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Abstract

In this paper, Divided Range Genetic Algorithm in
Multi objective optimization Problems (DRGA) is pro-
posed. In this method, population of GAs is sorted
with respect to the objective function and divided into
sub populations. In this model, the Pareto optimum
solutions which are close to each other are collected
by one sub population. Therefore, by this algorithm,
the calculation efficiency is increased, and the neighbor-
hood search can be performed. Through the numerical
examples, the followings are made cleared . DRGA is
very suitable GA model for parallel processing. DRGA
can derive the good solutions compared to the single
population model and the distributed model.
Keywords: Multi Objective Problems, Genetic Algo-
rithms, Distributed Processing, Parallel Processing

1. INTRODUCTION

Genetic Algorithm (GA) is one of the random search
methods and simulates the mechanism of heredity and
evolution of creatures (Goldberg,1989). The usual op-
timization methods are the kinds of gradient methods.
Therefore, it is difficult to find the global optimum,
when there are several peaks in objective functions or
when the objective function is not continuous. On the
other hand, the GA can be applied to the problems
where the objective function is discrete and there are
several peaks.

There are several studies that concerned with the
GA applied to the multi objective function (Fonseca
and Fleming, 1995; Tamaki, et al., 1996; Coelo, 1999).
Because the GA is one of the multi searching methods,
it is suitable for finding the Pareto optimum solutions.
There are several models are proposed for the multi
objective GA. Schaffer developed the VEGA (Schaffer,
1985) . Goldberg et al. introduced the ranking method
(Goldberg,1989) and Fonseca et al. also developed the
MOGA (Fonseca and Fleming, 1993). In their meth-
ods, the Pareto optimum solutions are treated explic-
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itly. Tamaki et al. (Tamaki, et al., 1996) introduced
their model where the VEGA used and the Pareto op-
timum individuals are remained. ! Additionary, there
is a method of Murata et al. (Murata, et al., 1995). In
their method, by weighting the values to each objective
functions, they converted the objective optimization
problems to single objective optimization problems.

Like this way, there are several models of multi ob-
jective GA and they can derive the good Pareto opti-
mum solutions. However, it needs a lot of iterations to
calculate the values of objective functions and the con-
strains. This leads to the high calculation costs. One
of the solutions of this problem is to perform the multi
objective GA in parallel processing.

There are several studies that concerned with the
prallelization methods of GA for single object (Nang
and Matsuo, 1994; Cantu-Paz, 1999, Sawai and Adachi,
1999). On the other hand, there are few studies of GA
for multi objective optimization problems. The models
of those studies are the same as that of GA for single
objective. There is a model where the parts of eval-
uation of fitness are performed in parallel (Jones and
Crossley, 1998). There is another model where the to-
tal population is divided into sub populations and the
multi objective optimization is performed in each sub
population (Vicini, 1998). However, the mechanism of
searching the optimum is different between the single
objective GA and the multi objective GA. In the sin-
gle objective GA, only one optimum should be derived.
Therefore, the diversity of the searching point is impor-
tant in the first stage and the local search is important
in the latter stage. On the other hand, in the multi ob-
jective GA, the both the diversity and the local search
are important for all stages, because it should derive not
one point but the meeting of the points. This fact sug-
gests that the model which is different from the model
used in the single objective GA should be used for the
multi objective optimization in parallel.

ITamaki et al. called the individuals that are in the Pareto
front as the Pareto optimum individuals.



In this study, the new model of multi objective ge-
netic algorithm for parallel processing. This model is
called Divided Range Genetic Algorithm: DRGA. In
the DRGA, the individuals are divided into sub popu-
lations by the values of their objective function. There-
fore, the efficient search can be performed and the ad-
equate local search also carried out. The introduced
DRGA is applied to the numerical test problems and
the validity of the model and the characteristics of the
solutions are discussed.

2. MULTI OBJECTIVE GENETIC ALGO-
RITHM
2.1  Multi Objective Optimization Problems

In the optimization problems, when there are several
objective functions, the problems are called the Multi-
objective Optimization Problems: MOPs.

The multi objective optimization problems are for-
mulated as follows. In general,

min[fi(x), f2(z),...
subjecttog;(x) <0

s fn ()]
(1,2,...,m)

(1)
(2)

where x € F is the design variables and F' is the domain
that satisfies the constraints and is called the feasible
domain.

Usually, there are trade off relations between the ob-
jective functions. Therefore the optimum solution is
not only one. In this case, the concept of the Pareto
optimum solution is introduced in the multi objective
optimization problems (Ben-Tai, 1980).

(1) Pareto dominant:
When 2! € F and 22 € F satisfy f;(2!) < fi(2?)
for all of the objective functions f; and satisfy
fi(x') € fi(x?) for some of the objective functions
fi, ®' is dominant to 2.

(2) Pareto optimum solutions:
When 2! € F does not exist that dominant to 20,
20 is the Pareto optimum solutions.

In the real world problems, the multi objective op-
timization problems are often found, such as the de-
sign problems. In these problems, the objective opti-
mizations have the trade off relation ships. Usually,
these relation is not clear. Thus, when the relation can
be grasped, the problem turns easily for the designers.
Then, the deriving the Pareto optimum solutions is one
of the goals in the multi objective optimization prob-
lems.

2.2  Parallelization of Multi Objective Genetic

Algorithms

The genetic algorithm (GA) is an optimization
method that mimics the process of evolution. GA is
one of the multi point search methods. These points are
called individuals and the assembly of the individuals
are called population. The number of individuals are
usually called population size. The new searching point
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is generated by the genetic operations of the crossover
or the mutation. Each individual has the fitness value
and is determined to survive corresponding to the fit-
ness value. GA can find the solution by iterations of
this cycle. This cycle is called the generation.

As it is explained, the methods of the multi objec-
tive genetic algorithms are classified into two categories:
the method where the Pareto optimum individuals are
treated explicitly and implicitly. In the method where
the Pareto optimum individuals are treated explicitly,
the individuals that are close to the Pareto solutions
have high possibility to survive. The possibility is de-
termined with the value of fitness function. Usually
ranking method (Goldberg, 1989; Fonseca and Flem-
ing, 1993) is used to determine the fitness value. The
individuals that are dominant to the other individuals
are rank 1. The individuals except for rank 1 individu-
als are rank 2, and so on.

The models of the multi objective genetic algorithms
are classified into two categories: the model where the
each genetic operation is performed in parallel and the
model where the population is divided into the sub pop-
ulations and the GA is performed in each sub popula-
tion.

Among the models where the each genetic operation
is performed in parallel, the most efficient way is the
model where the evaluation operation is performed in
parallel. This model is very useful, because, In the
GA, it takes much time in evaluating the fitness func-
tion(Jones and Crossley, 1998)0 However, this model
need a lot of message passings and this leads to the
high network costs. At the same time, because this is
one of the master and slave models, one CPU should
be occupied as the master. Then the parallel efficiency
decreases.

The model where the population is divided into sub
populations is often called the distributed genetic algo-
rithm (DGA) or the island model. The sub population
is called an island and the GA is performed in each is-
land. After the certain generations ( this is called the
migration interval), some individuals are chosen ran-
domly and moved to the other islands. This operation
is called the migration. The number of the individu-
als that migrate to the other island is determined by
the multiplication the population size and the migra-
tion rate. There are several types of the island models.
For example, Vicini (Vicini, 1998) introduced his is-
land model where the population size of each island is
different and the operations are performed in parallel.

In the single objective problems, the GA should find
the only one global optimum. In the DGA, it has the
two types of mechanism. One of them is the quick
convergence. Because the population size is reduced in
each island, the convergence is done quickly. The other
mechanism is the maintenance of the diversity. Even
each solution in each island is local, there are several
solutions exist in islands, the diversity is not lost. These
two mechanism help well to find the one global solution.

On the other hand, in the multi objective problems,
the GA should find the assembly of the points. There-



fore, the mechanism of the DGA does not act efficiently.
The DGA can not perform the adequate local search in
each island because the population size is small. At the
same time, every island is searching in the same feasible
domain, this leads to the waste of calculations.

The DRGA that is introduced in this study is one of
the distributed population model. Therefore, the total
population is divided into sub populations. However,
the DRGA is overcome the problems of the DGA. The
population is divided corresponding to the searching
area. Therefore, the DRGA can adequate local search
without waste calculations. the DRGA is explained
precisely in the next chapter.

2.3 Matrix

One of the most difficult problems in multi objec-
tive optimization problems is to evaluate the Pareto
optimum individuals. Because the Pareto optimum in-
dividuals are the assembly of the points, there is no
good quantitative way of evaluating. Many researchers
only show the derived Pareto optimum individuals in
figures. This evaluation is not quantitative way and
can only apply for two and tree objective functions.

Hiyane (Hiyane, 1997) introduced his matrix for the
accuracy and the quality of the Pareto optimum indi-
viduals. In this study, the matrix that is simplified the
Hiyane’s methods are utilized as follows.

2.3.1 Error

When the real Pareto optimum solutions are given,
the average of Euclid distance between the real Pareto
solutions and each Pareto optimum individuals. When
the error is small, the Pareto optimum individuals are
very close to the real Pareto solutions. This matrix
only can apply to the problem where the Pareto solu-
tions are given. In this study, we used the shorthand
expression of errors. In the test functions that are used
in this study, the Pareto solutions exist on the con-
straints. Therefore, when g(z) = 0 is the real Pareto
solutions, the following shorthand errors are used.

In this expression, N expresses the number of the
Pareto optimum individuals.

2.3.2 Cover rate

Because the Pareto solutions are the assembly of the
points, it sometimes happen that the error is 0.0 but
the solutions are concentrated on one point. Therefore,
the index of the diversity of the solutions is necessary.
The cover rate is the index for this purpose. In Fig.
1, the concept of the cover rate are shown, when there
are two objective functions. To derive the cover rate,
the following procedures are taken. At first, the maxi-
mum and minimum values of one objective function is
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Fig. 1 Cover rate

searched. Secondly, the distance between the maximum
and the minimum is divided into the certain number of
the division. Thirdly, the division area that have the
Pareto optimum individuals is counted. Fourthly, the
counted number is divided by the number of division.
When every divided area has at least one Pareto opti-
mum individual, this number becomes 1. When there
are no area that has the Pareto optimum individuals,
this number becomes 0. Fifthly, these steps are treated
for every objective function. Finally, the cover rate
is determined to average the number of each objective
function. When the cover rate is close to 1, it means
that the Pareto optimum individuals are not concen-
trated on one point and they spreads. It can be said
that the Pareto solutions can be shown 50 points for
one objective function (this means that there are 50*50
points are need when there are three objective func-
tions), the number of division is 50 in this study.

2.3.3 Calculation time and number of objec-

tive function calls

When the accuracy is the index of the terminal con-
dition, the same accuracy of solutions is derived. In
this case, the calculation time or the number of ob-
jective function calls are important matrix. When the
method can derive the same accuracy of the solutions
with short calculation time and the small number of
objective function calls, this method can be said the
effective method.

3. DISTRIBUTED GENETIC ALGO-
RITHMS
3.1 Overview of DRGA

In this study, the new model of the multi objective
genetic algorithm is proposed. That is Divided Range
Genetic Algorithm: DRGA. This model is suitable for
parallel processings.

The multi objective genetic algorithm should have
the following abilities to derive the good Pareto opti-
mum solutions efficiently.



(1) It can search around the given Pareto optimum
individuals. (local search ability)

(2) It can search all over the feasible domain. (global
search)

(3) It does not search needless local search (efficient
search)

From these points of view, the simple island model is
not good model for multi objective genetic algorithms.
In the simple island model, all of the islands search
the solutions in the same feasible domain. Therefore,
the efficient search can not be performed. At the same
time, the adequate local search can not be performed,
because population size is smaller than that of the sin-
gle population model.

These disadvantages are occurred, because each is-
land search the same feasible domain. Therefore, in
the introduced the DRGA, the searching domain is dif-
ferent in each island. The performance of the DRGA
is as good as that of the one population model and the
DRGA has the following advantages.

The flow of Distributed Range Genetic Algorithm is
explained as follows.

e Step 1 Initial population (population size is N)
is produced randomly. All the design variables
that are shown with the individuals satisfy the con-
straints.

Step 2 The individuals whose ranks are 1 are cho-
sen.

Step 3 The individuals are sorted by the values of
focused objective function f; . This focused objec-
tive function f; is chosen in turn, and turned with
the loop. Then, the individuals of number N/m
are chosen in accordance with the value of this fo-
cused objective function f; . As the result, there
exist m the sub populations.

Step 4 In each sub population, the multi objec-
tive optimization has been performed. The multi
objective optimization that is used in this paper is
explained in the next section.

The end of each generation, the terminal condition
is examined and the process is terminated when
the condition is satisfied.

Step 5 After the multi objective optimization has
been performed for k generations, the process is
backed to step 3. This generation k is called the
sort interval.

In this study, the number of distribution m and the
sort interval k is determined at first. In Fig. 2, the
concept of the DRGA is shown. In Fig. 2, there two
objective functions and the individuals are divided into
three by the value of the focused objective function fi.

The sub population of the DRGA is determined by
the area with respect to the focused objective function.
This mechanism is supposed to functions as the sharing.
Therefore, the derived Pareto optimum solutions of the
DRGA might have the high diversity.

Using the DRGA in parallel processings, the follow-
ing items can be expected.

(1) Speed up of the operations
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(2) Increase of the availability of memory. When there
are many objective functions, the many points are
necessary.

3.2
3.2.1

Configuration of Genetic Algorithm
Expression of individuals

In genetic algorithms, usually, the individuals are
shown in bit line. However, the example problems are
the real value problems. Therefore, the individuals are
shown in the vectors of the real values in this study.
For example, the individuals are shown like

a1 = {0.02,10.03, - - -, 7.52}. (4)

Each elements show the values of the design variables.

3.2.2 Crossover

Because the individuals are shown in real values, the
crossover operation is performed in the following way.
This is expanded method of Tutui’s study (Tutui and
Ghosh, 1998).

At first, when there are n design variables, the arbi-
trary n + lindividuals (parents) are chosen. Then the
gravity G of these n individuals are determined. O

With the n individuals and the gravity G, the new
individuals (children) C is generated with the following
equation,

C =G+ (N0, sHGP) (5)



Feasible region

Fig. 4 Pull in method to the feasible domain

where N (0, s?) is the normal distributed function and
the dispersion is equal to the distance between the in-
dividual ¢ and the gravity G.

The crossover that uses the gravity and the multi
parents are called the gravity crossover and the concept
is shown in Fig. 3.

With these expression of the individuals and the
crossover method, the searching in the real value space
is performed quickly. More than that, when the parents
exist widely, the generated children also exist widely.
When the parents are close to each other, the children
are also close th the parents. Therefore, the children
have the heredity of the parents’ characteristics.

When the new individuals does not satisfy the con-
straints, the substitutive individuals are derived with
the following equation.

— RN
C{, =P +a'PiC; (6)

Here, o’ = 0.5. When the derived substitutive individ-
ual does not satisfy the constraints, ¢ is increased and
find the other substitutive individual. This operation is
performed until the individual satisfies the constraints.
The concept of this is shown in Fig. 4.

3.2.3 Other genetic operations

In this study, the mutation is not performed. The
terminal condition that is explained in the next is ef-
fected by the mutation. The crossover method that is
explained before can operate the same way of mutation.

The selection is a elite selection and the all the in-
dividuals whose ranking is 1 are selected. When the
population size is over the certain number, the individ-
uals are chosen by the roulette selection with the fitness
values. The fitness values are determined by the shar-
ing and the fitness value f; is shown with the following
equation,

1

(7)
where m is the number of individuals that are in the
area of the sharing radius. Therefore, when m = 0, the
fitness value f7 is equal to 1. When m becomes bigger,
the fitness value f; becomes smaller.
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3.2.4 Terminal condition

Many researchers used the number of generation as
the terminal conditions. However, this condition is not
practical, because the optimum generation can be de-
termined after the solutions are derived.

In this step, the terminal condition is determined
with the following steps.

e Step 1
The individuals a of generation G are saved. These
individuals should be rank 1.

e Step 2
Just after the elite selection where the individuals
that are rank 1 is remained, the individuals b are
save. Then the comparison between a and b is
performed. When m% of a are in b, the terminal
condition is satisfied.

e Step 3
The condition of step 2 is satisfied with the con-
tinuous k times, the algorithms is terminated.

From these steps, the movement of the Pareto fron-
tier is confirmed. This terminal condition is equal to
the situation that the movement of the Pareto fron-
tier is very small. In this procedure, m and k are the
parameters that designer should be set and these pa-
rameters are not effected by the type of the problems.
In this study, these parameters are set m = 98 and
k = 3 respectively.

4.
4.1

NUMERICAL EXAMPLES
Test Function

The proposed DRGA was adapted to the following
some test functions. By making the DRGA adapted
to these test functions, the validity of the DRGA and
the characteristics of the solutions are discussed. From
example 1 to example 3 are the problems that Tamaki
et al. used in their research (Tamakei, et al., 1995). The
real Pareto optimum solutions of these problems are
given. The example 4 is the problem that Veldhuizen
(Veldhuizen and Lamont, 1999) used in his research and
this example is a very difficult test function to derive
the real Pareto optimum solutions. The real Pareto
solutions of this test function is not given.

Example 1

fi(x) = 27 — (8a)
1

fa(z) = *5% — 29 —1 (8b)
1 13

g1(z) = %1 + x5 — 3 <0 (8¢)
1 13

g2(x) = zx1 420 — = <0 (8d)
2 2
1 13

g3(z) = P! + X2 — 5 <0 (8e)



ga(z) =21 >0 (8f)
95(x) =22 > 0 (8g)
Example 2
fi(z) = =221 + 22 (9a)
f2(x) = 22 (9b)
g1(x) = af — 25 <0 (9¢)
g2(x) =21 >0 (9d)
g3(x) =22 —1<0 (9e)
(9f)
Example 3
fi(z) = 2v/x1 (10a)
fo(x) =21(1 —x2) +5 (10b)
g(x)=21—-1>0 (10c)
g2(x) =4—21 >0 (10d)
g3(x) =a2—12>0 (10e)
ga(x) =2—129>0 (10f)
Example 4
fi(z) = 0.5(z% + x3) 4 sin(z? + z2) (11a)
fg(x) _ (3.2?1 — 28x2 + 4)
(1’1 — X2 —+ 1)2
15 (11b)
1
Bs@) =
— 1.1exp(—x7 — x3) (11c)
91(1’) =z > -3 (lld)
ga(r) =22 <3 (11e)

oo

4.2 Parameter Settings

There exist many parameters in multi objective GA.
In this study, the solutions of the DRGA are compared
with those of single population GA (SGA) and dis-
tributed GA (DGA). In table 1, the used parameters
of crossover rate, mutation rate, migration interval and
migration rate are summarized.

The parameters of population size and the sharing ra-
dius effects the accuracy of solutions. It is very difficult
to find the optimum population size and the sharing ra-
dius (Coello, 1999). Therefore, we used the 5 cases that
are summarized in table 2 . The sharing range is the
sub parameter that determined the sharing radius. The
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Table 1 Parameters
SGA | DGA | DRGA

Crossover 1.0

rate
Mutation
rate 00

Number of 5
island
Migration interval 5
(Sort interval)

Migration rate

J— 0.1 —_

Table 2 Population size and sharing range
popul ation| sharing

case size | range
Casel| 50 25
Case2| 100 50
Case3| 200 100

Case7| 500 250
Case 5| 1000 500

sharing radius is derived with the sharing range as fol-
lows. Find the two individuals whose distance is the
longest in the Pareto optimum individuals. Then, the
sharing range is derived by dividing the distance by the
sharing range.

4.3 The Results of Numerical Examples

The results of 4 types of the numerical examples that
are explained in the former sub section are shown in
this section. The results of the DRGA is compared the
results of the simple population model (SGA) and the
distributed population model (DGA). All the results
are the average of 10 random trials.

4.3.1 Example 1

Example 1 is the problem that has two objective
functions and it is rather easy to derive the Pareto op-
timum solutions.

The errors of the derived Pareto optimum individuals
are shown in Fig. 5.

4.0
o [m] Single
3.0 o DGA
[u] ° DRGA
= °
5 2.0+
u‘] o
1.0
>
°
u]
0.0 T T T 7 0
0 1 2 3 4 5

Fig. 5 Example 1, error
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Fig. 6 Cover rate (Example 1)
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Fig. 7 Number of function calls (Example 1)

From Fig. 5, it is found that the solutions of DRGA
have high accuracy compared to the other models when
the population size is small. This result means that
the DRGA is effective model to find the Pareto solu-
tions not only in the parallel processings but also in the
sequential processings.

When the population size is big, every models can de-
rive the solutions that have high accuracy. This comes
from the termination condition that is explained the
former section. These tendencies are the same in the
other numerical examples.

In Fig. 6, the cover rates are shown. The solutions
of SGA have good results. There is no great differences
with the solutions of the DRGA and those of the DGA.
This is because that this problem is easy to derive the
Pareto solutions. The SGA can find the better Pareto
optimum individuals with any parameters. There is
not big differences between the results of the DRGA
and the DGA because this problem is rather easy to
find the Pareto optimum solution.

In this study, the problems are solved with 5 pro-
cessors. Though, the coding is not enough developed,
the speed up can be obtained when the population size
is big. For example, comparing the DRGA and the
SGA of case 5, the calculation time of the SGA is 5
times bigger than that of the DRGA. In the DRGA,
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Fig. 9 Pareto optimum solutions (Example 2,

SGA, Case 5)

the population is divided into sub populations and the
number of individuals that concerned with the sharing
or the calculating of ranking decrease. These distribu-
tion effects are the almost same in the other examples.
Therefore, DRGA can speed up by parallel when the
population size is big.

O

4.3.2 Example 2

Example 2 is the problem whose Pareto solutions are
rather difficult to derive. The Pareto optimum individ-
uals of SGA, DGA and DRGA are shown in Fig. 9,
10 11 respectively.

In Fig. 12, the cover rates are shown.

With the figures of the distribution of the Pareto op-
timum individuals 9 , 10, 11 and Fig. 12, it is found
that this is the problem which is difficult to find the
Pareto optimum solutions. Even SGA can not derived
the solutions whose cover rate is close to 1.0. The cover
rate of the DGA is very bad. The cover rate of the
DRGA is not good but not bad as that of the DGA.
Therefore, it can be said that the DRGA is better par-
allel model of multi objective GA in parallel compared
to the DGA.

The number of objective function calls are shown in
Fig. 13.
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Fig. 10 Pareto optimum solutions(Example 2,
DGA, Case 5)
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Fig. 11 Pareto optimum solutions(Example 2,

DRGA, Case 5)

In this example, the DGA needs a lot of function call.
On the other hand , the DRGA can derive the solutions
with almost the same number of the function calls of
the SGA.

[m] Simple [ ] DRGA
o DGA
1.0
o o é
0.8 [m]
) °
B o5 b
o} °
>
o)
@]
0.2
3
<o o
0.0 T T T T
0 1 2 3 4 5
Cases

Fig. 12 Cover rate (Example 2)
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4.3.3 Example 3

This example is the problem whose shape of the
Pareto solutions are the concave. The cover rate of
the derived Pareto optimum individuals are shown in
Fig. 14.

Although, the shape of the Pareto solutions are the
concave, this is the problem whose Pareto solutions are
rather easy to derive. Therefore, any model can find the
good Pareto solutions when there are enough number
of individuals. When the population size is small, the
results of SGA is good. This results are the same as
those of example 1. It can be said that the shape of the
Pareto solutions do not effect to the errors or the cover
rate of the Pareto optimum individuals.

4.3.4 Example 4

There are three objective functions in example 4 and
it is very difficult to find the real Pareto solutions. The
Pareto optimum individuals of case 5 that are derived
by SGA, DGA and DRGA are shown in 15, 16, 17,
respectively[

The error of this test function can not be derived,
because the real Pareto solution can not be found.

The cover rate of the solutions are shown in 18.
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From Fig. 18, it is obvious that the Pareto opti-
mum individuals of the DRGA is better than those of
the SGA. This is because that this problem is very dif-
ficult to find the Pareto optimum solutions. Therefore,
it needs an adequate local search all over the feasible
domain. It can be said, the DRGA is suitable for this
problem.

In Fig. 19, the number of objective function calls
are shown. There is no remarkable characteristics ex-
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Fig. 17 Pareto optimum individuals[] Example 4,
DRGA, Case 50
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Fig. 19 Number of objective function calls (Example
4)

cept the SGA has the smallest values. This tendency
is also come from the fact that this problem is difficult
to derive the Pareto optimum solutions. 0

5. Conclusions

In this study, the new parallel model of genetic al-
gorithms in multi objective problems. This new model
is called Divided Range Genetic Algorithm: DRGA.
In this model, population is divided into sub popula-
tions with along to the value of the focused objective
function. The effectiveness and validity are discussed
through the typical numerical test functions.

Through the typical numerical test functions, it be-
came clear that the DRGA has the following character-
istics.

(1) In some cases, the solutions that derived by the
DRGA is better than those of the single population
model.

(2) When it is compared with the island model, the
DRGA model is especially effective in the problems
where it is difficult to find the Pareto optimum
solutions.

(3) In the operation of sharing, the distances between
the every two individuals are derived. Therefore,



it takes much time, when many individuals ex-
ist. The DRGA is one of the distributed popu-
lation models and the population is divided into
sub populations. This distributed processing leads
to speed up in the DRGA.

In DRGA, every sort has been performed by the
value of the focused objective function. This fo-
cused objective function is chosen in turn, and
turned with the loop. It can be thought that this
operation plays the part of the sharing.
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