
302-316 -1-

Proceedings of the IASTED International Conference

Parallel and Distributed Computing and Systems

November 3-6, 1999, MIT, Boston, USA

Temperature Parallel Simulated Annealing with Adaptive Neighborhood for
Continuous Optimization Problem

MITSUNORI MIKI，TOMOYUKI HIROYASU，MASAYUKI KASAI，MOTONORI IKEUCHI
Department of Knowledge Engineering,

Doshisha University,
Kyo-tanabe, Kyoto, 610-0321 Japan.
Email: mmiki@mail.doshisha.ac.jp

Abstract

In this study, a temperature parallel simulated annealing with
adaptive neighborhood (TPSA/AN) for continuous
optimization problems is introduced. TPSA/AN is based on the
temperature parallel simulated annealing (TPSA), which is
suitable for parallel processing, and the SA that Corana
developed for continuous optimization problems. The moves in
TPSA/AN are adjusted to have equal acceptance rates. Because
of this mechanism, the proposed method provides global search
in the processors of parallel computers for high temperatures
and local search in the processors for low temperatures in
TPSA/AN. Therefore, all the processors are used for searching
very efficiently. The TPSA/AN is evaluated for the standard
test functions, and it is found that adopting the adaptive
neighborhood range increases the searching ability of TPSA.

Key Words： Parallel Processing, Parallel Algorithms,
Simulated Annealing, Temperature Parallel, Adaptive Method

1 Introduction

There is a strong incentive to parallelize the computation for
optimization problems since it requires many iterations of
analysis. Especially, new approaches to optimization problems
such as genetic algorithms and simulated annealing, which are
very effective for solving complicated optimization problems
with many optima, require tremendous computational power.
Consequently, parallelization of these new optimization
methods, which sometimes are called heuristic search
methods[1], is very important.

It was Kirkpatrick et al. who first proposed simulated
annealing, SA, as a method for solving combinatorial
optimization problems[2]. It is reported that SA is very useful
for several types of combinatorial optimization problems[3].
The advantages and the disadvantages of SA are well
summarized in [4]. The most remarkable disadvantages are that

it needs a lot of time to find the optimum solution and it is very
difficult to determine the proper cooling schedule. To determine
the proper cooling schedule, many preparatory trials are needed.
When the cooling schedule is not proper, the guarantee of
finding optimum solution is lost.

There are two approaches to shorten the calculation time in
SA. One is determining the cooling schedule properly. SA with
the proper cooling schedule can provide an optimum solution
quickly. This approach is well reported by Ingber[4]. The other
approach is to perform SA on parallel computers. Because of
the rapid progress of parallel computers, there are several
studies with this approach[5]. Among these studies, the
temperature parallel simulated annealing (TPSA)[6], which was
called the time-homogenous parallel annealing[7] before, is one
of the algorithms that can overcome the cooling schedule
problem. TPSA is an algorithm that can be carried out on
parallel computers easily and does not require any cooling
schedule. These are remarkable advantages. So far, TPSA has
been applied to LSI allocation problems[6], travelling salesman
problems[8], graph partition problems[7] and so on. However,
there are very few studies that focus on continuous optimization
problems. Therefore, the effectiveness of TPSA in continuous
problems has not been clear.

In this study, a new TPSA approach that can be applied to
continuous optimization problems is proposed. In the proposed
approach, the SA that Corana developed and TPSA are
combined and the neighborhood range is determined adaptively.
The approach is called temperature parallel simulated annealing
with adaptive neighborhood (TPSA/AN).

2 Temperature Parallel Simulated Annealing

Comparing to sequential SA, there are more sophisticated
algorithms that have proven that parallel probabilistic exchange
of information gathered from processors annealing at constant
but different temperatures can increase the overall rate of
convergence. Kimura and Taki called this algorithm

302-316 -2-

temperature parallel simulated annealing (TPSA)[6]. In TPSA,
each processor performs a sequential SA with a constant
temperature for the whole annealing time, while the different
temperatures are assigned to different processors. Two
solutions in two processors with adjacent temperatures are
exchanged with a certain probability at an interval of annealing
time.

The important features of TPSA are as follows. (a) The
cooling schedule is determined automatically because solutions
decide their temperatures by themselves. (b) After getting
solutions, when these solutions are not satisfied, TPSA can be
restarted to get better solutions.

When the energy of solution at higher temperature is lower
than that at lower temperature, the solutions are always
exchanged. Otherwise, when the energy of solution at higher
temperature is higher than that at lower temperature, the
solutions are exchanged in accordance with the probability that
is derived from the differences in temperature and energy. This
probability function is defined in equation (1). By this method,
the solutions that have low energy tend to concentrate to the
lower temperature.







∆∆−

<∆∆
=

otherwise
TT

ET

ETif
ETETpEX)

'
exp(

0 1
)',',,(

･

･

･
(1)

where T is temperature, E is energy, and the prime means the
state of the adjacent temperature. ΔT and ΔE are the
differences in the temperature and the energy between two
adjacent temperatures.

As mentioned before, in each processor of a parallel
computer, one or several sequential SA with constant
temperatures are performed. The acceptance probability is
defined by the Metropolis standard that is shown in equation (2),
where x is a design variable.

)()(

)exp(

01
)',,(

oldnew

AC

EEE

otherwise
T

E
E

EETp

xx −=∆







∆
−

≤∆
= (2)

3 SA for continuous optimization problems

Simulated Annealing (SA)[2] has been proposed in the area
of combinatorial optimization[3]. However, SA has been also
used in the area of continuous optimization problems which had

a lot of local minima[4][9][10][11][12][13].
The definitions of the neighborhoods of solutions in the

design space in SA are different between discrete and
continuous optimization problems. For combinatorial
optimization problems, the neighborhood of a solution is
defined by a small change in the combination (e.g. 2-change
neighborhood for the traveling salesman problems[14]). On the
other hand, the neighborhood of a solution in continuous
optimization problems is defined by a distance in the design
space, which can be considered more easily than in
combinatorial one.

Thus, for continuous optimization problems, it is important to
determine the neighborhood range for generating a next point in
a problem space[4]. If the neighborhood range is fixed to a
constant range, the range should be determined individually for
a particular problem. When the range is too large, it becomes
difficult to get an accurate solution, while it takes much time to
get better solution when the range is too small.

Therefore, for continuous optimization problems, there are
several methods with adjustable neighborhood range. Many
practitioners use novel techniques to narrow the range as the
search progresses. For example, Boltzmann annealing method
uses Gaussian distribution whose standard deviation is a
squared root of the temperature[4]. Fast annealing method uses
the Cauchy distribution[11]. In these methods, the
neighborhood range is large if the temperature is high, while the
neighborhood range is small if the temperature is low. However
these methods are not effective for searching in problem spaces,
because they do not use the information about objective
functions.

There are several methods using the information about
objective functions. Corana’s SA[10] uses the information,
measured by a rate between accepted and rejected moves.
VFSR[9] uses the pseudo sensitivities of the objective function.
Dekker & Aarts’s SA[13] uses local search procedure (e.g.
steepest descent, quasi-Newton).

4 Temperature Parallel Simulated Annealing
with Adaptive Neighborhood (TPSA/AN)

In this paper, we propose Temperature Parallel Simulated
Annealing with Adaptive Neighborhood(TPSA/AN) which is
the extension of TPSA by using the Corana’s SA[9] for
continuous optimization problems. The difference between the
conventional sequential SA for combinatorial optimization
problems and TPSA/AN is that TPSA/AN has a procedure for
exchanging solutions between different constant temperatures
and a procedure for adjusting the neighborhood range. The

302-316 -3-

exchange of solutions and the adjustment the neighborhood
range are executed at certain transitions.

In this algorithm, the distribution for generating a next point
x’ from current point x is as follows:

rmxx ii +=' (3)

where r is a random number generated in the range [-1, 1]; m is
the neighborhood range. The algorithm in this paper has the
same parameter m for each design values, while Corana’s SA
has a different parameter for each design value. If the next point
x’ lies outside the definition domain of an objective function,
our algorithm will generate a new point again. The
neighborhood range m is varied for adaptive search using
equations (4), (5), (6) and (7):

)(pgmm oldnew ×= (4)

4.0
6.0

1)(
−+= p

cpg , if p < 0.6 (5)

1

4.0

4.0
1)(

−







 −

+=
p

cpg , if n < 0.4 (6)

1)(=pg , otherwise (7)

where c is a multiplying factor for adjusting the neighborhood
range ; p is a rate between accepted and rejected moves, and it
is calculated from the following equation:

Nnp /= (8)

where N is a given number of transitions; n is the number of
accepted moves in interval N. In this paper, parameter c is set to
2, following the Corana's paper.

In this algorithm, if the number of the accepted moves
increases, the neighborhood range will be shortened adaptively
by equations (4) and (5). If the number of the rejected moves
increases, the neighborhood range will be stretched adaptively
by equations (4) and (6). With this adaptation, the rate between
the accepted and the rejected moves is adjusted to be in the
range from 0.4 to 0.6, and this makes the computational effort
on each parallel processor of a parallel computer effective.

5 Parallel Implementation

In TPSA/AN, inter-processor communications occur at the
exchange of solutions in different processors at a certain
annealing interval. Therefore, the communications are not
frequent, and then TPSA/AN is very suitable for parallel

processing.
We use a PC-cluster with 8 processors, which are connected

by the Fast Ethernet. PVM is used for a communication
interface. The CPUs are Pentium II, 233MHz.

One temperature is assigned to one process in PVM.
Therefore, one process is running in one processor as the
number of temperature stages is less than 8, but multiple
processes are running in one processor as the number of
temperature stages is greater than 9. In this study, 4 processes
are running in one processor when the number of temperature
stages is 32.

6 Minimization of Standard Test Function

To examine the performance of TPSA/AN, it is used for
minimizing the standard test function, the Rastrigin
function[14]. In this study, the function has two design
variables. The function is expressed by equation (9). The
optimum solution for the function exists at the origin and the
values are 0.

The Rastrigin function has a relatively large area of local
optima, and this kind of problems is appropriate for solving by
genetic algorithms. However, it is considered that the
performance of TPSA/AN can be evaluated well for such
situations.

In this study, to evaluate the effectiveness of TPSA/AN, a
sequential SA and TPSA are also implemented. The sequential
SA and TPSA whose neighborhood ranges are fixed are called
SA/F and TPSA/F, respectively. The sequential SA whose
neighborhood range is changed adaptively is called SA/AN.
The parameters are summarized in Table 1 for the Rastrigin
function with a maximum temperature (for the sequential SA,
this means its starting temperature), a minimum temperature
(for the sequential SA, this means its ending temperature), the
number of annealing cycles, the Markov length, the cooling rate
and the exchange intervals. The parameters are determined
from the experience. The number of iterations in TPSA means
the number of iterations in each temperature. Therefore, from
the point of view for a single processor, the sequential SA
performs annealing 32 times longer than in TPSA.

()



 −+×= ∑

=
=

N

i
iiNii xxNxf

1

2
,1)2cos(10)10()(π (9)

302-316 -4-

Table. 1 Parameters for the Rastrigin function

Algorithms SA TPSA
Number of Processes 1 32

Max. (Initial) temperature 10 10
Min. (final) temperature 0.01 0.01

Number of iterations 10240×32 10240
Markov Length 10240

Cooling rate 0.8
Exchange interval 32

7 Results of Numerical Experiments

TPSA/AN is carried out for the minimization of the Rastrigin
function to discuss its effectiveness.

Figure 1 shows the energies obtained by SA and TPSA with
respect to the neighborhood range. The neighborhood ranges
are set to 0.01, 0.05, 0.l, 0.5, 1.0, 5.0 and the adaptive one. The
interval used for adjusting the neighborhood range is 8. The
results are shown as the average, best, and worst values of 10
trials. The relationship between the values of energy and the
objective function is linear. Thus, the point that has the
minimum value of the energy has the minimum value of the
objective function, which is shown in equation (9).

Fig. 1 The performance of the various configuration for the
Rastrigin function.

Figure 2 shows a history of the rate of the accepted moves in
SA/AN. With the adjusting the neighborhood range, the rate is
ranging from 0.4 to 0.6, as is expected. That is, the rate of the
accepted moves maintains nearly constant during the search.

From Fig. 1, it is obvious that TPSA/AN is able to provide
better solutions than SA/F, SA/AN and TPSA/F. Because the
cooling schedule is not necessary to be determined in
TPSA/AN, it can be said that TPSA/AN is a very powerful

algorithm for this type of optimization problems. In this study,
the total number of annealing steps in SA and TPSA are fixed
in order to find the clear differences are considered to appear.

0

0.2

0.4

0.6

0.8

1

M
ax

T

T
27

T
23

T
19

T
15

T
11 T
7

T
3

T
ot

al

Temperature stage (annealing steps)

R
at

e
of

 a
cc

ep
te

d
m

ov
es

Rate of accepted moves

Fig. 2 The history of the rate of the accepted moves in SA/AN

From Fig. 1, it is clear that when the neighborhood range is
fixed, SA/F has the minimum energy when the neighborhood
range is 1.0, and TPSA/F has the minimum energy when the
neighborhood range is 0.5. From these results, it is clear that the
determination of the appropriate neighborhood range is very
important to obtain good solutions. Also, it is recognized that
the best values of the neighborhood ranges for SA/F and
TPSA/F are different.

From Fig. 1, the performance of SA/F whose neighborhood
range is properly fixed is better than that of TPSA/F with the
best neighborhood range. This leads to that TPSA did not
perform enough annealing in this case.

On the other hand, the quality of the solutions in SA/AN is
worse than that of SA/F whose neighborhood range is properly
fixed. The reason that the good solutions are not obtained is
considered. In Fig. 3, the history of the energy and the
neighborhood range in SA/AN are shown. From Fig. 3, it is
found that the energy is not improved after the energy becomes
1.0. The point whose energy is 1.0 is the second optimum point.
Therefore, the solution is trapped at a local minimum in SA/AN.
From Fig. 3, it is also found that the neighborhood range of
SA/AN is decreasing. This means that the solution is trapped in
a local minimum and the acceptance rate becomes small. Then
the neighborhood range becomes small to increase the
acceptant rate. By this mechanism, the solution can not escape
from the local minimum. Thus, adjusting the neighborhood
range has a role of convergence acceleration. In this case, the
solutions are converged to a local optimum.

1.0E-07

1.0E-05

1.0E-03

1.0E-01

1.0E+01

1.0E+03

AN510.50.10.050.01
Neighborhood range

E
ne

rg
y

SA_Best
SA_Ave.
SA_Worst
TPSA_Best
TPSA_Ave.
TPSA_Worst

302-316 -5-

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

M
axT

T29 T27 T25 T23 T21 T19 T17 T15 T13 T11 T9 T7 T5 T3 T1

Temperature stage (annealing steps)

E
n

er
gy

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

N
ei

gh
b

or
h

oo
d

 r
an

ge

Energy
Neighbourhood range

Fig. 3 The history of the Energy and the neighborhood
range on SA/AN.

On the other hand, because TPSA/AN provides good
solutions, adjusting the neighborhood range does not accelerate
the convergence of the solutions to a local optimum. This is
ascertained from the results in Figs. 4 and 5. In Fig. 4, the
histories of the temperature and neighborhood range of the best
solution are shown. The history of the energy of the best
solution is also shown in Fig. 5.

From Fig. 4, it is found that the temperature scheduling is
determined automatically in TPSA/AN, and it is also found that
the neighborhood range is also changed with respect to the
steps and this change is related to the change of the temperature
and the landscape of the objective function. From Figs. 4 and 5,
it can be said that there are two aspects in these histories. One is
the acceleration of the convergence to a local optimum and the
other is escaping from a local optimum. The latter mechanism
is the reason that TPSA/AN can provide good solutions.

As mentioned before, the acceleration of convergence comes
from the mechanism of the adjustment of the neighborhood
range. The escaping from a local optimum comes from the
effect of a global search at high temperature stages. Because of
the acceleration of convergence and the escaping from a local
optimum, TPSA/AN can find the good solutions with 1/32 of
the annealing steps of the sequential SA.

Figure 6 shows the calculation time of TPSA/AN that
provides optimum solutions for the Rastrigin function with 8
CPUs and 32 temperature processes. From this figure, it is
found that the calculation time is reduced to about 55% by
parallel processing and the parallel efficiency is about 30% in
this case. This parallel efficiency is not good for 8 CPUs. On
the other hand, in the study of Konishi and Taki[8], the parallel
efficiency of TPSA that is implemented for combinatorial
optimization problems with 32 CPUs reached the parallel
efficiency of almost 100 %. The reason for the low parallel

efficiency in this study is the simplicity of the test functions
used in this study. The function is a simple numerical function
with only 2 design variables, and the calculation load for these
functions are very small, and the granularity of parallel
processing becomes very small.

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

0 2000 4000 6000 8000 10000 12000
Annealing steps

N
ei

gh
bo

rh
oo

d
ra

ng
e

1.00E-02

1.00E-01

1.00E+00

1.00E+01

T
em

pe
ra

tu
re

Neighborhood range
Temperature

Fig. 4 The history of the temperature and neighborhood
range on TPSA/AN

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

0 2000 4000 6000 8000 10000 12000

Annealing steps

E
n

er
gy

Fig. 5 The history of the energy on TPSA/AN

0.0

1.0

2.0

3.0

4.0

SA/AN TPSA/AN
Algorithm types

C
al

cu
la

ti
on

 t
im

e
(s

ec
)

Fig. 6 The comparison of the calculation times of TPSA with
sequencial SA.

302-316 -6-

8 Conclusions

In this study, the temperature parallel simulated annealing
with adaptive neighborhood (TPSA/AN) that is able to solve
optimization problems whose design variables are continuous is
proposed. The effectiveness of TPSA/AN is investigated
through the Rastrigin function. The following results are
derived in this study.

1) The neighborhood range affects the search abilities of SA
and TPSA in continuous optimization problems.
Therefore, the determination of the best neighborhood is
very important.

2) The optimum obtained by TPSA/F with the best
neighborhood range is worse than the one obtained by
SA/F with the best neighborhood range.

3) The optimum solution obtained by TPSA/AN is better
than the one obtained by SA/F, SA/AN and TPSA/F.

4) TPSA/AN has high ability of global searching and quick
convergence to the global optimum. Therefore, TPSA/AN
is a powerful algorithm for continuous optimization
problems.

Reference

[1] Beasley, J., Dowsland, K., Glover, F., Laguna, M.,
Peterson, C., Reeves, C. R. and Söderberg, B., Modern
Heuristic Techniques for Combinatorial Problems,
Blackwell Scientific Publications, 1993

[2] Kirkpatrick, S., Gelett Jr. C. D., and Vecchi, M. P.,
Optimization by Simulated Annealing, Science, 220(4598),
1983, 671-680

[3] Aarts, E. and Korst, J., Simulated Annealing and
Boltzmann Machines, John Wiley & Sons, 1989

[4] Ingber, L., Simulated Annealing: Practice versus Theory, J.
of Mathl. Comput. And Modelling, 18(11), 1993, 29-57

[5] Holmqvist, K., Migdalas, A., and Pardalos, P. M.,
Parallelized Heuristics for Combinatorial Search, in
Parallel Computing in Optimization, Migdalas, A. et al.
eds., Kluwar Academic Publishers, 1997, 269

[6] Konishi, K., Taki, K. and Kimura, K., Temperature
Parallel Simulated Annealing Algorithm and Its
Evaluation, Trans. on Information Processing Society of
Japan, 36(4), 1995, 797-807 (in Japanese)

[7] Kimura, K. and Taki, K., Time-homogeneous Parallel
Annealing Algorithm, The 13th IMACS World Congress of
Computation and Applied Mathematics, 1991

[8] Konishi, K., Yashki, M. and Taki, K., An Application of
Temperature Parallel Simulated Annealing to the

Traveling Salesman Problem and its Efficient
Implementation on the Distributed Memory Parallel
Machine, 1996 Joint Symposium of Parallel Processing,
1996, 153-160 (in Japanese)

[9] Ingber, L., Genetic Algorithms and Very Fast Simulated
Reannealing: A Comparison, Mathematical and Computer
Modeling, 16(11), 1992, 87-100

[10] Corana, A., Marhesi, M., Martini, C. and Ridella, S.,
Minimizing Multimodal Functions of Continuous
Variables with the “Simulated Annealing” Algorithm,
ACM Trans. on Mathematical Software, 13(3), 1987, 262-
280

[11] Szu, H. and Hartley, R., Fast Simulated Annealing,
Physics Letters A, 122(3,4), 1987, 157-162

[12] Rosen, B., Functional Optimization based on Advanced
Simulated Annealing, IEEE Workshop on Physics and
Computation, PhysComp92 (Dallas, Texas), 1992, 289-
293

[13] Dekkers, A. and Aarts, E., Global optimization and
simulated annealing, Mathematical Programming, 50,
1991, 367-393

[14] p.7 of the reference [4]
[15] Whitley, D., Mathias, K., Rana, S. and Dzubera, J.,

Evaluating Evolutionary Algorithms, Artificial Intelligence,
85, 1996, 245-2761

