
GAROP: Genetic Algorithm framework for
Running On Parallel environments

Tomoyuki Hiroyasu∗, Ryosuke Yamanaka†, Masato Yoshimi‡ and Mitsunori Miki‡
∗Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan

†Graduate School of Engineering, Doshisha University, Kyoto, Japan
‡Faculty of Science and Engineering, Doshisha University, Kyoto, Japan

Abstract—In this research, a Genetic Algorithms framework
for Running On Parallel environments, which is named GAROP,
is proposed. The GAROP provides the library for a parallel
processing, so that users should only describe codes for genetic
algorithms (GA) programs, utilizing the library implemented
for the part requiring a parallel processing. In the GAROP
framework, GA research provides only program codes which
are concerned with GA algorithm and GAROP library supports
other codes which are concerned with parallel processing. The
advantage of using GAROP is to increase the user’s productivity
by making it possible to develop the program, which can execute
a parallel processing. In this paper, the broad description of the
GAROP is provided, and the development of the GAROP, corre-
sponding multi-core CPU and GPU environments, is described.
The libraries are implemented with GA which finds quasi-
optimum solutions using meta heuristics, and its productivity
and its parallelism are evaluated. As a result, only adding four
descriptions to the program, the acceleration of the processing
speed is confirmed in both of the environments; 5.26 times speed-
up on multi-core CPU, and 3.0 times speed-up on GPU.

I. I NTRODUCTION

Several types of genetic algorithms (GA) are applied to
solve optimization problems and some of them are large-scale
optimization problems. One of the problems confronted, when
using the GA, is that the excessive amount of computing time
is required. It may be difficult for some problems to be solved
within a realistic time. To solve this problem, the amount
of computation itself should be reduced, or the processing
should be accelerated. GA attains to a global search, using
multipoint searches by many candidate solutions. It requires
much iteration to find a solution, and results in high calculation
cost. As GA searches solutions maintaining many candidate
solutions, it implicitly has parallelism. As the architectures
of calculators, on the other hand, hardware having various
architectures has been prevailed, such as PC clusters, multi-
core processor, and GPU. Therefore, to obtain environments
of parallel calculations is not as hard as ever. Although an
environment is easily obtainable, the programming skills are
required to bring out its performance efficiently, such as the
programming for heterogeneous processors, the architectural
optimization for hierarchical memories, and the programming
which overlaps connection and calculation to achieve the
scalability. In addition, these parallel architectures have the
different configurations. Thus, even using the same algorithms,
it is necessary to prepare different implementation codes suit-
able for different parallel architectures. This complicated and

disturbing programming lacks productivity. In this research,
the Genetic Algorithms framework for Running On Parallel
environments, which is named GAROP, is proposed. The
purpose of the GAROP is to increase the user’s productivity
by reducing the processing time without the specific knowl-
edge regarding parallel architecture and parallel processing.
Implementing the master-slave model, the GAROP enables to
execute any logical models. In this paper, the libraries for the
GAROP are implemented using C language. Target parallel
processing architectures are multi-core CPU and GPU. As one
of the GA technique, Simple GA is implemented using the
libraries, and it is evaluated in terms of an amount of codes
and execution time.

II. BACKGROUND

A. Genetic Algorithms

GA is a multipoint search algorithm with many candidate
solutions and generate-and-test algorithm. GA is powerful
algorithm in all kinds of research field, because GA makes it
possible to search globally, and it does not require continuity
and differentiability of target problems [1]–[5]. Under GA, a
combination of variables, which is to be a candidate solution,
is termed an individual. GA searches suboptimal solutions
with a group of individuals. Figure 1 shows a general flow
of GA. The first group of individuals is generated randomly.
Generated individuals are evaluated on their objective function.
Then, iteration searches are started. Parent individuals are se-
lected from the group of individuals. Individuals are generated
from selected parents as candidate children by genetic calcu-
lations, such as crossover and mutation. Generated individuals
as candidate children are evaluated on their objective function.
Selecting from these individuals, a group of individuals for
next generation is created. Presently, various types of GA
algorithms have been proposed, and these algorithms are ap-
plied to real-world problems. However, an excessive amount of
computation is required to find suboptimal solutions in large-
scale problems. Thus, it may be difficult for some problems
to be solved within a realistic time, so that the amount of
computation should be reduced, or the processing should be
accelerated.

B. Parallel Genetic Algorithms

Since GA processes a search by iterative execution of an
excessive amount of samplings on multiple candidate solu-

In
it
ia

li
z
a

ti
o

n

E
v
a

lu
a

ti
o

n

M
u

ta
ti
o

n

S
e

le
c
ti
o

n
 o

f
P

a
re

n
ts

C
ro

s
s
o

v
e

r

E
v
a

lu
a

ti
o

n

S
e

le
c
ti
o

n
 o

f
S

u
rv

iv
a

ls

T
e

rm
in

a
te

 C
h

e
c
k

Fig. 1. A flowchart of GA.

tions, it can be accommodated to parallelism. Thus, many
methods of parallelization have been proposed for GA [6]–
[12]. In this section, basic parallelizing methods of GA are
described. There are two principal types of parallel GA. One is
parallel processing in a population. This method has the same
characteristic as serial GA. The other is to split a population
into multiple subpopulations. Today, the latter method is
frequently used, because it has the higher parallelism than
the former method. There are GA methods performing very
efficient parallelism, which combine the both methods. On
changing the method of parallel GA, it is important to consider
that it may happen to change the amount of calculations and
the accuracy of solutions. That brings to the point that Parallel
GA has the following two meanings.

• Parallel algorithm for increasing search performance
• Parallel implementation for reducing execution time
For example, Pospichal [13] has proposed the distributed

population GA based on GPU, and achieved a high efficiency.
Although this method has achieved high efficiency, GA other
than the distributed population GA cannot be implemented,
since GA and parallel implementation are inseparable Also,
it is difficult to implement this method into architecture other
than GPU. The most basic parallel models are introduced as
the following.

1) The Master-Slave Model:Under GA, there is a tendency
that the time consumed on evaluation calculations assumes a
large share of total execution time, and the tendency strength-
ens as the complexity of the problem is increased. Then, the
master-slave model accommodates this tendency based on the
general idea of parallelization. Under the master-slave model,
all the operations except evaluations are executed by a master
processor. A master processor sends individuals, which are
to be evaluated, to slave processors. Slave processors execute
evaluating calculations on these individuals, and return the
results to the master processor. Figure 2 shows the flow of
the master-slave model. It is considered that this model is
inferior to coarse-grained model, because this model requires
relatively much communication, and a CPU is requisite as
a master processor. The purpose of this model is to reduce
the execution time, so it cannot increase the searching perfor-
mance compared to a serial algorithm.

2) The Island Model:This model splits up a population into
multiple sub populations and executes searching within each
sub population. Then, it transports some individuals in a sub
population to the other sub population. This operation is called

individual

Master
processor

Evaluation

Slave
processors

Evaluation Evaluation

Genetic Operations

Fig. 2. A master-slave model.

Fig. 3. An island model.

the migration. Figure 3 shows the flow of the island model.
Since this model makes communications between nodes only
at the migrations, this model utilizes computational resources
effectively. This model reduces its execution time and changes
the performance of the search compare to a serial algorithm.

C. Problems

As previously mentioned, parallel GA has two objectives;
those are to improve searching performance and to reduce
execution time. Some of parallel GA models are depend on
specialize particular parallel environment and these cannot be
performed on other parallel environments. These types of GA
models can use the calculation resources fully and high effec-
tiveness. However, most of parallel calculation resources have
difference architecture. Thus, when GA is tried to apply to
other parallel architecture, GA researchers have to implement
their algorithms for new architecture. To know configurations
of various architectures and to implement suitable GA are the
heavy burden on GA researchers. With these defects, even
research have good parallel environments, it may take time to
implement their algorithm.

III. SYSTEMATIZATION OF PARALLEL MODEL

As previously mentioned in chapter II, the expression of
“parallel GA” has two models; one is a parallel algorithm to
increase searching performance, and the other is a parallel im-
plementation to reduce the execution time. These two models
have to be distinguished clearly. In this research, these two
models are defined as the followings:

individual

1

2

Node

Genetic
Operations

Evaluation

3

4

Genetic
Operations

Evaluation

migration

5

(a) A serial implementation.

individual

1

2

Node

Genetic
Operations

Evaluation

1

2

Node

Genetic
Operations

Evaluation

migration

3

(b) A parallel implementation.

Fig. 4. Two island models as the logical model

• The logical model: parallel algorithm to increase search-
ing performance

• The implementation model: a parallel implementation to
reduce the execution time

Figure 4(a) shows GA adopted an island model as a logical
model and a serial model as an implementation model. Figure
4(b) shows GA adopted and island model as a logical model
and also as an implementation model. In Figure 4, the number
means the orders of processing. The logical model is a model
to execute parallel searching, but it is capable to execute serial
processing. Additionally, the logical model may be confined
by a limitation imposed by the implementation model. For
example, if the island model is adopted as the implementation
model, the Simple GA cannot be adopted as the logical model.
Once the implementation model is provided, only users have
to do is to consider and implement the logical model. Thus,
users are able to develop any algorithms without the limitation
of architectures.

IV. GAROP

The GA framework for Running On Parallel environments
(GAROP) is a framework in which any GA can be executed in
various parallel environments. The purpose of the GAROP is
that users can execute parallel processing, with the master-
slave model as the implementation model, without having
special techniques for parallel programming. The users of
the GAROP are presumed as the developers of GA. Once
the implementation for parallel processing is provided, users
could receive the benefit of parallel processing, keeping the
same level of productivities as sequential programs. Under the
GAROP, users construct any logical models and implement
some parts other than the evaluation part. Users designate the
template suited to each parallel environment, and combine
the template and the codes for evaluation of the problem,
so that the evaluation part is implemented. The use of this
template leads to hide the special communications and the
implementation of scheduling for evaluation tasks. Thus, users
can execute GA under parallel environments without having
knowledge of communication and schedulers appropriate for
parallel environments.

EvaluationEvaluation

EvaluationEvaluation

EvaluationEvaluation

Parallel
Environment

implemented by user provided by garop

Throw Queue

Get Queue

Individual
Pool

Genetic
Operations

User

Throw

Get

individual

Fig. 5. Overview of the GAROP.

Evaluation

Parallel

Environment

(a) Serial model.

Evaluation

Parallel

Environment

(b) Island model.

Fig. 6. GA Examples with GAROP.

A. Requirements

To achieve the purpose as precious described, the GAROP
is expected to meet the following requirements:

• Productivity of users
In order to achieve the same level of productivity as the
sequential programs, the framework should be provided
as the form of libraries which call up a function group.

• Versatility of parallel environments
Users should be able to use various parallel environments
by using common descriptions.

• Independent implementation model
In order to correspond to any GA, the implementation
model which is implemented independently of algorithms
is required.

TABLE I
FUNCTIONS PROVIDED BYGAROP.

Name Action

Initialize prepare parallel environments and the Individual Pool.

Throw throw an individual to the Individual Pool.

Get get an individual from the Individual Pool.

Finalize free memories used by the Individual Pool and

disconnect parallel environments.

B. Design of the GAROP

Figure 5 shows the overview of the GAROP. GAROP
introduces the concept of the Individual Pool as an interface
to link users to parallel environments. The Individual Pool is
an archive and stores individuals which should be evaluated in
parallel automatically. Under this design, any GA models can
be executed in parallel without change searching performance.
In Figure 6, the concepts of serial model and island model are
demonstrated. In the same way, other parallel models can be
performed using the GAROP.

1) The Individual Pool:The Individual Pool consists of two
queues as shown in Figure 5. One of these queues is the “throw
queue”, which stores thrown individuals, and the other queue
is the “get queue”, which stores evaluated individuals. As soon
as individuals are stored in the throw queue, they are sent to
calculation resources and evaluated. Evaluated individuals are
stored in the get queue. Users throw individual which should
be evaluated to the Individual Pool one by one. Users can
get the evaluated individual from the get queue, whenever
they need. The Individual Pool is a useful concept which
makes it possible to execute evaluating calculations and other
processing simultaneously.

2) Programming Interface:The GAROP provides 4 func-
tions as shown in Table I. This won’t be changed even
though the environment of the parallel computation is changed.
However, the types of four functions and arguments vary
depending on the environment.

3) The Template of evaluation:It is impossible to provide
implementations of every single evaluation, because the eval-
uation depends on the problem to be solved. In the GAROP,
users implement the evaluation part. This means that the
implementation of the evaluating calculation exists on the
memory of the master machine. However, the evaluation is
executed by slave processors. Therefore, the evaluation part
must be handed over from the master machine to the slave
processor. It is realistic to hand over using a form of a
function, which is easy to describe. In order to figure out how
much memory region is needed, the types and the number
of arguments and the type of return value should be known,
when the function is handed over. The GAROP provides the
template of an evaluate function as the following. Users can
solve any problems by limiting the arguments and the return
value of the function.

void evaluate(unsigned char* indata,
unsigned char* retdata);

• indata: individual data
• retdata: evaluated individual data

This way of description is suitable for the C language. The
important thing is to allocate an individual to the argument and
to allocate another individual to the return value. In order for
a description of an individual to be free, it employs unsigned
char as a pointer. The template of the evaluating function
varies depending on each of the parallel environment and the
language used.

C. How to run algorithms with the GAROP

The libraries to substantiate the GAROP are provided in
the form of source codes. Multiple libraries are prepared for
each of the execution environments, such as compilers and
languages. The user’s flow is shown as the following.

• Obtaining the library (source codes) corresponding to the
executing environment

• Implementing evaluate function using the templates
• Implementing GA with API of the library
• Compiling source codes
• Placing executable file into calculation resources
• Executing

List 4 is an example of evaluate function using a template. List
1 is an implementation of the serial model with the GAROP.
List 2 is an implementation of the island model with the
GAROP. Like this way, not only the master-slave model but
also the island model can be implemented. Using the GAROP,
other models such as cellular model can be implemented in
the same way. Under the GAROP, the parallel environment is
set up by users. For example, if users use PC cluster with MPI,
users prepare cluster by themselves and give a description of
machine file etc.

V. I MPLEMENTATIONS OFL IBRARIES FOR THEGAROP

The libraries are implemented to get individuals from In-
dividual Pool and to evaluate in parallel. The environments
implemented in this paper are the multi-core CPU by pthread
of the C language and the GPU by CUDA. The multi-core
CPU is a shared memory environment, and the GPU is a dis-
tributed memory environment. Policies of these environments
are as the following.

A. Multi-core CPU

The characteristics of multi-core CPU are having not many
cores and having a shared memory environment. Considering
these two characteristics, the library is implemented with a
constitution shown as Figure 7. A thread is regarded as a
calculation resource and assigned as a slave processor. Each
thread monitors the throw queues. When the throw queue has
one or more data, each thread gets an individual and executes
evaluating calculations. Arguments of an initialize function are
number of threads, size of an individual, and pointer of an
evaluate function.

List 1. Serial model with the GAROP.
1 population = InitPopulation();
2 Initialize (); // initialization of framework
3 FOR j = 0 to generation limit DO
4 FOR i = 0 to population num DO
5 // throw individuals to GA Pool
6 Throw (population[i]);
7 ENDFOR
8 FOR
9 // get individuals from GA Pool

10 Get (population[i]);
11 ENDFOR
12 selection(population);
13 crossover(population);
14 mutation(population);
15 ENDFOR
16 Finalize (); // finalization of framework

List 2. Island model with the GAROP.
1 population1 = InitPopulation();
2 population2 = InitPopulation();
3 Initialize (); // initialization of framework
4 FOR j = 0 to generation limit DO
5 FOR i = 0 to population num DO
6 // throw individuals to GA Pool
7 Throw (population1[i]);
8 Throw (population2[i]);
9 ENDFOR

10 FOR
11 // get individuals from GA Pool
12 Get (population1[i]);
13 Get (population2[i]);
14 ENDFOR
15 selection(population1);
16 selection(population2);
17 crossover(population1);
18 crossover(population2);
19 mutation(population1);
20 mutation(population2);
21 IF j % 10 == 0 THEN
22 migration()
23 ENDIF
24 ENDFOR
25 Finalize (); // finalization of framework

Throw Queue

Get Queue

Slave

Threadsindividual

Individual Pool

CPU

Fig. 7. An implementation of the GAROP for multi-core CPU.

B. GPU

The GPU has many cores and has a distributed memory en-
vironment. As the GPU has a distributed memory environment,
the library is implemented with a constitution shown as Figure
8. In CPU, there are main thread which run GA and sub thread
which communicate data to GPU. Arguments of initialize
function are number of blocks and thread, size of an individual,
and number of individuals that are processed at a kernel
function call. Individuals sent to GPU are stored in the constant
memory. Each CUDA thread acquires individual information

Individual Pool

Throw Queue

Get Queue

Sub
Threadindividual

GPUCPU

core

c
o

n
s
ta

n
t
m

e
m

o
ry

g
lo

b
a

l
m

e
m

o
ry

Fig. 8. An implementation of the GAROP for GPU.

TABLE II
PARAMETERS OF THESIMPLE GA

population size 64

choromosome length 64

size of an individual 68 bytes

max generations 100

optimization problem onemax

from constant memory, and writes evaluated individual data to
global memory.

VI. EVALUATION

The following is the evaluation of a Simple GA [14]
implemented using the GAROP, in terms of productivity and
parallelism. Table II shows a parameter of the Simple GA.
List 3 shows a description of an individual in this evaluation.
In this experiment, onemax problem is iterated 100,000 times
to mimic a large-scale problem. List 4 shows a function on
the evaluation. In this GA, the evaluating calculation takes up
more than 99 % of total execution time. The maximum number
of parallelism is 64, since the population size is 64. Thus,
number of individuals to be calculated at a kernel function
call is 64 in the GPU library.

A. Environments

The architectures to be evaluated in this experiment are
multi-core CPU and GPU. Table III shows the specifications of

List 3. an implementation of an individual
1 typedef struct __individual {
2 char * chromosome;
3 int fitness;
4 } Individual;

List 4. an evaluate function used in this experiment
1 void evaluate(unsigned char * indata,
2 unsigned char * retdata) {
3 int i, j;
4 int sum = 0;
5 Individual * individual = (Individual *)indata;
6 for(j = 0; j < 100000; j++)
7 for(i = 0; i < CHROMOSOME_LENGTH; i++)
8 sum += individual->chromosome[i];
9 individual->fitness = sum;

10 retdata = indata;
11 }

TABLE III
SPECIFICATIONS OF A MASTER MACHINE

OS Debian 4.1.2

memory 6 GB

CPU Intel Xeon W3530 2.80 Ghz

of physical cores 4

of logical cores 8

TABLE IV
SPECIFICATIONS OFTESLA C2050

total amount of global memory 2.68 GB

number of multiprocessors 14

number of cores 448

total amount of constant memory 65536 bytes

total amount of shared memory per block 49152 bytes

warp size 32

clock rate 1.15 GHz

the machine used in this evaluation. This machine is mounted
Tesla C2050 as shown in Table IV.

B. Results

Figure 9 shows results of multi-core CPU, and Figure 10
shows results of GPU, respectively. List 5 shows the source
codes which described by users on multi-core CPU. List 6
shows the source codes which described by users on GPU.
List 5 and List 6 show that these descriptions are common
among different architectures. It is verified that descriptions
for parallel processing can be completely hidden, even though
these descriptions are essentially required on parallel process-
ing. Figure 9(a) shows that the execution time reduces when
the number of threads is 1 to 7. Figure 9(b) shows that the
number of threads that had the least processing time is 7, and
it is improved 5.26 times compared to the situation when a
thread is processed. When the number of thread is 8 or more,
execution time takes longer. Figure 10 shows that the number
of threads that had the least processing time is 64, and it is
improved 50.01 times compared to the situation when a thread
is processed. When the numbers of thread are 2, 3, 4, 6, 8,
16, 32 and 64, the execution time is extremely reduced.

VII. D ISCUSSION

The C language and CUDA are the similar languages,
but methods of implementation in parallel are substantially
different. C is used for multi-core architecture and CUDA is
used for GPU architecture. Usually, users need the parallel
programming knowledge of C and CUDA for these architec-
tures. However, using the GAROP framework and its library,
users need not to prepare the codes for parallel processing.
Both of the codes which GA users prepare can be used as the
common descriptions. Therefore, the productivity of coding is
increased using the GAROP. Reviewing the result of multi-
core CPUs, when the number of threads is 8, the execution
time is the shortest. Among the 8 threads, 7 of them are the
threads for the slave processors and the rest is the main thread
for GA operations. The calculation server for this experiment

0

1

2

3

4

5

6

7

8

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p
 r

a
ti

o
 c

o
m

p
a

re
d

 w
it

h
 1

 t
h

re
a

d

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 [
m

s
e

c
]

Number of threads which execute evaluations

Total execution time

Speedup ratio

(a) The number of threads (1 to 8).

0

10

20

30

40

50

60

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

0 10 20 30 40 50 60

S
p

e
e

d
u

p
 r

a
ti

o
 c

o
m

p
a

re
d

 w
it

h
 1

 t
h

re
a

d

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 [
m

s
e

c
]

Number of threads which execute evaluations

Total execution time

Speedup ratio

(b) The number of threads (1 to 64).

Fig. 9. Speedup and execution time on multi-core CPU depending on
number of threads.

0

10

20

30

40

50

60

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

0 10 20 30 40 50 60

S
p

e
e

d
u

p
 r

a
ti

o
 c

o
m

p
a

re
d

 w
it

h
 1

 t
h

re
a

d

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 [
m

s
e

c
]

Number of threads

Total execution time

Speedup ratio

Fig. 10. Speedup and execution time on GPU depending on number of
threads.

has 8 logical cores. Therefore, when 7 threads are used for the
slave processors, all of the logical cores are occupied. When 8
or more threads are used, the number of threads is more than
the number of logical cores, so that it prevents the speed up.
When the number of threads is more than the number of cores,
it may happen that CPU has to switch executing threads one
after another, and this operation of switching threads produces
the waiting time. In the experiment in GPU, the execution time
is the shortest with 64 threads. Tesla C2050, which is the GPU

List 5. Simple GA with a library for pthread in C.
1 Individual population[POPULATION_SIZE];
2 // create population
3 InitPopulation(population);
4 // initialization of framework
5 Initialize (sizeof(Individual), THREAD_NUM, evaluate);
6 for(i = 1; i <= MAX_GENERATION; i++) {
7 // throw individuals to GA Pool
8 for(j = 0; j < POPULATION_SIZE; j++)
9 Throw ((unsigned char *)&population[j],

10 sizeof(Individual));
11 // get individuals from GA Pool
12 for(j = 0; j < POPULATION_SIZE; j++)
13 Get ((Individual *)&population[j],
14 sizeof(Individual));
15 population = selection(population);
16 crossover(population);
17 mutation(population); }
18 // finalization of framework
19 Finalize ();

List 6. Simple GA with a library for GPU in CUDA.
1 Individual population[POPULATION_SIZE];
2 // create population
3 InitPopulation(population);
4 // initialization of framework
5 Initialize (sizeof(Individual), BLOCK_NUM,
6 THREAD_NUM, POPULATION_SIZE);
7 for(i = 1; i <= MAX_GENERATION; i++) {
8 // throw individuals to GA Pool
9 for(j = 0; j < POPULATION_SIZE; j++)

10 Throw ((unsigned char *)&population[j],
11 sizeof(Individual));
12 // get individuals from GA Pool
13 for(j = 0; j < POPULATION_SIZE; j++)
14 Get ((Individual *)&population[j],
15 sizeof(Individual));
16 population = selection(population);
17 crossover(population);
18 mutation(population); }
19 // finalization of framework
20 Finalize ();

used in this experiment, has 448 cores. Thus, it can use 64
cores for 64 threads. From the Figure 10, it is observed that
the stagnation of speed up is existed from 17 to 31 threads and
from 33 to 63 threads. The reason of this stagnation is that
the population size 64 is not the multiple of these numbers.
Because of this reason, the fraction of the individuals is existed
and the fraction itself should be calculated, too. This takes time
and leads to the stagnation.

VIII. C ONCLUSIONS

In this paper, the GAROP which is a parallel environment
framework for evolutionary computation is proposed. The
GAROP is the framework where the logical model and the
implementation model are distinguished, and the users prepare
their algorithms as the logical model and the implementation
model is prepared by systems. Thus, users can implement
any type of logical model on parallel environment using the
GAROP. In the GAROP, user’s evolutionary algorithms are
performed in parallel as master-slave model. Users implement
their GA operations in the master and the evaluation part is
implemented in the slave using the provided template. With the
provided libraries and the implemented codes, the application,
which is worked on several types of parallel environment,

is compiled. In this paper, the concept and the flow of the
GAROP are described and the libraries for two types of paral-
lel environments are implemented; those are multi-core CPUs
and GPUs. Using the GAROP and the libraries, Simple GA
is implemented and the productivity of users and parallelism
are evaluated. From the results, GA applications which can be
worked on parallel environments are implemented using four
types of functions which are provided by the GAROP. At the
same time, execution time is also reduced.

In the future work, further discussion should be held for not
only Simple GA but also for other evolutionary computation
algorithms. In this paper, the libraries for multi-core CPUs
and GPUs are implemented. Other types of libraries for other
parallel environments will be prepared. At the same time, the
productivity discussions of the GAROP should be performed
with researches who are working on evolutionary computation
fields.

REFERENCES

[1] B. Chakraborty, T. Maeda, and G. Chakraborty, “Multiobjective route
selection for car navigation system using genetic algorithm,” inSoft
Computing in Industrial Applications, 2005. SMCia/05. Proceedings of
the 2005 IEEE Mid-Summer Workshop on, june 2005, pp. 190–195.

[2] R. Ruiz, C. Maroto, and J. Alcaraz, “Two new robust genetic algorithms
for the flowshop scheduling problem,”OMEGA, The International
Journal of Management Science, vol. 34, no. 5, pp. 461–476, 2006.

[3] P. C. Chang, H. J. Chang, and W. C. Yuan, “Adaptive multi-objective
genetic algorithms for scheduling of drilling operation in printed circuit
board industry,””Applied Soft Computing, vol. 7, no. 3, pp. 800–806,
2007.

[4] C. Poloni, A. Giurgevich, L. Onesti, and V. Pediroda, “Hybridization
of a multi-objective genetic algorithm, a neural network and a classical
optimizer for a complex design problem in fluid dynamics,”Computer
Methods in Applied Mechanics and Engineering, vol. 186, no. 2-4, pp.
403–420, 2000.

[5] B. Ombuki, B. J. Ross, and F. Hanshar, “Multi-Objective Genetic
Algorithms for Vehicle Routing Problem with Time Windows,”Applied
Intelligence, vol. 24, pp. 17–30, 2006.

[6] T. Starkweather, D. Whitley, and K. Mathias, “Optimization using
distributed genetic algorithms,” inParallel Problem Solving from Nature,
ser. Lecture Notes in Computer Science, Schwefel, Hans-Paul and
Männer, Reinhard, Ed. Springer Berlin / Heidelberg, 1991, vol. 496,
pp. 176–185.

[7] H. Mühlenbein, “Parallel genetic algorithms, population genetics
and combinatorial optimization,” inParallelism, Learning, Evolution,
ser. Lecture Notes in Computer Science, J. Becker, I. Eisele, and
F. Mündemann, Eds. Springer Berlin / Heidelberg, 1991, vol. 565,
pp. 398–406.

[8] T. C. Belding, “The distributed genetic algorithm revisited,”Proc.6th
International Conf. Genetic Algorithms, pp. 114–121, 1995.

[9] M. Miki, T. Hiroyasu, M. Kaneko, and K. Hatanaka, “A Parallel Genetic
Algorithm with Distributed Environment Scheme,”IEEE International
Conference on Systems, Man, and Cybernetics, vol. 1, pp. 695–700,
1999.

[10] D. Lim, Y. S. Ong, Y. Jin, Sendhoff.B, and L. B. Sung, “Efficient
Hierarchical Parallel Genetic Algorithms using Grid computing,”Future
Generation Computer Systems, vol. 23, no. 4, pp. 658–670, 2007.

[11] J. M. Li, X. J. Wang, R. S. He, and Z. X. Chi, “An efficient fine-grained
parallel genetic algorithm based on gpu-accelerated,” inNetwork and
Parallel Computing Workshops, 2007. NPC Workshops. IFIP Interna-
tional Conference on, Sep. 2007, pp. 855–862.

[12] Thompson, A. Matthew and Dunlap, I. Brett, “Optimization of analytic
density functionals by parallel genetic algorithm,”Chemical Physics
Letters, vol. 463, no. 1–3, pp. 278–282, 2008.

[13] P. Pospichal and J. Jaros, “GPU-based Acceleration of the Genetic
Algorithm,” GPU competition of GECCO competition, 2009.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

