. We believe that DGA/rmr was more successful than DGA 
because it is able to find an optimum or suboptimum migration 
rate through its random mechanism. 
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Fig. 15 Fitness value with respect to migration interval 
( migration rate = 0.1) 
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Fig. 16 Maximum fitness values of population size=320 
(migration interval = 6) 
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5. CONCLUSIONS 

In this paper, a new distributed genetic algorithm approach called 
Distributed Genetic Algorithm with Randomized Migration Rate 
(DGA/rmr) is proposed. We implement DGA/rmr to minimize 
two test functions, the Rastrigin function and the Rosenbrock func- 

tion. From these numerical simulations, we conclude the follow- 
ing: 

1) When the population size is large enough, solutions are inde- 
pendent of migration interval and migration rate in DGA. 
2) When the population size is too small, solutions are dependent 
on the migration rate and migration interval. It is therefore diffi- 

cult to find the optimal migration rate and migration interval in 
these systems. 
3) DGA/rmr obtains good results at all migration intervals for 
both the Rastrigin and Rosenbrock function. These results suggest 
that both the migration rate and the migration interval need not be 
defined in order to find good solutions. 
4) One disadvantage of DGA/rmr is that the population size of a 
given island changes with every migration event. These changes 
in island size produced synchronous wasting time in this algorithm. 

Efforts to solve this problem are the subject of current research. 
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