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Abstract
Inthis study, atemperature pardld smulated annealing with
adgptive  neighborhood  (TPSA/AN)  for  continuous

optimizetion problemsisintroduced. TPSA/AN is based on the
temperaure pardld smulated anneding (TPSA), which is
auitable for padld processng, and the SA that Corana
deveoped for continuous optimization problems. The movesin
TPSA/AN are adjugted to have equa acceptance rates. Because
of this mechanism, the proposed method provides globd search
in the processors of pardld computers for high temperatures
and locd search in the processors for low temperatures in
TPSA/AN. Therefore, dl the processors are used for searching
very efficiently. The TPSA/AN is evauated for the standard
test functions, and it is found that adopting the adgptive
neighborhood rangeincreasesthe searching ability of TPSA.

Key Words Padld Processng, Padld Algorithms,
Simulated Annedling, Temperature Pardld, Adaptive Method

1 Introduction

There isa gtrong incentive to pardlélize the computation for
optimization problems since it requires many iterations of
andyds Especidly, new goproaches to optimization problems
such as genetic dgorithms and smulated annedling, which are
very effective for solving complicated optimization problems
with many optima, require tremendous computational power.
Consquently, pardldization of these new optimization
methods, which sometimes are cdled heurisic search
methods] 1], isvery important.

It was Kirkpetrick e d. who firgd proposed smulated
amneding, SA, as a mehod for solving combinatorid
optimization problerg 2]. It is reported that SA is very ussful
for severd types of combinatorid optimization problems[3].
The advantages and the disadvantages of SA ae wdl
summarizedin [4]. The most remarkable disadvantages are that
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it needsalot of timeto find the optimum solution and it is very
difficult to determinethe proper cooling schedule. To determine
the proper cooling schedule, many preparatory trids are needed.
When the cooling schedule is not proper, the guarantee of
finding optimum solutionislog.

There are two gpproaches to shorten the calculation time in
SA. Oneisdetermining the cooling schedule properly. SA with
the proper cooling schedule can provide an optimum solution
quickly. This goproach iswell reported by Ingber[4]. The other
goproach is to paform SA on pardle computers. Because of
the rapid progress of pardld computers, there are severd
studies with this approachl5]. Among these dudies, the
temperature pardld smulaed anneding (TPSA) [6], which was
cdled thetime-homogenouspardld anneding[ 7] before, isone
of the dgorithms that can overcome the cooling schedule
problem. TPSA is an dgorithm that can be caried out on
pardlel computers easly and does not reguire any cooling
schedule. These are remarkable advantages. So far, TPSA has
been gpplied to LS dlocation problems| 6], travelling sdesman
problems[8], grgph partition problems] 7] and so on. However,
there are very few studiesthat focus on continuous optimization
problems. Therefore, the effectiveness of TPSA in continuous
problems has not been dlear.

In this study, a new TPSA gpproach that can be gpplied to
continuous optimization problems is proposed. In the proposed
goproach, the SA that Corana developed and TPSA ae
combined and the neighborhood rangeis determined adaptively.
The approach is caled temperature pardld smulated anneding
with adaptive neighborhood (TPSA/AN).

2 Temperature Paralld Smulated Annealing

Comparing to sequentid SA, there are more sophisticated
agorithmsthat have proven that parald probahiligtic exchange
of informetion gathered from processors anneding at constant
but different temperatures can increese the overdl rate of
convagence Kimura and Teki cdled this dgorithm



temperature pardld smulated anneding (TPSA)[6]. In TPSA,
eech processor peforms a sequentid SA with a congtant
temperature for the whole annedling time, while the different
temperatures ae assigned to different processors. Two
solutions in two processors with adjacent temperatures are
exchanged with a certain probability at an interva of anneding
time.

The important festures of TPSA are as follows. (8 The
cooling schedule is determined automatically because solutions
decide their temperatures by themsdves. (b) After getting
solutions, when these solutions are not satisfied, TPSA can be
restarted to get better solutions.

When the energy of solution at higher temperature is lower
than that a lower temperature, the solutions are adways
exchanged. Otherwise, when the energy of solution a higher
temperature is higher than that a lower temperature, the
solutions are exchanged in accordance with the probability that
is derived from the differences in temperature and energy. This
probahility function is defined in equation (1). By this method,
the solutions that have low energy tend to concentrate to the
lower temperature.

il if DT DE<0

(T.ET E)=1
Pex( ) %e(p(_ DI_II_D')

(1)

otherwise

where T istemperature, E is energy, and the prime means the
dae of the adjacent temperaure A T and A E ae the
differences in the temperature and the energy between two
adjacent temperatures.

As mentioned before, in each processor of a padld
computer, one or severd sequentid SA  with condant
temperaures are peformed. The acceptance probability is
defined by the Metropolisstandard thet isshownin equation (2),
wherex isadesign varidble

jr 1 DE £0
Pac (T, E,E") =%exp( _ I?I__E) otherwise (2)

DE = E(X,ey) - E(Xgq)

3 SA for continuous optimization problems

Simulated Annedling (SA)[2] has been proposed in the area
of combinatoria optimization3]. However, SA has been dso
used in the areaof continuous optimization problemswhich hed
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alot of local minima[4][9][10][11][12][13].

The definitions of the neighborhoods of solutions in the
design space in SA ae different between discrete and
continuous  optimization problems. For  combinatorid
optimization problems, the neighborhood of a solution is
defined by a smdl change in the combination (eg. 2-change
neighborhood for thetraveling salesman problems[ 14]). On the
other hand, the neighborhood of a solution in continuous
optimization problems is defined by a distance in the design
space, which can be conddered more eesily than in
combinatorid one.

Thus, for continuous optimization problems, it isimportant to
determine the neighborhood range for generating anext point in
a problem space[4]. If the neighborhood range is fixed to a
constant range, the range should be determined individually for
apaticular problem. When the range is too large, it becomes
difficult to get an accurate solution, while it takes much timeto
et better solution when therangeistoo smdl.

Therefore, for continuous optimization problems, there are
severd methods with adjustable neighborhood range. Many
practitioners use noved techniques to narrow the range as the
search progresses. For example, Boltzmann annedling method
uses Gaussan didribution whose dandard deviation is a
squared root of the temperature[4]. Fast anneding method uses
the Cauchy didribution[11]. In thee mehods, the
neighborhood rangeislargeif thetemperatureishigh, whilethe
neighborhood rangeissmadl if thetemperatureislow. However
these methods are nat effective for searching in problem spaces,
because they do not use the information about objective
functions.

There are severd methods using the information about
objective functions. Corand's SA[10] uses the information
meesured by a rate between accepted and rgected moves.
VFSR[9] usesthe psaudo senstivities of the objective function.
Dekker & Aatss SA[13] usss locd search procedure (eg.
Seepest descent, quasi-Newton).

4 Temperature Paralld Smulated Annealing
with Adaptive Neighbor hood (TPSA/AN)

In this paper, we propose Temperature Pardld Simulated
Anneding with Adgptive Neighborhood(TPSA/AN) which is
the extenson of TPSA by usng the Corands SA[9] for
continuous optimization problems. The difference between the
conventiond sequentid SA for combingtoria  optimization
problems and TPSA/AN is that TPSA/AN has a procedure for
exchanging solutions between different constant temperatures
and a procedure for adjugting the neighborhood range. The



exchange of solutions and the adjusment the neighborhood
range are executed at certain trangtions.

In this agorithm, the didtribution for generating a next point
X' from current point X isasfollows

X'=X+rm (3)

wherer isarandom number generated intherange[-1, 1]; mis
the neighborhood range. The dgorithm in this paper hes the
same parameter m for each design vaues, while Corand's SA
hasadifferent parameter for each design vadue. If the next point
X' lies outsde the definition domain of an objective function,
our dgorithm will generate a new point agan. The
neighborhood range m is varied for adaptive search using
equatiors(4), (5), (6) and (7):

Mg, =Mye " 9(P) (4)
—1+cP-06 it p<06 5
g(p)=1+c 0z p (5)
_®, 04-ps’ | if n<04 (6)
a(p) §i+c e
g(p)=1 , otherwise (7)

where ¢ is amultiplying factor for adjusting the neighborhood
range; p is arate between accepted and rgected moves, and it
iscdculated from thefollowing equation:

p=n/N (8)

where N is a given number of trangtions; n is the number of
accepted movesin interva N. In this pgper, parameter cisset to
2, following the Corands paper.

In this dgorithm, if the number of the accepted moves
increeses, the neighborhood range will be shortened adaptively
by equations (4) and (5). If the number of the rgected moves
increases, the neighborhood range will be stretched adaptively
by equations (4) and (6). With this adaptation, the rate between
the accepted and the rejected moves is adjugted to be in the
range from 0.4 to 0.6, and this makes the computationa effort
on eech pardld processor of apardld computer effective.

5 Paralld I mplementation

In TPSA/AN, inter-processor communications occur & the
exchange of solutions in different processors a a certain
annedliing intervd. Therefore, the communications are not
frequent, and then TPSA/AN is very suitable for pardld
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processing.

We use a PC-cluster with 8 processors, which are connected
by the Fest Ethernet. PVM is used for a communication
interface. The CPUs are Pentium 11, 233MHz.

One temperature is asigned to one process in PVM.
Therefore, one process is running in one processor as the
number of temperaure ages is less than 8, but multiple
processes are running in one processor as the number of
temperature stages is grester than 9. In this study, 4 processes
are running in one processor when the number of temperature
stagesis 32.

6 Minimization of Sandard Test Function

To examine the paformance of TPSA/AN, it is used for
minimizing the dandard test function, the Radtrigin
function[14]. In this study, the function has two design
vaidbles. The function is expressed by equation (9). The
optimum solution for the function exigts at the origin and the
vauesae.

The Radrigin function hes a rdatively large area of loca
optima, and thiskind of problemsis appropriate for solving by
gendtic dgorithms. However, it is conddered tha the
performance of TPSA/AN can be evduated wel for such
Stuations.

In this study, to evduate the effectiveness of TPSA/AN, a
sequentid SA and TPSA are dso implemented. The sequentid
SA and TPSA whose neighborhood ranges are fixed are cdled
SA/F and TPSA/F, respectively. The sequentid SA whose
neighborhood range is changed adaptively is cdled SA/AN.
The parameters are summarized in Table 1 for the Redtrigin
function with a maximum temperature (for the sequentid SA,
this means its garting temperature), a minimum temperature
(for the sequentia SA, this means its ending temperature), the
number of annedling cycles, the Markovlength, the cooling rate
and the exchange intervals. The parameters are determined
from the experience. The number of iterationsin TPSA means
the number of iterations in each temperature. Therefore, from
the point of view for a sngle processor, the sequentid SA
performsanneding 32 timeslonger thanin TPSA.

(%)) = (N 10)+ E& (2 - 1000s(20%) )} (9)
[SE] u



Table 1 Paramgtersfor theRadtrigin function

Algorithms | SA | TPsA
Number of Processes 1 32
Max. (Initial) temperature 10 10
Min. (final) temperature 0.01 0.01

Number of iterations | 10240x32 10240

Markov Length 10240
Cooling rate 0.8

Exchange interval 32

7 Resultsof Numerical Experiments

TPSA/AN iscarried out for the minimization of theRastrigin
function to discussits effectiveness.

Fgure 1 shows the energies obtained by SA and TPSA with
respect to the neighborhood range. The neighborhood ranges
aes=tt00.01, 0.05, 0l, 0.5, 1.0, 5.0 and the adaptive one. The
interval used for adjugting the neighborhood range is 8. The
results are shown as the average, best, and worst vaues of 10
trids. The relationship between the vaues of energy and the
objective function is linear. Thus, the point that has the
minimum vaue of the energy has the minimum vaue of the
objectivefunction, whichisshownin equation (9).

1.0E+03 -9 -SA Bedt
=B=sA Ave.
—©—SA_Worst
-4 -TPSA_Best
1.0E+01 = TPSA_Ave.
O, 4 —0— TPSA Worst
3 1.0E-01 - B
g J 0\ . - ¥ v
W 1.0E-03 T e
N & .
1.0E-05 s N
\\
1.0E-07 1 1 1 1 1 L ® |

001 005 01 05 1 5 AN
Neighborhood range

Fig.1 Theperformance of thevariousconfiguration for the
Ragtrigin function.

Figure 2 shows a histary of the rate of the accepted movesin
SA/AN. With the adjudting the neighborhood range, the rate is
ranging from 0.4 to 0.6, asis expected. Thet is, the rate of the
accepted moves maintains nearly congtant during the search.

From Fig. 1, it is obvious that TPSA/AN is able to provide
better solutions than SA/F, SA/AN and TPSA/F. Because the
cooling schedule is not necessary to be determined in
TPSA/AN, it can be sad that TPSA/AN is a very powerful
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agorithm for this type of optimization problems. In this study,
the total number of annedling stepsin SA and TPSA arefixed
in order tofind the clear differencesare considered to gppear.
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Fig.2 Thehigory of therate of the accepted movesin SAVAN

From Fig. 1, it isclear that when the neighborhood rangeis
fixed, SA/F has the minimum energy when the neighborhood
range is 1.0, and TPSA/F has the minimum energy when the
neighborhood rangeis0.5. From theseresults, it isclear thet the
determination of the gppropriate neighborhood range is very
important to obtain good solutions. Also, it is recognized thet
the best vaues of the neighborhood ranges for SA/F and
TPSA/F are different.

From Fig. 1, the performance of SA/F whose neighborhood
range is properly fixed is better than that of TPSA/F with the
best neighborhood range. This leads to that TPSA did not
perform enough annedinginthiscase.

On the other hand, the quality of the solutionsin SA/AN is
waorse than that of SA/F whose neighborhood range is properly
fixed. The reason that the good solutions are not obtained is
conddered. In Fg. 3, the higory of the energy and the
neighborhood range in SA/AN are shown. From Fig. 3, it is
found that the energy is not improved &fter the energy becomes
1.0. The point whose energy is 1.0 is the second optimum point.
Therefore, the solutionistrapped & alocd minimumin SA/AN.
From Fg. 3, it is dso found that the neighborhood range of
SA/AN isdecreasing. Thismeansthat the solutionistrapped in
aloca minimum and the acceptance rate becomes small. Then
the neighborhood range becomes smdl to increese the
acceptant rate. By this mechanism, the solution can not escape
from the locd minimum. Thus, adjuging the neighborhood
range has arole of convergence acceleration. In this case, the
solutionsare converged toaloca optimum.
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Fig.3 Thehigory of the Energy and the neighborhood
rangeon SA/AN.

On the other hand, because TPSA/AN provides good
solutions, adjugting the neighborhood range does not accderate
the convergence of the solutions to a loca optimum. This is
ascertained from the results in Figs. 4 and 5. In Fg. 4, the
histories of the temperature and neighborhood range of the best
solution are shown. The history of the energy of the best
solutionisdso showninFg. 5.

From Fg. 4, it is found that the temperature scheduling is
determined automaticaly in TPSA/AN, and it isaso found thet
the neighborhood range is dso changed with respect to the
sepsand thischangeisreated to the change of the temperature
and the landscape of the objective function. From Figs. 4 and 5,
it can be said thet there are two aspectsin these higtories. Oneis
the accderation of the convergenceto aloca optimum and the
other is escaping from aloca optimum. The latter mechanism
isthereason that TPSA/AN can provide good solutions.

Asmentioned before, the acceleration of convergence comes
from the mechaniam of the adjustment of the neighborhood
range. The excaping from a loca optimum comes from the
effect of aglobd search a high temperature stages. Because of
the acceleration of convergence and the escaping from alocal
optimum, TPSA/AN can find the good solutions with 1/32 of
the annedling steps of the sequentia SA.

Figure 6 shows the cdculation time of TPSA/AN that
provides optimum solutions for the Rastrigin function with 8
CPUs and 32 temperature processes. From this figure, it is
found that the caculation time is reduced to about 55% by
pardld processing and the pardld efficiency is about 30% in
this case. This pardld efficiency is not good for 8 CPUs. On
the other hand, in the study of Konishi and Téki [8], the pardld
effidency of TPSA that is implemented for combinatorid
optimization problems with 32 CPUs reaeched the pardld
efficdency of dmogt 100 %. The reason for the low pardld
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efficiency in this study is the smplicity of the test functions
usad in this study. The function is a smple numerica function
with only 2 design variables, and the caculation load for these
functions are very amdl, and the granulaity of pardld
processing becomes very small.
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Fig.6 The comparison of the calculation times of TPSA with
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8 Condudgons

In this udy, the temperature pardle smulaed annedling
with adaptive neighborhood (TPSA/AN) that is able to solve
optimizetion problems whose design variables are continuousis
proposed. The effectiveness of TPSA/AN is invedtigated
through the Radrigin function. The following results are
derivedinthisstudy.

1) The neighborhood range affects the search dhilities of SA
and TPSA in continuous optimization problems.
Therefore, the determination of the best neighborhood is
very important.

2) The optimum obtained by TPSA/F with the best
neighborhood range is worse than the one obtained by
SA/F with the best neighborhood range.

3) The optimum solution obtained by TPSA/AN is better
then the one obtained by SA/F, SA/AN and TPSA/F.

4) TPSA/AN has high ghility of globd searching and quick
convergence to the globa optimum. Therefore, TPSA/AN
is a powerful dgorithm for continuous optimization
problems.
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