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ABSTRACT 

This paper introduces an alternative approach to relieving the 
task of choosing optimal mutation and crossover rates by 
using a parallel and distributed GA with distributed 
environments. It is shown that the best mutation and 
crossover rates depend on the population sizes and the 
problems, and those are different between a single and 
multiple populations. The proposed distributed environment 
GA uses various combination of the parameters as the fixed 
values in the subpopulations. The excellent performance of 
the new scheme is experimentally recognized for a standard 
test function. It is concluded that the distributed environment 
GA is the fastest way to gain the good solution under the 
given population size and uncertainty of the appropriate 
crossover and mutation rates. 

1. INTRODUCTION 

The performance of each GA depends on the good choice of 
the crossover and the mutation rates. Mtihlenbein [l] and 
Back [2] concluded that a constant mutation rate l/L, where L 
is the length of the binary strings, can serve as a reasonable 
heuristic rule for any kind of objective function. It has much 
more difficult to come up with heuristics for choosing the 
suitable crossover rate. Schaffer et al [3] observed that high 
crossover rates are best with small population, a broad range 
of crossover rates are tolerated at medium population sizes, 
and only low crossover rates are suggested for large 
population sizes. Tuson & Ross [4] showed that the most 
suitable crossover rates also depend upon the problem to be 
solved. 

Those results are obtained for canonical GAS with a single 
population, and researches that deal with the good choice of 
the crossover and mutation rates in distributed GAS which has 
multiple populations are very few. Researches in distributed 
GAS concerning about optimal settings of these parameters are 
going toward a self-adaptation of the parameters and the 
evolution of the subpopulations. 

Although these hierarchical meta-GA approaches have a 
remarkable flexibility in modeling various adaptation 
schemes, a poor strategy in meta-GAs can not improve the 
performance of sub-GAS. From this point of view, we present 
a parallel GA with distributed environments in this paper. 
The main objectives of this research are to make clear whether 
the optimal crossover and mutation rates in distributed GAS 
are different from those in canonical GAS, and to propose a 
new approach where no effort is required to choose suitable 

parameters. The most important point in proposing a new 
method is in the comparison between the performances of the 
new scheme and the previous one with best tuned parameters. 

2. BACKGROUND 

The roles of crossover and mutation are significantly 
important in GAS [S]. Crossover is employed to perform 
direct information exchange between individuals in a 
population, while mutation is employed to avoid stagnation in 
evolution. 

The performance of each GA depends on the good choice of 
the crossover and the mutation rates. Empirical studies have 
shown that the best setting for the crossover rate depends on 
the choices made regarding other aspects of the overall 
algorithm, such as the settings for other parameters such as 
population size and mutation rate, and the selection operator 
used. Some commonly used crossover rates vary between 
0.45 and 0.95 [6]. Tuson & Ross [4] carried out an exhaustive 
search of the operator probabilities: a GA was run for 
crossover rate 0.05 to 0.95 with steps of 0.05, while the 
mutation was applied otherwise. Their results show that the 
most suitable crossover rates also depend upon the problem to 
be solved. On the other hand, the best setting for the mutation 
rate also depend on the particular optimization problems [7], 
and the lower bound for the optimal mutation rate is found to 
be l/L [2] where L is the length of the binary strings. 

The difficulty in setting suitably the crossover and mutation 
rates promoted many researches on the self-adaptation of 
these parameters. Back [S] pointed out that the most efficient 
parameter setting must depend on the fitness function, at least. 
It is quite evident that strategy parameters should vary during 
a run for finding an optimum in order to achieve even higher 
efficiencies. 

Hesser & Manner [9] introduced a time schedule for mutation 
rate. Back [8] took a different approach where the self- 
adaptation of mutation rates is intended to organize the 
schedule of mutation rates during the course of evolution. 
Srinivas & Patnaik [lo] recommended the use of adaptive 
probabilities of crossover and mutation to realize the twin 
goals of maintaining diversity in the population and sustaining 
the convergence capacity of GA. Smith & Fogarty [ 1 I] 
proposed an algorithm which optimizes both recombination 
and mutation strategies via self adaptation of its genotype. 
This is done by learning useful ‘blocks’ of linked genes and a 
suitable mutation rate for each block. 
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These adaptive parameter tuning methods in GAS are very 
useful and also very suitable since self adaptation is an 
inherent feature in evolutionary optimum seeking, but such 
meta-GA methods sometimes does not work very well since 
the performance of a particular GA strategy in such meta-GA 
also depend on the suitable parameter settings in the meta-GA. 
The premature convergence of a population in a GA can be 
avoided using the ‘good’ meta-GA strategy, but it can not be 
avoided when the premature convergence takes place in a ‘bad 
meta-GA. 

It is well known that distributed GAS with multiple 
subpopulations or with isolation by distance can maintain 
diversity in the evolving population. Tanese [12] showed the 
ability of finding fitter individuals than the traditional one. 
Belding [13] extended Tanese’s work on distributed GA to the 
different fitness functions in order to determine whether her 
results were specific to the Tanese functions. He showed that 
distributed GA outperformed canonical GA for the functions 
which are not easy for canonical GA. From these results, we 
can conclude that distributed GA outperforms canonical GA in 
some sense. However, the optimal-parameter setting problem 
still remains in distributed GAS. 

There has been few researches that treat the effect of 
crossover and mutation rates in distributed GAS. However, 
there has been many researches that deal with adaptive 
parameter settings in distributed GAS since the evolution of 
the subpopulations is easy to be incorporated into distributed 
GAS. Back [14] proposed a master-slave distributed GA 
having a meta-algorithm for optimizing mutation rates. 
Pedroso [15] proposed the niche search where the overall 
population of individuals is assembled into different groups, 
each of them occupying a particular niche, and the niches 
must also compete between them. Schnecke & Vornberger 
[16] also proposed an adaptive parallel GA where several 
subpopulations execute a sequential GA with different 
strategies. At fixed intervals these strategies are ranked and 
each strategy is adjusted to the next better one by assimilating 
its characteristic parameters. Thus, the best strategy is 
expanded. 

These adaptive approach in distributed GAS, however, 
introduces additional difficulty in comparing the performance 
of GA since the additional parameters in distributed GAS such 
as the subpopulation size, the number of subpopulations, 
migration scheme, migration ratio, and the migration interval 
as well as the meta-algorithm used in the evolution of 

subpopulations. 

3. DETERMINATION OF GA PARAMETERS 

First, the effect of crossover and mutation rates in canonical 
and distributed GAS is examined with a standard test function. 

Optimization Problems and GA procedures 
The optimization problem used here is the maximization of 
the Rastrigin function (N=lO) (-5.12 <xi < 5.12) [17] : 
One design variable is represented by 10 bits, and 10 design 

f(xilf=,..>=(N * loI + [ ,& [2- locos (2mi)) 
1 

variables makes the length of the chromosome 100 bits. A 
standard GA with a single-point crossover is used with the 
maximum generations of 1000. The fixed crossover and 
mutation rates are used in a run, and the combination of the 
crossover rates of 0.0, 0.1, 0.3, 0.6 and 1.0, and the mutation 
rates of 0.1/L, l/L and 10/L, where L is the length of the 
chromosome. 

The results are represented by the mean values of the fitness 
functions of the fittest individuals over 10 trials which are 
extracted from 12 trials omitting highest and lowest 
performances. Such treatment alleviates erroneous results 
caused by the extraordinary values rarely appeared in 
probabilistic events. The parallel computer used is nCUBE2E 
with 64 processors, and one processor is assigned to one 
subpopulation in the distributed GA. 

Single Population GA 
The effect of crossover and mutation rates on the performance 
of GAS with a single population (SPGA: Single Population 
GA) are described here. Two SPGAs were conducted with 
different population sizes, 180 and 1620, respectively. 

Figure 1 shows the histories of the fitness value for the 
population size of 1620. In each figure the mutation rate is 
constant, then the effect of crossover rates under a constant 
mutation rate can be seen in each figure, while the effect of 
mutation rates can be seen by comparing these 3 figures. 
When the mutation rate is small (p, = 0.1/L), the better results 
are obtained with the higher crossover rates, that is, the 
appropriate value of the crossover rate is 1.0 except for the 
final stage. At the final stage where the fitness value 

Figure 1: Effect of crossover rate in SPGA (Population size = 1620) 
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Figure 2: Effect of crossover rate in MPGA (Population size = 180 x 9) 

approaches the global optimum, the fitness value for the 
crossover rate of 0.3 exceeds the value for the crossover rate 
of 1.0. 

When the crossover rate is very high (p,=lO/L), the results 
are opposite to the case with the small mutation rate, that is, 
the better results are obtained with the lower crossover rates. 
The appropriate crossover rate is 0.0, that is, the crossover 
should not be performed. On the other hand, when the 
crossover rate is medium (p, = l/L), the effect of the 
crossover rate is remarkable. At the beginning, the rate of 1.0 
is appropriate, but the fitness value with the rate of 0.6 
exceeds it, then the value with the rate of 0.3 exceeds the 
fitness value with 0.6. Finally, the fitness value with the rate 
of 0.1 shows the most excellent performance within the range 
of 1000 generations. The fitness value with the crossover rate 
of 0.0 seems to go to the top at a certain generations beyond 
1000 generations. 

To investigate the effect of the population size on the best 
crossover rate, the similar numerical experiments with 180 
individuals was carried out, and the similar results were 
obtained. That is, the appropriate crossover rate should be 
high when the mutation rate is low, it should be low when the 
mutation rate is high, and it changes along with the 
generations when the mutation value is medium. 

Multiple Population GA 
Next, the effect of crossover and mutation rates on the 
performance of GAS with multiple populations (MPGA: 
Multiple Population GA) are described here. Two MPGAs 
were conducted with 9 subpopulations having different 
subpopulation sizes, 20 and 180, respectively. The overall 
population sizes are 180 and 1620, respectively, which are the 
same as those used in the SPGAs. Therefore, the comparison 
between SPGA and MPGA can be done for the same overall 
population sizes. Here, the notation 180 x 9 means that the 
subpopulation size is 180 and the number of subpopulations is 
9. 

The migration rate is 0.3 and the migration interval is 20 
generations, but these values does not have a large sensitivity 
to the results. The migration scheme used is random-ring, 
which means that the destination subpopulations are randomly 
chosen at every migration under the constraint that the 
migration is performed from one subpopulation to one 
subpopulation. 

Figure 2 shows the the histories of the fitness value for the 
180 x 9 cases. In each figure the mutation rate is constant, 
then the effect of crossover rates under a constant mutation 
rate can be seen in each figure, while the effect of mutation 
rates can be seen by comparing these 3 figures. 

When the mutation rate is small (p, = 0.1/L), the better results 
are obtained with the higher crossover rates, that is, the 
appropriate value of the crossover rate is 1.0, like the results 
of the single population GA. The effect of multiple 
population is remarkable. The fitness function value of the 
crossover rate of 1.0 reached the global maximum at 280 
generations, that means 11 trials out of 12 trials reached the 
global maximum at 280 generations for the multiple 
population GA. On the other hand, the fitness value of the 
crossover rate of 1.0 did not reach the global maximum before 
1000 generations for the single population GA. It is clear that 
the ability of searching the optimum solutions becomes very 
high with a multiple population scheme, and the superiority of 
distributed GAS over conventional GAS can be recognized 
from these results. 

When the crossover rate is very high (p, = 10/L), the results 
are different from those for the single population GA. The 
best crossover rate is changed along the generations. In the 
single population GA, the crossover plays a role of global 
search as the mutation rate is high, so the crossover rate 
should be decreased as mentioned previously. On the other 
hand, in the multiple population GA, the crossover play not 
only a role of global search, but also a role of mating between 
migrated and native individuals. Therefore, a simple tendency 
is not observed for the crossover rate in the MPGA. The 
superiority of distributed GAS over SPGAs can also be 
recognized from comparing Figures 1 and 2. 

When the crossover rate is medium (p, = l/L), it seems that 
the high crossover rate yields good performance. However, 
the detail of Fig. 2 (b) shows the similar result as shown in 
Fig. 1 (b). That is, the effect of the crossover rate is 
remarkable, like the single population case. At the beginning, 
the rate of 1.0 is appropriate, but the fitness value with the 
rate of 0.6 exceeds it, then the value with the rate of 0.3 
exceeds the fitness value for 0.6. Similar to the above results, 
the crossover rate of 0.0 and 0.1 did not show a good 
performance. The MPGA requires a certain crossover rate for 
mating between migrated and native individuals. 

To investigate the effect of the population size on the best 
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crossover rate in the multiple population GA, the similar 
numerical experiments with 180 individuals in total was 
carried out with 9 subpopulations, that is, the subpopulation 
size is 20. In these experiments, the best crossover rate is 1.0 
for the small and medium mutation rates and depend on the 
generation for the high mutation rate. This can be explained 
as follows. 

In the MPGA, the number of individuals or the subpopulation 
size is small, and therefore, the diversity of individuals almost 
disappears, while the diversity of individuals among 
subpopulations are maintained in the MPGA. In this case, the 
crossover in each subpopulation does not play any role except 
for mating between migrated and native individuals. 
Consequently, the crossover rate of 1.0 provides the best 
performance for the small and medium mutation rates. On the 
other hand, the high mutation rate causes the diversity of 
individuals even for the small subpopulation size. In this 
case, the high crossover rate becomes a cause of ruining the 
good solutions, and the appropriate crossover rate exists. 

Best GA Parameters 
The GA parameters such as the mutation rate and the 
crossover rate can be suitably determined from the results 
mentioned above, as shown in Figs. 3 and 4. In Fig. 3, the 
effect of the mutation rate on the fitness value at 1000 
generations is shown, where the crossover rates are best 
adjusted. It is clear that the mutation rate of 10/L shows poor 
performance in SPGA and MPGA even with the best 
crossover rates. This means that high mutation rates makes 
GAS a simple random search method, and spoils the advantage 
of GAS. 

The mutation rate of l/L shows very excellent performance 
with the best crossover rates in the single population GA and 
the multiple population GA and regardless of the population 
size. The mutation is the fundamental mechanism for 
producing variations and the mutation rate should be small 
enough not to ruin good solutions. A commonly used rate of 
mutation is l/L, that is, one over the string length. The results 
shown here support this conventional rule. However, the 
mutation rate of l/L is not always the best value. When the 
population size becomes large, the best mutation rate is 
considered to shift from l/L to 0.1/L. With 1620 individuals, 
the better performance for the mutation rate of 0.1/L is 
recognized for both SPGA and MPGA. Therefore, the 
mutation rate of l/L is a commonly used value, but it is not 
the most suitable value for any conditions. 

The best crossover rate is shown as a function of the mutation 
rate in Fig. 4. It is clear that the best crossover rate decreases 
as the mutation rate increases except for the MPGA with a 
small population size. As mentioned before, in the MPGA 
with a small population size, the diversity of solutions almost 
disappears after a few generations, and the crossover rate 
plays only a role of mating between the migrants and the 
natives. Therefore, the best crossover rate is always 1.0. 
Therefore, except for such specific case, is is clear that the 
best crossover rate decreases as the mutation rate increases. 
Also, it is recognized that the the best crossover rate decreases 
as the population size increases. This is because high 
crossover rates ruin the good solutions when the variations in 
the population is large. 

4. GA WITH DISTRIBUTED ENVIRONMENTS 

Distributed Environment Scheme 
From the above results, it is concluded that to obtain the best 
results the crossover rate should be adjusted properly 
according to the mutation rate, the population size, and the 
number of populations as well as the problems to be solved. 
But, the determination of the best mutation rate and the best 
crossover rate is a time consuming task. Further, the best 
crossover rate is changed along with the generations as shown 
in Figs. 1 (b) and 2 (b). In such cases, the crossover rate 
should be changed as the generation proceeds, but it is not 
clear when is the best transition generation for changing the 
crossover rate. 

To overcome these problems, we propose a new distributed 
GA with a distributed environment scheme. In this scheme, a 
whole population is divided into several subpopulations, and 
the GA parameters such as the mutation rate and the crossover 
rate in each subpopulation are different from each other. The 

Figure 5: DEGA (Distributed Environment GA) 
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migration operation is performed similarly as the conventional 
distributed GA. 

The distributed environment scheme is schematically shown in 
Fig. 5, where thermometers represent the mutation rate and 
the heart symbols represent the crossover rate. High 
temperature means high mutation rates and the big heart 
symbol means the high crossover rate. This scheme is called 
the Distributed Environment Genetic Algorithm (DEGA). 
With DEGA, it can be expected that the various building 
blocks of optimum solutions for a particular problems are 
evolved in various subpopulations, and migration provides the 
global optimum. 

obtained by a SPGA and a MPGA using various mutation and 
crossover rates for entire populations. The number of 
combinations of mutation rates and crossover rates is 9, as 
shown in Table 1, and the performance of DEGA is compared 
with these 9 results. It should be noted that these fitness 
values are the average of the fitness of the fittest individuals 
over 10 trials out of 12 trials omitting the highest and lowest. 

The tuning of GA parameters is not necessary with DEGA 
since many combinations of such GA parameters are used in 
many subpopulations. Consequently, it can be expected that a 
global optimum can be easily obtained without any pre- 
experiments with DEGA. 

It is clear that the performance of DEGA is relatively very 
high although it is not the best. The superiority of DEGA can 
be recognized from this figure. Further, the comparison of the 
generations where all the trials provide the global optimum 
yields the remarkable superiority. Figure 7 shows the detailed 
part of the convergence for the mutation rate of l/L. The 
DEGA finds the global optimum in all the trials at 541 
generations, and this generation is the first among the others. 

Effectiveness of DEGA 
To demonstrate the effectiveness of the proposed scheme, a 
DEGA with 9 subpopulations was performed. The parameters 
used for the DEGA are the same as those in the MPGA 
mentioned before except for the fixed crossover and mutation 
rates. The combination of the mutation and crossover rates in 
the 9 subpopulations are shown in Table 1. The computer 
used is a parallel computer, nCUBE2, with 64 processors, and 
one processor is assigned to one population. 

The excellent performance of DEGA is surprising since it has 
many subpopulations with improper GA parameters. The 
mechanism for providing such excellent performance is not 
clear. One possible reason is that the various environments 
yields better solutions than the best but the same 
environments. It can be concluded from these results that 
DEGA is an effective method unless the optimal set of 
crossover and mutation rates is clear. 

The problem here is the maximization of the Rastrigin 
function (N=lO) , which is the same as the problem in section 
3. The performance of DEGA can be seen in Fig. 6 for the 
overall population size of 180, and the similar results were 
obtained for the overall population size of 1620. These results 
show the performance of DEGA compared with the results 

The effectiveness of DEGA can be seen more clearly in Fig. 8, 
where the fitness function at 1000 generations are compared. 
It is clear from this figure that DEGA provides superior 
performance than the best tuned results of SPGA, and it also 
provides relatively good performance even in MPGA. Thus, 
the effectiveness of DEGA is confirmed for a standard test 
function. 

Advantage of DEGA 

Table 1: Combination of Mutation and Crossover Rates 

The advantage of DEGA is clear from the results. If a good 
solution is required within a limited time and the suitable 
crossover and mutation rates are not clear, DEGA is one of the 
best choices. It can be expected that the solution obtained by 
DEGA is better than the solution by SPGA with optimal 
parameters, while a long computation time is necessary to 
obtain them in SPGA. Consequently, DEGA is the fastest way 
to gain the good solution under the given population size and 
uncertainty of the appropriate crossover and mutation rates. 

with MPGA (Overall population size =180 x 

9) for mutation rate of l/L,. 

The choice of the combinations of crossover and mutation 
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rates is not difficult since the mutation rate should vary at 
around l/L and the crossover rate should vary at around 0.5. 
Our results show that the mutation rate of 10/L is considered 
too large, but 0.1/L is not too small. So, mutation rates of 
3/L, l/L and 0.1/L seems a good variation for DEGA. 

DEGA is considered to outperform some adaptive GAS 
mentioned unless they have optimal meta-strategies. Adaptive 
GAS have a lot of additional parameters or additional 
complicated mechanisms to maintain the population diversity, 
and these parameters and mechanisms can be adjusted 
properly to particular problems. The remarkable advantage of 
adaptive GAS exists in the possibility of fast convergence and 
high quality of solutions. However, the possibility becomes 
low when the adaptation does not work well. On the other 
hand, DEGA has no complicated mechanism, but it can 
provide us good solutions. 

5. CONCLUSIONS 

Experimental verification is established for the effectiveness 
and the usefulness of the GA with distributed environments in 
this paper. The effect of crossover and mutation rates on the 
performance of GAS with a single population and multiple 
populations is clarified, and the optimum rates vary according 
to the population size and the problem to be solved. It is 
found that the optimal rates for a multiple population GA is 
different from the ones for a single population GA. Thus, the 
difficulty in determining the optimal set of crossover and 
mutation rates exists in multiple population GAS, too. 

A GA with distributed environments (DEGA) is proposed, and 
the superiority of this scheme is experimentally proved. For 
two different types of problems, DEGA shows best 
performance in comparison with a single population GA 
having the optimal crossover and mutation rates, and it shows 
relatively high performance in comparison with a multiple 
population GA having the optimal crossover and mutation 
rates. Consequently, DEGA is the fastest way to gain the best 
solution under the given population size and uncertainty of the 
appropriate crossover and mutation rates. 
Further studies are required to make clear why DEGA has a 
superior performance although it has very bad or not good 

subpopulations. Perhaps, the diversity in the environments 
in the subpopulations may play an important role, and this 
could arise the difficulty in devising a new adaptive 
mechanism for maintaining this diversity. 
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