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Abstract— In this paper, probabilistic model-
building genetic algorithm (PMBGA) is applied to
structural optimization problems. PMBGA has high
searching ability but it sometimes converges to the
local minimum. To avoid this problem, the con-
cept of distributed GA is applied to PMBGA. To
deal with constraints, penalty function and pulling
back methods are also applied to PMBGA. Using
the proposed methods, a truss structure is designed
to minimize its volume as a numerical example.
Through the numerical example, the comparison be-
tween PMBGA and conventional DGA shows the
effectiveness of PMBGA. The penalty function and
pulling back methods are also effective in the exam-
ple.

Keywords—Real-Coded Genetic Algorithm,Structual
Optimization, Probabilistic Model-Building GA

I. Introduction

Genetic algorithm (GA) [1][2] that simulates crea-
tures’ heredity and evolution is one of optimization
tools. GA is a stochastic searching method and is also
one of multi searching point methods. It is said that
GA is good at finding a global optimum and it is easy
to apply to several types of problems. In this paper,
structural optimization problems are tried to be solved
by GA.

Because of the rapid progress in computers, computer
simulation of structures such as cars, planes, buildings
and so on helps structural designers. Optimization is
another advanced tool for designers. When designer
formulate their problems with objective function, con-
straints and design variables, designers can make their
decision by computational optimization. In structural
optimization problems, the problems have the following
four characteristics. Firstly, object function has not only
a global optimum but also several local optimums. Sec-
ondly, they have several types of constraints. Thirdly,
usually there are a lot of design variables. Finally, be-
cause of a large number of design variables and con-
straints, the feasible region is very narrow compared
to design field. Therefore, for structural optimization
problems, optimization method that has high search-
ing ability and has mechanisms to deal with constraints

should be prepared.

Recently, a new type of GA that is called ”Probabilis-
tic Model-Building GA (PMBGA)” has been focused [8].
In simple GA, children are generated from the parents
and these parents are selected randomly. However, in
PMBGA, the good characteristics of parents are forced
to inherit to children using statistical information. Since
children must have parents’ characteristics, the effective
searching is expected.

GA is an algorithm that cannot treat constraints ex-
plicitly. Therefore, some mechanisms of treating con-
straints have to be implemented into GAs. Some GAs
have been introduced for constrained problems[10], [11],
[12], [13], [14], [15]. Usually, when constraints are vi-
olated, some penalty values are reduced from the fit-
ness function. This method is called a penalty function
method. However, it sometimes happens that almost all
the initial individuals violate the constraints when the
feasible region is very narrow. In this case, the effec-
tive search cannot be expected. In this paper, the other
method is introduced. In this method, when an individ-
ual violates the constraints, this individual is moved to
the point that satisfies the constraints. This method is
called ”Pulling Back Method”.

Penalty method and pulling back method is imple-
mented into PMBGA and PMBGA is applied to solve
truss structure problems. Truss structure is a simple
structure, but the tendency of the results holds true for
the other complicated structure problems. In the nu-
merical example, the results of PMBGA are compared
with those of sequential quadratic programming (SQP)
and conventional distributed GA (DGA). Through the
effectiveness of PMBGA, SQP and DGA in structural
optimization problems is discussed. At the same time,
capability of penalty function and pulling back methods
are demonstrated.

II. Real-Coded Probabilistic Model Building

Genetic Algorithm

In this paper, we introduce a real-coded probabilis-
tic model-building GA (Real-coded PMBGA). In this
model, PCA transformation is utilized. Then, we pro-



pose a distributed population model of PMBGA.

A. Outline of PMBGA

In this section, PMBGA is explained briefly.
In this paper, the concept of probabilistic model-

building GA (PMBGA)[8]is used. Fig. 1 show the con-
cept of PMBGA.

Fig. 1. PMBGA

In PMBGA, some of individuals are chosen at first.
Usually, the individuals whose fitness values are high are
chosen. Using these individuals, the probabilistic model
is prepared. By this probabilistic model, children are
generated stochastically. Then these new individuals
are evaluated and some new individuals are substituted
for old individuals. The procedure is returned to the
first step. Finally, the optimum solutions can be found
after the iterations. This is the general flow of PMBGA.
Since the probabilistic model is constructed with the
good parents, it is expected that the generated children
are also good. Because of this mechanism, the optimum
solution can be derived quickly.

B. Real-coded Probabilistic Model Building GA

In this paper, real-coded probabilistic model building
GA (Real-coded PMBGA) is applied.

In a simple GA, design variables are coded by binary
coding, gray coding and so on. The searching point
before the coding is called a phenotype and the search-
ing point after the coding is called a genotype. Then,
an optimum solution is searched by genetic operations
using these coded design variables. However, it is re-
ported that it is difficult to find the high accuracy solu-
tion in continuous problems[3]. At the same time, the
landscape of objective function is totally different from
the one before the coding and the one after the cod-
ing. Thus, when users are searching optimum and the
problems are continuous, it is easy to understand the
landscape of the problem in a real value space. This is
one of the motivations that users choose GAs where de-
sign variables are not coded but treat real values. These
types of GAs are called ”Real-coded GAs” and several
real-coded GAs have been introduced[4], [5].

In real coded GAs, different crossover and mutation
operations are applied to generate children from par-
ents. In GAs, to find a good solution, it is important to
produce children that inherit the good parts of their par-
ents. To produce good children, it is significant to design
an excellent crossover mechanism. In a crossover opera-
tion that is one of genetic operations, usually one point
crossover, two point crossover and uniform crossover are

applied. These crossovers can generate children who
have good parts of their parents. At the same time,
there is a possibility for these crossovers to break the
good parts of the parents and inherit them to the chil-
dren[6]. In this paper, PMBGA is applied to real-coded
GA. The following steps are real-coded PMBGA.

Step1: Initialization: Set the generation t = 0 and gen-
erate initial population P (0) randomly. Evaluate all of
the initial individuals.
Step 2: Probabilistic model construction: The proba-
bilistic model M(P ) is constructed This model is ex-
plained precisely later.
Step 3: Generation new individuals: Using the prob-
abilistic model M , the new individuals O(t) are gener-
ated. O(t) = M(P (t))
Step 4: Mutation: Each design variable is determined
to change as mutation with along to the mutation rate.
When the design variable is decided to be changed, the
value of design variable is changed randomly.
Step 5: Evaluation: Evaluate O(t).
Step 6: Alternation of generations: Substitute some of
O(t) for P (t) on the basis of the value of evaluation.
This becomes a new population P (t + 1). Set t = t + 1.
In this algorithm, any generation model can be applied.
In the following structural optimization problems, all of
individuals in O(t) are substitute into the individuals of
P (t) whose evaluation values are low.
Step 7: Terminal condition: When the terminal con-
dition is satisfied, the searching is terminated. If the
condition is not satisfied, return to Step 2.

C. Probabilistic model using PCA

In Real-coded PMBGA, a solution candidate is ex-
pressed as a real-coded vector. Therefore, there is no
difference between genotype and phenotype. Because of
this reason, it is easy to grasp of the distribution of in-
dividuals in real value space. The most important part
of real-coded PMBGA is the mechanism of constructing
probabilistic model and generating children.

In Fig.2, an example of the distribution of individuals
is shown in the design field.

Fig. 2. Distribution of each induvidual

In this problem, the optimization function should be
minimized and there are two design variables. Like this
way, the landscape of the objective function can be illus-
trated with the individuals who have high fitness value.



When the objective function is influenced by design vari-
ables independently, the axis of the distribution of the
individuals is parallel to the axis of the design variable.
On the other hand, the objective function is influenced
by design variables and those are related each other, the
axis of the distribution of the individuals is not parallel
to the axis of the design variable. Children should be
generated with along to this distribution of parents.

In this paper, we construct the probabilistic model
and generate children in the following way. In this
procedure, Principal Component Analysis (PCA) is ap-
plied.

Step 1: Extract A% of the elite individuals from the
population P (t), where t indicates the generation. The
extracted population is E(t). When there are n design
variables and m data, these data can be shown as n×m
matrix X = {xij}{i = 1...n, j = 1...m}.
Step 2: Derive the average of each design variable of
E(t). These are Xave = {xave

ij }. Then, subtract the
average value from the data, X = X − Xave.
Step 3: Derive the covariance S of X. S = {sij} can
be derived from the following equation,

sij =
1

m − 1
Σm

k=1xikxjk

.
Step 4: Derive eigen values and vectors of S. PCA
transfer matrix V is consisted of the eigen vectors. The
data X can be changed into no interrelated data Y using
PCA transfer matrix V as follows,

Y = VX

.
Step 5: In each design variable, random number is gen-
erated with accordance with the normal distribution.
Then new data Y� are generated. The variance of used
normal distribution is derived by the product of the vari-
able B and the variance of each design variable of Y.
When the number of generated individuals is p, matrix
Y� becomes n × p.
Step 6: The generated data Y� reversed into the orig-
inal field. At first, X� is deribed by the multiple of the
inverse of V and Y�.

X� = V−1Y�

Then, new data Xnew are derived by the addition of X�

and Xave.
These individuals become new population O(t).

D. Distributed PMBGA

One of the disadvantages of PMBGA is a possibility
of the convergence to the local minimum. To avoid this
situation, the concept of distributed genetic algorithm
(DGA) [7] is used. In DGA, a population is divided
into sub populations. These sub populations are called
islands. In each island, normal genetic operations are
performed for several iterations. After some iterations,
some individuals of islands are chosen and moved to the
other island. This operation is called a migration.

Because the evolution can be proceeded in each island,
DGA can keep the high diversity. It is reported that
DGA has high searching ability compared to simple GA
[7].

Therefore, when the concept of DGA is introduced
into PMBGA, it is expected that the convergence to
local minimum can be avoided.

In DGA, there are three variables in addition to the
variables that are used in a simple GA; number of is-
lands, migration interval and migration rate. The inter-
val generation between the migration is called migration
interval. At the migration operation, the number of in-
dividuals that moved to the other island is determined
by the multiple of the number of the population in an is-
land and the migration rate. When the DGA is applied
to PMBGA, a population is divided into sub popula-
tions. In each sub population, PMBGA is performed
for the migration interval. After the migration inter-
val, some individuals are chosen randomly and moved
to the other island. The topology of the island is a ring
topology. This is shown in Fig. 3 and the topology is
determined randomly at every migration chance.

Fig. 3. Migration Topology

III. Structural Optimization Problem by GA

In this paper, structural optimization problem is
solved by GA. Structural optimization problem has an
objective function and several constraints. These are
formulated as follows,

minimize f(x)

such that gj(x) ≤ 0 j = 1..m

.
Normally, compared to the design field, the feasible

region is very small because of the constraints. Since GA
cannot deal with constraints explicitly, the mechanism
which deals with the constraints is important. In this
paper, two methods are introduced and compared them
through the numerical example.

A. Penalty function methods

GA is an optimization method that can not treat con-
straints explicitly. Therefore, many methods dealing
with the constraints are proposed [10], [11], [12], [13],
[14], [15]. Among them, penalty function method is the
simplest method.

In this method, the objective function is modified
when the constraint condition is violated. The modi-
fied function can be express as follows,

minimize Fρ(x) = f(x) + ρ(Σm
i=1max{0, gj(x)})



where ρ is penalty parameter and ρ>0 should be sat-
isfied.

Since this method is same as the normal GAs besides
the fitness function, it is very easy to apply.

B. Pulling back method

Penalty function method is easy to apply for GAs.
However, when the feasible region is very narrow com-
pared to the design field, it sometimes happens that
almost all the individuals violate the constraints. Usu-
ally a value of penalty function is greater than the ob-
jective function. Thus, the effective search cannot be
performed. In this case, some individuals should be sat-
isfied the constraints.

In this section, pulling back method is introduced.
In Fig. 4, the concept of this movement is illustrated.
In this method, when a searching point Xout violates
constraints, the searching point is moved to the point
Xopt that satisfies the constraints. In this figure, Xopt

means the closest point from Xout that satisfies con-
strains. Therefore, if new individuals violate the con-
straints, they will satisfy the constrains by this opera-
tion. That is the reason this operation is called ”Pulling
back”.

Fig. 4. Pulling back operation

To find the searching point Xopt that satisfies the con-
straints from the point Xout, the following optimization
problem should be solved.

minimize f(x) =
√

(x − xout)2

such that ∇gj(xout)(x - − xout) + gj(xout) ≤ 0

j = 1, ...., m

In this problem, the objective function is the distance
between the new and old points. The constraints are
the original constraints but they are linearized. This
is a quadratic problem and it can be solved by several
methods, such as a sequential quadratic programming.

This pulling back operation is performed after the
crossover and mutation. All the individuals that violate
the constraints are renewed to satisfy the constraints.

IV. Numerical Example

In this section, a truss structure is designed by the
proposed distributed PMBGA and handling methods of
constraints. In this problem, the volume of the truss
structure is minimized within the certain value of stress,
displacement and buckling conditions. The comparison
of the results by conventional DGA, the effectiveness of
distributed PMBGA is described. At the same time, the
characteristics of penalty function method and pulling
back method are discussed.

A. Truss structure

The designed truss structure is shown in Fig. 5.

Fig. 5. 10 Stage Truss

This truss structure is consisted of 22 nodes and 50
members. Two nodes ((0.0,0.0) and (0.4,0.0)) at the
ground are fixed. There is a load N = 1000N at the top
node ((0.4,3.0)). All the elements are linear elasticity
and Young’s modules is 1.000GPa. The cross section of
each element is a circle.

In this problem, the total volume of this structure is
minimized. Design variables are areas of cross section
of the element. There are three constraints. The dis-
placement at the node that has the load should be less
than a certain value (0.003 - 0.0015m). The maximum
stress should be less than 2.000 MPa. Buckling should
not be occurred in the structure.

B. SQP and conventional DGA

The results of PMBGA are compared with a gradient
method and conventional DGA.

In this paper, sequential quadratic programming
(SQP) is used as a gradient method. DOT code [9] is
used for the SQP. The used parameters are summarized
in Table I.



TABLE I

Parameter of DOT

Method SQP
RPRM[0] -0.05 ?-0.108

(other) RPRM Array ALL 0
IPRM Array ALL 0

Maximum Value
of Design Variables 0.1

Minimum Value
of Design Variables 0.000001

TABLE II

Parameter of Conventional DGA

Number of Individuals 240
Tournament Size 4
Crossover Rate 1
Mutation Rate 0.000645

Number of Elite Individuals 1
Migration Rate 0.5

Migration Interval 1 Generation
Number of Islands 8
Terminal Criterion 1000 Generations
Maximum Value

of Design Variables 0.1
Minimum Value

of Design Variables 0.000001
Penalty Parameter (ρ) 1e+06

In conventional DGA, a bit string is used to express
a design variable. 31 bits used for a design variable and
a total length of gene is 1550 bits. The coding method
is a gray coding. For selection, crossover and muta-
tion, tournament selection, two point crossover and bit
flip mutation are applied respectively. The migration
method is same as distributed PMBGA. For conven-
tional DGA, only the penalty function method is ap-
plied. The used parameters are summarized in Table
II.

Penalty function method and pulling back method are
applied to MBGA and results are compared. The used
parameters are summarized in Table III.

C. Results

The truss structure is designed by DOT(SQP), con-
ventional DGA with penalty function method, PMBGA
with penalty method and PMBGA with pulling back
method. Here, the value of displacement constraint is
changed 0.0015, 0.0020, 0.0025 and 0.0030.

The volumes of the derived structures are summarized
in Fig. 6. The number of function call of each method
is summarized in Table IV. The transion of the total
volume with respect to the generation is shown in Fig.
7. All the results are the average of 5 trials.

From these results, the following facts are made clar-
ified.

When the constraints are loose, there are no big dif-
ferences between the result of SQP and GAs. On the

TABLE III

Parameter of PMBGA

Number of Individuals for
pulling back method 80

Number of Individuals for
penalty function method 240

PMBGA (A) for
pulling back method 30%

PMBGA (A) for
pulling back method 10%

PMBGA (B) 2
Mutation Rate for
pulling back method 0.02
Mutation Rate for
pulling back method 0.002

Number of Elite Individuals 1
Migration Rate 0.5

Migration Interval 1 Generation
Number of Islands 8
Terminal Criterion 1000 Generations
Maximum Value

of Design Variables 0.1
Minimum Value

of Design Variables 0.000001
Penalty Parameter (ρ) 1e+06

Fig. 6. Comparison of PMBGA with Pulling Back Opera-
tion,PMBGA with Penalty Function,Conventional DGA
and DOT (Total Volume(m3))

other hand, when the constraints are tight, the results of
GAs are better than those of SQP. However, GA needs
a lot of iterations. Therefore, GA is useful for applying
the complicated and difficult problems.

Pulling back method needs more function calls than
penalty function method. When an individual violates
the constraints, it moves to the point that satisfies the
constraints. At this moment, some function calls are
needed. Therefore, this operation needs a lot of function
calls.

Comparison between PMBGA and conventional DGA
shows that PMBGA has a high searching ability. At the
same time, PMBGA is a robust method to find the op-
timum since the proposed PMBGA has the distributed



TABLE IV

Comparison of PMBGA,Conventional GA and DOT

(Number of Function Calls)

Constraints(m) 0.003 0.0025 0.002 0.0015

DOT 1214 1226 1214 472
Conventional

DGA 240000 240000 240000 240000
PMBGA /
Penalty 240000 240000 240000 240000

PMBGA /
Pulling 1481017 1966673 1884030 2197135

 

 

 

Fig. 7. Search History of PMBGA with Pulling Back Oper-
ation,PMBGA with Penalty Function and Conventional
DGA

population concept.
In this problem, the result of penalty method is better

than that of pulling back method. This is different from
the expectation. In this problem, some of the initial
individuals satisfy the constraints. Therefore, the search
can be proceeded even by penalty function. It is still
expected that pulling back method is superior to penalty
function in the problems where all the individuals of
initial population violate the constraints.

V. Conclusion

In this paper, probabilistic model-building genetic al-
gorithm (PMBGA) is applied to structural optimiza-
tion problems. For constraint optimization problems,
penalty function method is usually applied to genetic
algorithms. However, when the feasible region is very
narrow compared to the design field, most of the indi-
viduals violate constraints and GA can not search an op-
timum effectively. To solve this problem, we introduce
the pulling back method. In this method, the individ-
ual that violates constraints is moved to the point that
satisfies the constraints. Since all of the points satisfy
the constraints by this operation, the effective searching
can be expected.

PMBGA has high searching ability but it sometimes
converges to the local minimum. To avoid this problem,
the concept of distributed GA is implemented PMBGA.
In distributed GA, a population is divided into sub pop-
ulation and it can maintain the diversity.

The proposed method is applied to design a truss
structure as a numerical example. Through the numer-
ical example, the comparison of PMBGA with conven-
tional DGA shows the effectiveness of PMBGA. How-
ever, the result of the pulling back method is not su-
perior to that of penalty function method. This may
come from the fact that the problem is rather easy to
find an optimum. Solving much complicated problem is
a future work.
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